Comparative Study of Thermal Runaway Propagation and Material Barrier Effect of Lithium-Ion Batteries
Abstract
1. Introduction
2. Methodology
2.1. Battery Sample
2.2. Material Characterization
2.2.1. PCM Sample
2.2.2. Ceramic Fiber Sample
2.2.3. Glass Fiber Sample
2.3. Experimental Setup
2.4. Experimental Arrangement
3. Experimental Results and Analyses
3.1. Comparative Analysis of TR Behavior Through Experimental Phenomenon
3.2. Comparative Analysis of TR Behavior by Battery Temperature Characteristic
3.3. Comparative Analysis of TR Behavior by Mass Loss of Battery Module
3.4. Comprehensive Comparative Analysis of the Inhibition Effect of Different Materials
4. Evaluation of the Effectiveness of Different Materials for TRP Inhibition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, S.; Ahmad, T.; Tahir, M.Y.; Usman, M.; Chhattal, M.; Hussain, I.; Khan, S.; Hassan, A.M.; Assiri, M.A.; Rosaiah, P.; et al. The emergence of density functional theory for supercapacitors: Recent progress and advances. J. Energy Storage 2023, 73, 109100. [Google Scholar] [CrossRef]
- Mao, Y.; Chen, Y.; Chen, M. Review of Flame Behavior and Its Suppression during Thermal Runaway in Lithium-Ion Batteries. Batteries 2024, 10, 307. [Google Scholar] [CrossRef]
- Jiangyi, H.; Fan, W. Design and testing of a small orchard tractor driven by a power battery. Eng. Agríc. 2023, 43, e20220195. [Google Scholar] [CrossRef]
- Börger, A.; Mertens, J.; Wenzl, H. Thermal runaway and thermal runaway propagation in batteries: What do we talk about? J. Energy Storage 2019, 24, 100649. [Google Scholar] [CrossRef]
- Quan, Y.-Z.; Liu, Q.-S.; Liu, M.-C.; Zhu, G.-R.; Wu, G.; Wang, X.-L.; Wang, Y.-Z. Flame-retardant oligomeric electrolyte additive for self-extinguishing and highly-stable lithium-ion batteries: Beyond small molecules. J. Energy Chem. 2023, 84, 374–384. [Google Scholar] [CrossRef]
- Sun, P.; Bisschop, R.; Niu, H.; Huang, X. A Review of Battery Fires in Electric Vehicles. Fire Technol. 2020, 56, 1361–1410. [Google Scholar] [CrossRef]
- Feng, X.; Ren, D.; He, X.; Ouyang, M. Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule 2020, 4, 743–770. [Google Scholar] [CrossRef]
- Zhou, G.; Yang, S.; Liu, Y.; Zhang, Q.; Li, Y.; Lu, H.; Wei, Z.; Huang, Q.; Zhou, W. Thermal runaway response and flame eruption dynamics of lithium-ion batteries under continuous/intermittent heating mode of dual heat sources. Appl. Therm. Eng. 2024, 249, 123363. [Google Scholar] [CrossRef]
- Zhang, G.; Wei, X.; Tang, X.; Zhu, J.; Chen, S.; Dai, H. Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review. Renew. Sustain. Energy Rev. 2021, 141, 110790. [Google Scholar] [CrossRef]
- Salloum, R.; Rabuel, F.; Abada, S.; Morcrette, M. Investigating the internal short-circuit in 18650 cells under thermal abuse conditions. J. Power Sources 2025, 628, 235905. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, N.; Jiang, L.; Wei, Z.; Zhang, Y.; Yu, Y.; Song, L.; Wang, L.; Duan, Q.; Sun, J.; et al. Assessment of the complete chain evolution process of LIBs from micro internal short circuit failure to thermal runaway under mechanical abuse conditions. Process Saf. Environ. Prot. 2024, 185, 296–306. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Huang, X.; Huang, X. Intra-cell thermal runaway propagation within a cylindrical battery induced by nail penetration. Int. J. Therm. Sci. 2025, 210, 109633. [Google Scholar] [CrossRef]
- Chen, M.; Yu, Y.; Ouyang, D.; Weng, J.; Zhao, L.; Wang, J.; Chen, Y. Research progress of enhancing battery safety with phase change materials. Renew. Sustain. Energy Rev. 2024, 189, 113921. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, M.; Zhang, S.; Ouyang, D.; Weng, J.; Wei, R.; Chen, Y.; Zhao, L.; Wang, J. Experimental investigation on mitigation of thermal runaway propagation of lithium-ion battery module with flame retardant phase change materials. Appl. Therm. Eng. 2023, 235, 121401. [Google Scholar] [CrossRef]
- Ren, M.; Fakayode, O.A.; Kong, F.; Zhou, C.; Chen, L.; Fan, X.; Liang, J.; Li, H. Characterization of cellulose nanocrystals prepared by different delignification methods and application of ultra-light, hydrophobic aerogels as oil absorbent in food systems. Ind. Crops Prod. 2023, 197, 116653. [Google Scholar] [CrossRef]
- Niu, H.; Chen, C.; Liu, Y.; Li, L.; Li, Z.; Ji, D.; Huang, X. Mitigating thermal runaway propagation of NCM 811 prismatic batteries via hollow glass microspheres plates. Process Saf. Environ. Prot. 2022, 162, 672–683. [Google Scholar] [CrossRef]
- Zou, K.; Xu, J.; Zhao, M.; Lu, S. Effects and mechanism of thermal insulation materials on thermal runaway propagation in large-format pouch lithium-ion batteries. Process Saf. Environ. Prot. 2024, 185, 1352–1361. [Google Scholar] [CrossRef]
- Bausch, B.; Frankl, S.; Becher, D.; Menz, F.; Baier, T.; Bauer, M.; Böse, O.; Hölzle, M. Naturally-derived thermal barrier based on fiber-reinforced hydrogel for the prevention of thermal runaway propagation in high-energetic lithium-ion battery packs. J. Energy Storage 2023, 61, 106841. [Google Scholar] [CrossRef]
- Chen, M.; Gong, Y.; Zhao, L.; Chen, Y. Phase change material with outstanding thermal stability and mechanical strength for battery thermal management. J. Energy Storage 2024, 104, 114565. [Google Scholar] [CrossRef]
- Gupta, A.K.; Kiran, R.; Zafar, S.; Pathak, H. Effect of hygrothermal ageing on the mechanical properties of glass fiber reinforced polymer composite: Experimental and numerical approaches. Mater. Today Commun. 2024, 41, 111060. [Google Scholar] [CrossRef]
- Xu, C.; Liu, X.; Wang, L.; Gan, X.; Li, T.; Feng, X.; Yue, X.; Lv, Y.; Wang, X. Structural morphology evolution and characterization of electrospun magnesium aluminum silicate ceramic micro-nanofibers: A study. Mater. Today Commun. 2024, 39, 108816. [Google Scholar] [CrossRef]
- Chen, L.; Liu, J.; Liu, H.; Liu, Z.; Song, Q. Synergistic effect of graphene oxide and glass fiber on mchanical and thermal properties of composites: Experimental and simulation investigations. React. Funct. Polym. 2025, 210, 106201. [Google Scholar] [CrossRef]
- Feng, R.; Yang, Q.; Dai, H.; Deng, M.; Wang, H.; Hou, C.; Cheng, Z.; Gao, H. Effect of glass fiber on the mechanical and thermal insulation performances of kaolinite-based thermal insulator. Case Stud. Constr. Mater. 2024, 21, e03879. [Google Scholar] [CrossRef]
- Zhu, X.; Sun, Z.; Wang, Z.; Wang, H.; Lin, N.; Shan, C. Thermal runaway in commercial lithium-ion cells under overheating condition and the safety assessment method: Effects of SoCs, cathode materials and packaging forms. J. Energy Storage 2023, 68, 107768. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, J.; Zhu, X.; Wang, H.; Huang, L.; Wang, Y.; Xu, S. Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study. J. Energy Chem. 2021, 55, 484–498. [Google Scholar] [CrossRef]
- Mao, N.; Gadkari, S.; Wang, Z.; Zhang, T.; Bai, J.; Cai, Q. A comparative analysis of lithium-ion batteries with different cathodes under overheating and nail penetration conditions. Energy 2023, 278, 128027. [Google Scholar] [CrossRef]
Test | Materials | Thickness/mm |
---|---|---|
1 | Blank | \ |
2 | PCM | 2 |
3 | PCM | 3 |
4 | Ceramic fiber | 2 |
5 | Ceramic fiber | 3 |
6 | Glass fiber | 2 |
7 | Glass fiber | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y.; Chen, Y.; Ye, Y.; Chen, Y.; Chen, M. Comparative Study of Thermal Runaway Propagation and Material Barrier Effect of Lithium-Ion Batteries. Batteries 2025, 11, 214. https://doi.org/10.3390/batteries11060214
Mao Y, Chen Y, Ye Y, Chen Y, Chen M. Comparative Study of Thermal Runaway Propagation and Material Barrier Effect of Lithium-Ion Batteries. Batteries. 2025; 11(6):214. https://doi.org/10.3390/batteries11060214
Chicago/Turabian StyleMao, Yikai, Yaoyu Chen, Yanglin Ye, Yin Chen, and Mingyi Chen. 2025. "Comparative Study of Thermal Runaway Propagation and Material Barrier Effect of Lithium-Ion Batteries" Batteries 11, no. 6: 214. https://doi.org/10.3390/batteries11060214
APA StyleMao, Y., Chen, Y., Ye, Y., Chen, Y., & Chen, M. (2025). Comparative Study of Thermal Runaway Propagation and Material Barrier Effect of Lithium-Ion Batteries. Batteries, 11(6), 214. https://doi.org/10.3390/batteries11060214