applsci-logo

Journal Browser

Journal Browser

Advanced Technology in Geotechnical Engineering

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Civil Engineering".

Deadline for manuscript submissions: 30 October 2025 | Viewed by 300

Special Issue Editor


E-Mail Website
Guest Editor
School of Civil Engineering, Shandong University, Jinan 250061, China
Interests: transport in porous media

Special Issue Information

Dear Colleagues,

This Special Issue focuses on the microscale and mesoscale mechanisms driving innovations in geotechnical engineering. We invite research exploring advanced technologies such as micro-CT imaging, discrete element modeling (DEM), molecular dynamics, and nano-indentation techniques to unravel soil–structure interactions, particle-scale behavior, and fabric evolution. Contributions to AI-enhanced micromechanical analysis, in situ microstructural characterization, and multiscale modeling approaches are particularly encouraged. Studies should emphasize fundamental mechanisms, experimental advancements, or computational methods that bridge micro/meso observations with macro-scale geotechnical performance. Both theoretical and experimental investigations addressing the interplay between material science and geomechanics are welcome. Join us in advancing the understanding of geotechnical phenomena from the ground up.

We look forward to receiving your contributions.

Prof. Dr. Qingrong Xiong
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • micromechanics
  • multiscale modeling
  • particle interactions

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

27 pages, 7946 KiB  
Article
Double-Borehole Superimposed Effect of a New Non-Explosive Directional Rock-Breaking Method
by Quan Zhang, Manchao He, Kai Chen, Shan Guo, Chun Yang, Rongzhou Yang, Yun Wu, Jiong Wang and Chao Wang
Appl. Sci. 2025, 15(12), 6805; https://doi.org/10.3390/app15126805 - 17 Jun 2025
Viewed by 201
Abstract
Due to the difficulty of creating directional fractures efficiently and accurately with existing non-explosive rock-breaking methods, a directional fracturing technique utilizing a coal-based solid waste expansive agent, termed the instantaneous expansion with a single fracture (IESF), has been developed. IESF can generate high-pressure [...] Read more.
Due to the difficulty of creating directional fractures efficiently and accurately with existing non-explosive rock-breaking methods, a directional fracturing technique utilizing a coal-based solid waste expansive agent, termed the instantaneous expansion with a single fracture (IESF), has been developed. IESF can generate high-pressure gases within 0.05–0.5 s and utilize gas pressure to achieve directional rock fragmentation. The rock-breaking mechanisms under double-borehole conditions of conventional blasting (CB), shaped charge blasting (SCB), and IESF were studied by theoretical analysis, numerical simulation, and in situ test. The gas pressure distribution within directional fractures of IESF was determined, and the crack propagation criterion between double-borehole was established. Numerical simulation results indicated that the stress distribution in CB was random. SCB exhibited tensile stress of −10.89 MPa in the inter-borehole region and −8.33 MPa on the outer-borehole region, while IESF generated −14.47 MPa and −12.62 MPa in the corresponding regions, demonstrating that stresses generated between adjacent boreholes can be superimposed in the inter-hole region. In CB, strain was concentrated along main fractures. SCB exhibited strains of 7 mm and 8 mm in the shaped charge direction, while non-shaped charge directions showed a strain of 1.5 mm. For IESF, strain in the shaped charge direction measured 6 mm, compared to 1 mm in non-shaped charge directions, resulting in superior directional fracture control. In situ test results from Donglin Coal Mine demonstrated that IESF can form superior directional rock-breaking efficacy compared to both CB and SCB, with the average crack rates of 95.5% by IESF higher than 85.0% by SCB. This technique provides a non-explosive method that realizes precise control of the direction of cracks while avoiding the high-risk and high-disturbance problems of explosives blasting. Full article
(This article belongs to the Special Issue Advanced Technology in Geotechnical Engineering)
Show Figures

Figure 1

Back to TopTop