applsci-logo

Journal Browser

Journal Browser

Application of Green Chemistry in Environmental Engineering

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Environmental Sciences".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 402

Special Issue Editors


E-Mail Website
Guest Editor
National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria 29,300, 00015 Monterotondo, Italy
Interests: biogas; air sampling; biomass conversion; zeolites; adsorption; mass spectrometry; chromatography; multivariate analysis; waste management; spectroscopy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute for Atmospheric Pollution IIA, National Council of Research (CNR), 00015 Monterotondo, Italy
Interests: life cycle assessment; well-to-wheels; textile waste; plastic recycling; biomethane; microbiology; bioplastics

Special Issue Information

Dear Colleagues,

Growing environmental awareness and increasingly stringent regulations are driving the need for innovative and sustainable solutions in engineering. Green chemistry offers a promising approach to addressing environmental challenges by promoting processes and products that reduce or eliminate the use and generation of hazardous substances. Integrating green chemistry into environmental engineering not only enhances the sustainability of industrial processes but also contributes to environmental protection and human health.

This Special Issue aims to publish studies that explore the application of green chemistry in environmental engineering, focusing on emerging technologies and innovations that can have a significant impact. Topics of interest include, but are not limited to, the following:

  • Development of eco-friendly and biodegradable materials;
  • Green chemistry-based technologies for water and soil purification;
  • Synthesis and application of green catalysts;
  • Sustainable chemical processes for waste treatment;
  • Applications of green chemistry in pollution reduction and resource recovery;
  • Green solvents and reagents;
  • Life cycle assessment of green chemistry applications;
  • Renewable energy technologies incorporating green chemistry principles;
  • Advances in green chemistry for environmental remediation.

Dr. Valerio Paolini
Dr. Patrizio Tratzi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • circular economy
  • biorefinery
  • LCA

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

27 pages, 2947 KiB  
Article
Multicomponent Adsorption of Paracetamol and Metronidazole by Batch and Fixed-Bed Column Processes: Application of Monte Carlo Bayesian Modeling
by Letícia Reggiane de Carvalho Costa, Júlia Toffoli de Oliveira, Fayola Silva Silveira and Liliana Amaral Féris
Appl. Sci. 2025, 15(13), 7316; https://doi.org/10.3390/app15137316 - 29 Jun 2025
Viewed by 82
Abstract
This study addresses the growing concern of water contamination by pharmaceutical residues, focusing on the simultaneous removal of paracetamol (PAR) and metronidazole (MTZ). Batch and fixed-bed column adsorption processes were evaluated using activated carbon. In the batch experiments, the effects of pH (3, [...] Read more.
This study addresses the growing concern of water contamination by pharmaceutical residues, focusing on the simultaneous removal of paracetamol (PAR) and metronidazole (MTZ). Batch and fixed-bed column adsorption processes were evaluated using activated carbon. In the batch experiments, the effects of pH (3, 7, and 11), adsorbent mass (0.5, 1.25, and 2 g), and contact time (10, 30, and 60 min) were evaluated, while the fixed-bed column was optimized considering initial pollutants concentration (30, 40, and 50 mg/L), adsorbent mass (0.5, 0.75, and 1 g), and flow rate (5, 10, and 15 mL/min) to improve the maximum adsorption capacity of the bed for both pollutants (qmaxPAR and qmaxMTZ). Parameter estimation and model selection were performed using a Bayesian Monte Carlo approach. Optimal conditions in the batch system (pH = 7, W = 2 g, and time = 60 min) led to high removal efficiencies for both compounds (≥98%), while in the column system, the initial pollutant concentration was the most significant parameter to improve the maximum adsorption capacity of the bed, resulting in values equal to 49.5 and 43.6 mg/g for PAR and MTZ, respectively. The multicomponent Gompertz model showed the best performance for representing the breakthrough curves and is suitable for scale-up (R2 ≥ 0.75). These findings highlight the complexity of multicomponent adsorption and provide insights, contributing to the development of more efficient and sustainable water treatment technologies for pharmaceutical residues. Full article
(This article belongs to the Special Issue Application of Green Chemistry in Environmental Engineering)
Show Figures

Figure 1

Back to TopTop