Advances in Lithium-Ion Battery Safety and Fire

A special issue of Batteries (ISSN 2313-0105). This special issue belongs to the section "Battery Performance, Ageing, Reliability and Safety".

Deadline for manuscript submissions: closed (10 March 2025) | Viewed by 22050

Special Issue Editors

School of Safety Engineering, China University of Mining and Technology, Xuzhou 221000, China
Interests: thermal runaway and propagation; battery safety after ageing; multi-scale battery fire; thermal management; safety monitoring and mitigation strategy; fire dtection and extinguishing
Special Issues, Collections and Topics in MDPI journals
School of Safety Engineering, China University of Mining and Technology, Xuzhou 221000, China
Interests: battery hazard control; thermal runaway early warning; water mist fire extinguishing; battery fire extinguishing agent
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
CUMT-IoT perception Mine Research Center, China University of Mining and Technology, Xuzhou 221000, China
Interests: electrochemical electrode; battery safety monitoring; gas sensors and sensing systems; sensing signal recognition; low-power and high-performance sensors and sensor arrays
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Lithium-ion batteries have become one of the most competitive energy storage media for electric vehicles, energy storage power stations, novel energy storage systems, and so on. The safety issues associated with batteries, including thermal runaway, thermal runaway propagation, ageing degradation, fire and explosion, have caused widespread concern. These issues have not been satisfactorily unveiled and resolved. To this end, this Special Issue focuses on advances in the fundamental science and key technologies for thermal safety and management with regard to the related fire and explosion of batteries, including mechanisms, modelling, characteristics, monitoring, control, standard, etc.

Potential topics include, but are not limited to, the following:

  • Intrinsic design for battery safety (flame retardant electrolyte, self-closing separator, high stability electrode, etc.);
  • Insights into thermal runaway/propagation mechanisms and numerical modelling analysis;
  • Advanced thermal management strategies;
  • Multi-scale battery fire tests (cell, module, vehicle, energy storage station, etc.);
  • Process safety and emergency disposal of batteries during transportation;
  • Ageing mechanisms, diagnostic method and regulation measures under different paths;
  • Characteristics and evaluation of battery fire and explosion;
  • Detection, monitoring and early warning of battery thermal runaway and fire;
  • Explosion suppression and fire extinguishing involving battery fire;
  • Safety standards for battery production, storage, transportation, and usage processes.

We are delighted to invite you to publish an original research paper or a review paper in this Special Issue. Share your results to enhance the safety of batteries.

Dr. Zhi Wang
Dr. Tong Liu
Dr. Mingzhi Jiao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Batteries is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • safety battery
  • thermal runaway
  • fire and explosion
  • thermal propagation
  • thermal management
  • battery ageing
  • multi-scale test and modelling
  • monitoring and early waring
  • fire detection
  • fire extinguishing
  • explosion suppression
  • accident investigation
  • safety standards and guidelines

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 3404 KiB  
Article
Unravelling Lithium Interactions in Non-Flammable Gel Polymer Electrolytes: A Density Functional Theory and Molecular Dynamics Study
by Nasser AL-Hamdani, Paula V. Saravia, Javier Luque Di Salvo, Sergio A. Paz and Giorgio De Luca
Batteries 2025, 11(1), 27; https://doi.org/10.3390/batteries11010027 - 14 Jan 2025
Viewed by 1002
Abstract
Lithium metal batteries (LiMBs) have emerged as extremely viable options for next-generation energy storage owing to their elevated energy density and improved theoretical specific capacity relative to traditional lithium batteries. However, safety concerns, such as the flammability of organic liquid electrolytes, have limited [...] Read more.
Lithium metal batteries (LiMBs) have emerged as extremely viable options for next-generation energy storage owing to their elevated energy density and improved theoretical specific capacity relative to traditional lithium batteries. However, safety concerns, such as the flammability of organic liquid electrolytes, have limited their extensive application. In the present study, we utilize molecular dynamics and Density Functional Theory based simulations to investigate the Li interactions in gel polymer electrolytes (GPEs), composed of a 3D cross-linked polymer matrix combined with two different non-flammable electrolytes: 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC)/dimethyl carbonate (DMC) and 1 M lithium bis(fluorosulfonyl)imide (LiFSI) in trimethyl phosphate (TMP) solvents. The findings derived from radial distribution functions, coordination numbers, and interaction energy calculations indicate that Li⁺ exhibits an affinity with solvent molecules and counter-anions over the functional groups on the polymer matrix, highlighting the preeminent influence of electrolyte components in Li⁺ solvation and transport. Furthermore, the second electrolyte demonstrated enhanced binding energies, implying greater ionic stability and conductivity relative to the first system. These findings offer insights into the Li+ transport mechanism at the molecular scale in the GPE by suggesting that lithium-ion transport does not occur by hopping between polymer functional groups but by diffusion into the solvent/counter anion system. The information provided in the work allows for the improvement of the design of electrolytes in LiMBs to augment both safety and efficiency. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire)
Show Figures

Graphical abstract

14 pages, 11889 KiB  
Article
Thermal Propagation Test Bench for the Study of the Paschen Curve and Lightning Arcs of Venting Gas
by Björn Mulder, Kai Peter Birke, Björn Obry, Stefan Wigger, Ruslan Kozakov, Pavel Smirnov and Jochen Schein
Batteries 2024, 10(11), 397; https://doi.org/10.3390/batteries10110397 - 8 Nov 2024
Viewed by 1493
Abstract
Thermal propagation events are characterized by fire and thick black smoke, leading to propagation methods with a focus on preventing heat transfer and optimizing gas flow. Yet little attention is being paid to the electric conductivity of the gas, leading to possibly unexpected [...] Read more.
Thermal propagation events are characterized by fire and thick black smoke, leading to propagation methods with a focus on preventing heat transfer and optimizing gas flow. Yet little attention is being paid to the electric conductivity of the gas, leading to possibly unexpected battery casing openings due to lightning arcs as well as potentially providing the minimum ignition energy. This gas composition (omitting particles) was used at different temperatures and pressures in a lightning arc test bench, leading to the Paschen curve. Using a mini-module cell setup, filtered venting gas was flowed through another lightning arc test bench, allowing for in situ measurements. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire)
Show Figures

Figure 1

16 pages, 3553 KiB  
Article
Thermal Runaway Warning of Lithium Battery Based on Electronic Nose and Machine Learning Algorithms
by Zilong Pu, Miaomiao Yang, Mingzhi Jiao, Duan Zhao, Yu Huo and Zhi Wang
Batteries 2024, 10(11), 390; https://doi.org/10.3390/batteries10110390 - 5 Nov 2024
Cited by 2 | Viewed by 1657
Abstract
Characteristic gas detection can be an efficient way to predict the degree of thermal runaway of a lithium battery. In this work, a sensor array consisting of three commercial MOS sensors was employed to discriminate between three target gases, CO, H2 and [...] Read more.
Characteristic gas detection can be an efficient way to predict the degree of thermal runaway of a lithium battery. In this work, a sensor array consisting of three commercial MOS sensors was employed to discriminate between three target gases, CO, H2 and a mixture of the two, which are characteristic gases released during the thermal runaway of lithium batteries. In this work, an integrated model that makes the classification stage results one of the feature inputs for the concentration regression stage was employed, successfully reducing the RMSE of the concentration regression results. In addition, we also explored the influence of the selection of the response time length on the classification and regression tasks, achieving the best results in a short time through the optimum algorithm. To assess the impact of time duration sensor data on the results, we selected four time windows of different length and extracted the corresponding sensor response data for subsequent processing. Initially, principal component analysis (PCA) was used to visualise the clustering of the three target gas samples at room temperature, providing a preliminary data analysis. For the classification phase, we chose three classification algorithms—MLP (Multilayer Perceptron), ELM (Extreme Learning Machine), and SVM (Support Vector Machine)—and performed a comprehensive comparison of their classification and generalisation abilities using grid search for hyperparameter optimisation and five-fold cross-validation. The results demonstrated that MLP achieved 99.23% classification accuracy during the 20 s response period. In the concentration regression phase, we combined the classification results with the raw features to create a new feature set, which was then input into a multi-output MLP regression model. The root mean square error (RMSE) employing the new feature set was used to measure the prediction error. Ultimately, the findings showed that the input of combined features significantly reduced the regression error for the mixed gas. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire)
Show Figures

Figure 1

14 pages, 2847 KiB  
Article
The Multi-Parameter Fusion Early Warning Method for Lithium Battery Thermal Runaway Based on Cloud Model and Dempster–Shafer Evidence Theory
by Ziyi Xie, Ying Zhang, Hong Wang, Pan Li, Jingyi Shi, Xiankai Zhang and Siyang Li
Batteries 2024, 10(9), 325; https://doi.org/10.3390/batteries10090325 - 13 Sep 2024
Cited by 3 | Viewed by 1713
Abstract
As the preferred technology in the current energy storage field, lithium-ion batteries cannot completely eliminate the occurrence of thermal runaway (TR) accidents. It is of significant importance to employ real-time monitoring and warning methods to perceive the battery’s safety status promptly and address [...] Read more.
As the preferred technology in the current energy storage field, lithium-ion batteries cannot completely eliminate the occurrence of thermal runaway (TR) accidents. It is of significant importance to employ real-time monitoring and warning methods to perceive the battery’s safety status promptly and address potential safety hazards. Currently, the monitoring and warning of lithium-ion battery TR heavily rely on the judgment of single parameters, leading to a high false alarm rate. The application of multi-parameter early warning methods based on data fusion remains underutilized. To address this issue, the evaluation of lithium-ion battery safety status was conducted using the cloud model to characterize fuzziness and Dempster–Shafer (DS) evidence theory for evidence fusion, comprehensively assessing the TR risk level. The research determined warning threshold ranges and risk levels by monitoring voltage, temperature, and gas indicators during lithium-ion battery overcharge TR experiments. Subsequently, a multi-parameter fusion approach combining cloud model and DS evidence theory was utilized to confirm the risk status of the battery at any given moment. This method takes into account the fuzziness and uncertainty among multiple parameters, enabling an objective assessment of the TR risk level of lithium-ion batteries. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire)
Show Figures

Graphical abstract

13 pages, 2633 KiB  
Article
Pyrrolidinium-Based Ionic Liquids as Advanced Non-Aqueous Electrolytes for Safer Next Generation Lithium Batteries
by Antía Santiago-Alonso, José Manuel Sánchez-Pico, Raquel San Emeterio, María Villanueva, Josefa Salgado and Juan José Parajó
Batteries 2024, 10(9), 319; https://doi.org/10.3390/batteries10090319 - 10 Sep 2024
Cited by 2 | Viewed by 1278
Abstract
In the current context of increasing energy demand, ionic liquids (ILs) are presented as possible candidates to replace conventional electrolytes and to develop more efficient energy storage devices. The IL 1-Methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide has been selected for this work, due to the good thermal [...] Read more.
In the current context of increasing energy demand, ionic liquids (ILs) are presented as possible candidates to replace conventional electrolytes and to develop more efficient energy storage devices. The IL 1-Methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide has been selected for this work, due to the good thermal and chemical stabilities and good electrochemical performance of the pyrrolidinium cation based ILs. Binary mixtures of this IL and lithium salt with the same anion, [TFSI], have been prepared with the aim of assessing them, as possible electrolytes for lithium batteries. These mixtures were thermally and electrochemically characterised through DSC and dielectric spectroscopy studies. The ionic conductivity decreases as the salt concentration increases, finding values ranging between 0.4 S/m and 0.1 S/m at room temperature. Additionally, a wide liquid range was found for the mixtures, which would reduce or even eliminate some of the most common problems of current electrolytes, such as their crystallisation at low temperatures and flammability. Finally, the toxicity of pure IL and the intermediate salt concentration was also evaluated in terms of the bioluminescence inhibition of the Alivibrio Fischeri bacteria, observing that, although the toxicity increases with the salt addition, both samples can be classified as practically harmless. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire)
Show Figures

Figure 1

21 pages, 9440 KiB  
Article
Investigation on Thermal Runaway Hazards of Cylindrical and Pouch Lithium-Ion Batteries under Low Pressure of Cruise Altitude for Civil Aircraft
by Qiang Sun, Hangxin Liu, Zhi Wang, Yawei Meng, Chun Xu, Yanxing Wen and Qiyao Wu
Batteries 2024, 10(9), 298; https://doi.org/10.3390/batteries10090298 - 24 Aug 2024
Cited by 1 | Viewed by 1736
Abstract
Thermal runaway characteristics and hazards of lithium-ion batteries under low ambient pressure in-flight conditions are studied in a dynamic pressure chamber. The influence of ambient pressures (95 kPa and 20 kPa) and packaging forms (cylindrical and pouch commercial batteries) were especially investigated. The [...] Read more.
Thermal runaway characteristics and hazards of lithium-ion batteries under low ambient pressure in-flight conditions are studied in a dynamic pressure chamber. The influence of ambient pressures (95 kPa and 20 kPa) and packaging forms (cylindrical and pouch commercial batteries) were especially investigated. The results show that the values of heat release, temperature, and CO2 concentration decrease with the reduction in pressure from 95 kPa to 20 kPa, while the total hydrocarbon and CO increase. Without violent fire, explosion, and huge jet flames, the thermal hazards of TR fire under 20 kPa are lower, but the amount of toxic/flammable gas emissions increases greatly. The amount of CO and hydrocarbons varies inversely with the thermal hazards of fire. Under low-pressure environments of cruise altitude, the thermal hazards of TR fire for pouch cells and the toxic/potentially explosive hazards of gas emissions of cylindrical cells need more attention. The performance of TR hazards for two packaging types of battery is also different. Pouch cells have higher thermal hazards of fire and lower combustible/toxic emitted gases than cylindrical cells. The thermal runaway intensity of individual cells decreases under lower ambient pressure, but the burning intensity increases dramatically when thermal runaway occurs in a battery pack. The open time of a safety valve (rupture of the bag) is shortened, but the trigger time for a thermal runaway varies for different formats of batteries under 20 kPa. Those results may be helpful for the safety warning and hazard protection design of Li batteries under low-pressure conditions. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire)
Show Figures

Figure 1

18 pages, 18755 KiB  
Article
Experimental Study on Thermal Runaway Characteristics of High-Nickel Ternary Lithium-Ion Batteries under Normal and Low Pressures
by Ye Jin, Di Meng, Chen-Xi Zhao, Jia-Ling Yu, Xue-Hui Wang and Jian Wang
Batteries 2024, 10(8), 287; https://doi.org/10.3390/batteries10080287 - 12 Aug 2024
Cited by 2 | Viewed by 1930
Abstract
High-nickel (Ni) ternary lithium-ion batteries (LIBs) are widely used in low-pressure environments such as in the aviation industry, but their attribute of high energy density poses significant fire hazards, especially under low pressure where thermal runaway behavior is complex, thus requiring relevant experiments. [...] Read more.
High-nickel (Ni) ternary lithium-ion batteries (LIBs) are widely used in low-pressure environments such as in the aviation industry, but their attribute of high energy density poses significant fire hazards, especially under low pressure where thermal runaway behavior is complex, thus requiring relevant experiments. This study investigates the thermal runaway characteristics of LiNi0.8Mn0.1Co0.1O2 (NCM811) 18650 LIBs at different states of charge (SOCs) (75%, 100%) under various ambient pressures (101 kPa, 80 kPa, 60 kPa, 40 kPa). The results show that, as the pressure is decreased from 101 kPa to 40 kPa, the onset time of thermal runaway is extended by 28.2 s for 75% SOC and by 40.8 s for 100% SOC; accordingly, the onset temperature of thermal runaway increases by 19.3 °C for 75% SOC and by 33.5 °C for 100% SOC; the maximum surface temperature decreases by 70.8 °C for 75% SOC and by 68.2 °C for 100% SOC. The cell mass loss and loss rate slightly decrease with reduced pressure. However, ambient pressure has little impact on the time and temperature of venting as well as the voltage drop time. SEM/EDS analysis verifies that electrolyte evaporates faster under low pressure. Furthermore, the oxygen concentration is lower under low pressure, which consequently leads to a delay in thermal runaway. This study contributes to understanding thermal runaway characteristics of high-Ni ternary LIBs and provides guidance for their safe application in low-pressure aviation environments. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire)
Show Figures

Figure 1

18 pages, 43757 KiB  
Article
Lithium-Ion Battery Thermal Runaway: Experimental Analysis of Particle Deposition in Battery Module Environment
by Sebastian Hoelle, Hyojeong Kim, Sascha Zimmermann and Olaf Hinrichsen
Batteries 2024, 10(6), 173; https://doi.org/10.3390/batteries10060173 - 23 May 2024
Cited by 1 | Viewed by 2863
Abstract
In this paper, a novel experimental setup to quantify the particle deposition during a lithium-ion battery thermal runaway (TR) is proposed. The setup integrates a single prismatic battery cell into an environment representing similar conditions as found for battery modules in battery packs [...] Read more.
In this paper, a novel experimental setup to quantify the particle deposition during a lithium-ion battery thermal runaway (TR) is proposed. The setup integrates a single prismatic battery cell into an environment representing similar conditions as found for battery modules in battery packs of electric vehicles. In total, 86 weighing plates, positioned within the flow path of the vented gas and particles, can be individually removed from the setup in order to determine the spatial mass distribution of the deposited particles. Two proof-of-concept experiments with different distances between cell vent and module cover are performed. The particle deposition on the weighing plates as well as the particle size distribution of the deposited particles are found to be dependent on the distance between cell vent and cover. In addition, the specific heat capacity of the deposited particles as well as the jelly roll remains are analyzed. Its temperature dependency is found to be comparable for both ejected particles and jelly roll remains. The results of this study help researches and engineers to gain further insights into the particle ejection process during TR. By implementing certain suggested improvements, the proposed experimental setup may be used in the future to provide necessary data for simulation model validation. Therefore, this study contributes to the improvement of battery pack design and safety. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire)
Show Figures

Figure 1

Review

Jump to: Research

41 pages, 10418 KiB  
Review
Advancements in Vibration Testing: Effects on Thermal Performance and Degradation of Modern Batteries
by Khursheed Sabeel, Maher Al-Greer and Imran Bashir
Batteries 2025, 11(2), 82; https://doi.org/10.3390/batteries11020082 - 19 Feb 2025
Viewed by 2762
Abstract
Lithium-ion cells are increasingly being used as central power storage systems for modern applications, i.e., e-bikes, electric vehicles (EVs), satellites, and spacecraft, and they face significant and constant vibrations. This review examines how these vibrations affect the batteries’ mechanical, thermal, and electrical properties. [...] Read more.
Lithium-ion cells are increasingly being used as central power storage systems for modern applications, i.e., e-bikes, electric vehicles (EVs), satellites, and spacecraft, and they face significant and constant vibrations. This review examines how these vibrations affect the batteries’ mechanical, thermal, and electrical properties. Vibrations can cause structural issues, such as the separation of electrodes and the deformation of separators. These problems raise internal resistance and lead to localized heat generation. As a result, thermal management becomes more complicated, battery aging accelerates, and safety risks arise, including short circuits and thermal runaways. To tackle these challenges, we need more realistic testing protocols that consider the combined effects of vibrations, temperature, and mechanical stress. Improving thermal management systems (TMSs) using advanced cooling techniques and materials, e.g., phase change solutions, can help to alleviate these problems. It is also essential to design batteries with vibration-resistant materials and enhanced structural integrity to boost their durability. Moreover, vibrations play a significant role in various degradation mechanisms, including dendrite formation, self-discharge, and lithium plating, all of which can reduce battery capacity and lifespan. Our current research builds on these insights using a multiscale physics-based modeling approach to investigate how vibrations interact with thermal behavior and contribute to battery degradation. By combining computational models with experimental data, we aim to develop strategies and tools to enhance lithium-ion batteries’ safety, reliability, and longevity in challenging environments. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire)
Show Figures

Graphical abstract

26 pages, 10356 KiB  
Review
Review of Flame Behavior and Its Suppression during Thermal Runaway in Lithium-Ion Batteries
by Yikai Mao, Yin Chen and Mingyi Chen
Batteries 2024, 10(9), 307; https://doi.org/10.3390/batteries10090307 - 30 Aug 2024
Cited by 1 | Viewed by 3703
Abstract
Lithium-ion batteries (LIBs) are extensively utilized in electric vehicles (EVs), energy storage systems, and related fields due to their superior performance and high energy density. However, battery-related incidents, particularly fires, are increasingly common. This paper aims to first summarize the flame behavior of [...] Read more.
Lithium-ion batteries (LIBs) are extensively utilized in electric vehicles (EVs), energy storage systems, and related fields due to their superior performance and high energy density. However, battery-related incidents, particularly fires, are increasingly common. This paper aims to first summarize the flame behavior of LIBs and then thoroughly examine the factors influencing this behavior. Based on these factors, methods for suppressing LIB flames are identified. The factors affecting flame behavior are categorized into two groups: internal and external. The paper then reviews the flame behavior within battery modules, particularly in confined spaces, from both experimental and simulation perspectives. Furthermore, methods for suppressing battery flames are classified into active and passive techniques, allowing for a more comprehensive analysis of their effectiveness. The paper concludes with a summary and outlook, offering new insights for future research and contributing to the development of safer and more efficient battery systems. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire)
Show Figures

Figure 1

Back to TopTop