applsci-logo

Journal Browser

Journal Browser

Innovations in Rock Mechanics and Mining Engineering

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Civil Engineering".

Deadline for manuscript submissions: 20 January 2026 | Viewed by 1325

Special Issue Editor

Special Issue Information

Dear Colleagues,

Rock mechanics and mining engineering have witnessed remarkable advancements in recent years. With innovations in numerical modeling, remote sensing, artificial intelligence, and sustainable mining practices, researchers and practitioners have significantly enhanced our ability to safely and efficiently exploit underground resources while reducing environmental impact. Notable breakthroughs include intelligent monitoring systems for underground stability, new composite materials for reinforcement and support, and advanced methods for assessing and mitigating geotechnical risks.

Looking forward, this dynamic field is expected to evolve further through increased integration of digital twins, machine learning, and automated mining technologies. Research on the sustainable reuse of underground spaces, novel reinforcement materials, improved safety protocols, and innovative mining methods will remain pivotal in shaping the future of mining engineering and rock mechanics.

We invite original research articles, review papers, and case studies addressing, but not limited to, the following keywords:

  • Numerical modeling;
  • Intelligent monitoring;
  • Risk assessment;
  • Grouting;
  • Rock reinforcement;
  • Sustainable mining;
  • Artificial intelligence;
  • Mine safety;
  • Underground mine utilization;
  • Automated mining;
  • Geothermal energy extraction.

Dr. Yuantian Sun
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • numerical modeling
  • intelligent monitoring
  • risk assessment
  • grouting
  • rock reinforcement
  • sustainable mining
  • artificial intelligence
  • mine safety
  • underground mine utilization
  • automated mining
  • geothermal energy extraction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3459 KB  
Article
Thickness Design and Stability Analysis of Stage Pillar Under High and Large Backfill Loads
by Qing Na, Qiusong Chen, Yao Liu, Yan Feng, Chuanyi Cheng, Wei Jia and Jinfeng Yuan
Appl. Sci. 2025, 15(18), 10190; https://doi.org/10.3390/app151810190 - 18 Sep 2025
Abstract
In underground mining, the stage pillar (SP) is essential for maintaining stope stability, acting as a load-bearing structure between stages. Determining the minimum safe SP thickness is critical to balancing mineral recovery and operational safety. This study investigates the design and mechanical stability [...] Read more.
In underground mining, the stage pillar (SP) is essential for maintaining stope stability, acting as a load-bearing structure between stages. Determining the minimum safe SP thickness is critical to balancing mineral recovery and operational safety. This study investigates the design and mechanical stability of SP under substantial backfill loads, using a representative Iron ore mine as a case study. Based on the geometry of the overlying backfill and core sampling data, extreme loading conditions were identified, with the stope measuring 85 m in height, 72 m in length, and 18 m in width. A mathematical model incorporating the pressure arch effect and triangular pillar geometry was developed to estimate the backfill-induced load. Safety factors for various SP thicknesses were calculated using thin plate and elastic beam theories. Considering sequential excavation of the first- and second-step stopes, the minimum safe SP thickness was determined to be 6.0 m. This design was evaluated using FLAC3D numerical simulations. The results reveal that during the first step, stress concentrations occurred mainly at the pillar base, with a maximum displacement of approximately 2.0 cm and peak tensile stress of 0.36 MPa—both within acceptable limits. These findings support improved pillar design for safe, efficient ore recovery in underground metal mining. Full article
(This article belongs to the Special Issue Innovations in Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

18 pages, 5808 KB  
Article
Numerical Investigation of the Reinforcement Effect of Fully Grouted Bolts on Layered Rock Masses Under Triaxial Loading with One Free Surface
by Shiming Jia, Yiming Zhao, Zhengzheng Xie, Zhe Xiang and Yanpei An
Appl. Sci. 2025, 15(17), 9689; https://doi.org/10.3390/app15179689 - 3 Sep 2025
Viewed by 415
Abstract
The layered composite roof of a coal mine roadway exhibits heterogeneity, with pronounced variations in layer thickness and strength. Fully grouted rock bolts installed in such layered roofs usually penetrate two or more strata and bond with them to form an integrated anchorage [...] Read more.
The layered composite roof of a coal mine roadway exhibits heterogeneity, with pronounced variations in layer thickness and strength. Fully grouted rock bolts installed in such layered roofs usually penetrate two or more strata and bond with them to form an integrated anchorage system. Roof failure typically initiates in the shallow strata and progressively propagates to deeper layers; thus, the mechanical properties of the rock at the free surface critically influence the overall stability of the layered roof and the load-transfer behavior of the bolts. In this study, a layered rock mass model was developed using three-dimensional particle flow code (PFC3D), and a triaxial loading scheme with a single free surface was applied to investigate the effects of free-surface rock properties, support parameters, and confining pressure on the load-bearing performance of the layered rock mass. The main findings are as follows: (1) Without support, the ultimate bearing capacity of a hard-rock-free-surface specimen is about 1.2 times that of a soft-rock-free-surface specimen. Applying support strengths of 0.2 MPa and 0.4 MPa enhanced the bearing capacity by 29–38% and 46–75%, respectively. (2) The evolution of axial stress in the bolts reflects the migration of the load-bearing core of the anchored body. Enhancing support strength improves the stress state of bolts and effectively mitigates the effects of high-stress conditions. (3) Under loading, soft rock layers exhibit greater deformation than hard layers. A hard-rock free surface effectively resists extrusion deformation from deeper soft rocks and provides higher bearing capacity. Shallow free-surface failure is significantly suppressed in anchored bodies, and “compression arch” zones are formed within multiple layers due to bolt support. Full article
(This article belongs to the Special Issue Innovations in Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

17 pages, 2594 KB  
Article
Calculation Method and Treatment Scheme for Critical Safety Rock Pillar Thickness Based on Catastrophe Theory
by Chao Yuan, Ruimin Wang, Rongjie Du, Xuanqi Huang and Shihai Shu
Appl. Sci. 2025, 15(17), 9650; https://doi.org/10.3390/app15179650 - 2 Sep 2025
Viewed by 372
Abstract
To investigate the safety risks associated with gas tunnel coal uncovering, a physical and mechanical model of the critical safety rock pillar is proposed through a combination of theoretical analysis, numerical simulation, and field testing. Based on the principles of energy conservation and [...] Read more.
To investigate the safety risks associated with gas tunnel coal uncovering, a physical and mechanical model of the critical safety rock pillar is proposed through a combination of theoretical analysis, numerical simulation, and field testing. Based on the principles of energy conservation and catastrophe theory, an expression for calculating the critical safety for rock pillar thickness is derived. The effects of tunnel radius, burial depth, axial stress, coal seam dip angle, and gas pressure on the critical thickness are systematically analyzed. The results indicate that the critical safety of rock pillar thickness increases with the tunnel radius, burial depth, gas pressure, and axial stress. Moreover, as the tunnel radius increases, the growth rate of the critical thickness also increases. Conversely, as the burial depth increases, the growth rate of the critical thickness decreases. For gas pressure and axial stress, the growth rate remains relatively constant. Using a tunnel project in Hunan as a case study, theoretical analysis yields a critical safety rock pillar thickness of 3.95 m. A corresponding numerical model is developed to simulate this scenario, and the simulation results align well with the theoretical predictions. Based on these findings, a combined treatment scheme of “advanced small-pipe grouting + gas drainage and pressure relief” is proposed for excavation upon reaching the critical rock pillar thickness. This scheme successfully ensures safe tunnel passage through the coal seam. Full article
(This article belongs to the Special Issue Innovations in Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

Back to TopTop