applsci-logo

Journal Browser

Journal Browser

Advances in Electroporation Systems and Applications

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Electrical, Electronics and Communications Engineering".

Deadline for manuscript submissions: 20 June 2025 | Viewed by 3933

Special Issue Editor


E-Mail Website
Guest Editor
1. Institute of High Magnetic Fields, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
2. Department of Immunology, Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
Interests: bioelectromagnetics; bioelectronics; high-power electronics; electromagnetic field effects; electroporation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Electroporation is a phenomenon of biological cell membrane permeabilization triggered by a pulsed electric field; it is accompanied by the electro-transfer of target molecules inside or outside the cell. It is widely used in biomedicine, food processing, biotechnology, and other applied sciences. Depending on the electric field parameters, a variety of electroporation-mediated biological effects can be triggered, which require state-of-the-art technological platforms for pulse generation, metrology, and application. As a result, the development of electroporation systems is ongoing, and the array of applications is systemically expanded. This Special Issue is dedicated to all aspects of applied electroporation research, as well as the development of pulsed power devices.

Prof. Dr. Vitalij Novickij
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electroporation
  • electropermeabilization
  • cell membrane permeability
  • electric field effects
  • bioelectromagnetics
  • drug delivery
  • electrochemotherapy
  • microbial inactivation
  • food processing and preservation
  • pulsed power devices
  • high-voltage generators
  • electroporators
  • irreversible electroporation
  • tissue ablation
  • lipid pores
  • electrotransformation
  • nanosecond and microsecond pulses
  • electric field processing
  • extraction of molecules
  • pulsed treatment
  • biomass processing
  • non-thermal processing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 7854 KiB  
Article
Investigation of the Opposite-Electrode Effect on the Planar Solid-State Pulse-Forming Line
by Zebin Fu, Fanzheng Zeng, Yifeng Liu, Chenglin Jia and Song Li
Appl. Sci. 2024, 14(19), 8677; https://doi.org/10.3390/app14198677 - 26 Sep 2024
Viewed by 593
Abstract
The planar solid-state pulse-forming line (planar solid-state PFL) is an important solid-state device used in compact pulse power systems. Moreover, pulsed power systems constitute a crucial element within electroporation systems. In this paper, we present theoretical and simulation analyses of the influence of [...] Read more.
The planar solid-state pulse-forming line (planar solid-state PFL) is an important solid-state device used in compact pulse power systems. Moreover, pulsed power systems constitute a crucial element within electroporation systems. In this paper, we present theoretical and simulation analyses of the influence of the ground electrode structure of the planar solid-state PFL on the edge electric field and thermal distribution of high-voltage electrodes and the design of a novel improved solid-state PFL (opposite-electrode PFL) that differs from the classic planar solid-state PFL (full-electrode PFL) in which the ground electrode covers the entire plane. The ground electrode of the opposite-electrode PFL is structured to be consistent with the high-voltage electrode and positioned directly opposite to enhance the withstand voltage capacity of the planar solid-state PFL. The simulation results show that when the ground electrode width is the same as the high-voltage electrode, the electric field strength at the edge of the electrodes is smaller. In the electrostatic field simulation, the edge electric field strength of the high-voltage electrode in the opposite-electrode PFL is smaller than that of the full-electrode PFL, which indicates that the opposite-electrode PFL may have a higher withstand voltage. The experimental results show that the opposite-electrode PFL has a higher withstand voltage than the full-electrode PFL, which verifies the correctness of the theoretical and simulation analyses. Furthermore, the opposite-electrode PFL surface temperature rise showed a better performance after running the same test repeatedly. The findings of this study are conducive to enhancing the maximum output voltage or compactness of pulsed power systems and highlight the additional potential for the utilization of solid-state pulse generators in electroporation systems. Full article
(This article belongs to the Special Issue Advances in Electroporation Systems and Applications)
Show Figures

Figure 1

17 pages, 3765 KiB  
Article
The Advancement and Utilization of Marx Electric Field Generator for Protein Extraction and Inducing Structural Alterations
by Voitech Stankevič, Kamilė Jonynaitė, Ahmed Taha, Skirmantas Keršulis, Aldas Dervinis, Sebastjanas Kurčevskis, Sonata Tolvaišienė, Arūnas Stirkė and Nerija Žurauskienė
Appl. Sci. 2024, 14(9), 3886; https://doi.org/10.3390/app14093886 - 1 May 2024
Cited by 1 | Viewed by 1241
Abstract
This study introduces an innovative two-range, 12-stage Marx pulse generator employing thyristor switches designed specifically for the electroporation of biological cells. The generator consists of two module capacitors of different capacitances (1 μF and 0.25 μF), which enable the generation of electrical pulses [...] Read more.
This study introduces an innovative two-range, 12-stage Marx pulse generator employing thyristor switches designed specifically for the electroporation of biological cells. The generator consists of two module capacitors of different capacitances (1 μF and 0.25 μF), which enable the generation of electrical pulses with different durations and amplitudes of up to 25 kV. Safety aspects, including overcurrent and overvoltage protection mechanisms, are implemented in both the software and the hardware. In the experimental section, the tests of the Marx generator with resistive load are described in detail, and the results for the voltage fluctuations, pulse duration, and output characteristics of the generator are presented. The advantages of the design, including the high output voltage, the wide range of repetition rates, and the flexibility of the pulse parameters, are emphasized. Additionally, the research showcases the utilization of the devised generator for industrial purposes. Hence, an investigation into the efficiency of protein extraction from microalgae (Chlorella vulgaris) and the impacts of pulsed electric fields (PEFs) on the structural characteristics of casein micelles (CSMs) was chosen as an illustrative example. The obtained results provide valuable insights into the application of PEF in food processing and biotechnology and underline the potential of the developed generator for sustainable and environmentally friendly practices. Full article
(This article belongs to the Special Issue Advances in Electroporation Systems and Applications)
Show Figures

Figure 1

21 pages, 5518 KiB  
Article
Effects of Electroporation on the Function of Sarco/Endoplasmic Reticulum Ca2+-ATPase and Na+,K+-ATPase in H9c2 Cells
by Vid Jan, Maida Jusović and Damijan Miklavčič
Appl. Sci. 2024, 14(7), 2695; https://doi.org/10.3390/app14072695 - 22 Mar 2024
Cited by 1 | Viewed by 1476
Abstract
Pulsed field ablation (PFA) is a promising new treatment for atrial fibrillation (AF), in which pulmonary vein isolation is achieved by irreversible electroporation. Electroporation causes ATP to leak through the permeabilized membrane. ATP is required both for the healing of the cell membrane [...] Read more.
Pulsed field ablation (PFA) is a promising new treatment for atrial fibrillation (AF), in which pulmonary vein isolation is achieved by irreversible electroporation. Electroporation causes ATP to leak through the permeabilized membrane. ATP is required both for the healing of the cell membrane and for the functioning of ion pumps, such as sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) or Na+,K+-ATPase (NKA), which play a key role in maintaining continuous contractions of the heart muscle. We investigated the effects of electroporation on the expression of ion pumps and possible correlations with the activation of AMPK, the main energy sensor in cells. H9c2 rat cardiac cells were exposed to either monopolar or bipolar (H-FIRE) pulses. Cells lysed 4 or 24 h after electroporation were used for mRNA and protein expression analyses. Overall, both pulse protocols caused a dose-dependent downregulation of crucial SERCA and NKA isoforms, except for NKAα2 and β3, which were upregulated after 24 h. Monopolar pulses also decreased the phosphorylation of FXYD1, which may cause an inhibition of NKA activity. Both pulse protocols caused an increased AMPK activity, which may decrease both SERCA and NKA activity via calcium/calmodulin-dependent protein kinase. Our results provide important new insights into what happens in surviving cardiomyocytes after they are exposed to PFA. Full article
(This article belongs to the Special Issue Advances in Electroporation Systems and Applications)
Show Figures

Figure 1

Back to TopTop