applsci-logo

Journal Browser

Journal Browser

Endodontics and Restorative Dentistry: Advanced Materials, Methods and Technologies

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Applied Dentistry and Oral Sciences".

Deadline for manuscript submissions: 20 April 2026 | Viewed by 1747

Special Issue Editor


E-Mail Website
Guest Editor
Department of Restorative Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
Interests: endodontics; biomaterials; bioglass; tissue engineering

Special Issue Information

Dear Colleagues,

The evolution of biomaterial engineering has revolutionized the fields of endodontics and restorative dentistry, fostering the development of innovative materials and techniques which improve clinical outcomes. Bioactive glasses and ceramics, for instance, have demonstrated remarkable potential to enhance tissue regeneration, osseointegration, and antibacterial efficacy, addressing critical challenges in dental treatments.

This Special Issue, “Endodontics and Restorative Dentistry: Advanced Materials, Methods and Technologies”, seeks to highlight groundbreaking advancements in biomaterials and their applications in dentistry.

The topics of interest include the design and characterization of novel bioactive materials, such as bioglass formulations capable of inducing tissue regeneration and providing antimicrobial properties, and their use in endodontic therapies, materials, or restorative procedures.

Additionally, studies on tissue engineering approaches, including strategies for pulp and bone regeneration, bibliometric analyses, and systematic reviews on emerging trends, are encouraged.

We invite researchers and clinicians to contribute original articles and reviews that bridge the gap between material science and clinical application, aiming to shape the future of endodontics and restorative dentistry.

Prof. Dr. Francine Benetti
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • endodontics
  • biomaterials
  • ceramics
  • bioglass
  • dental composites
  • antibacterial activity
  • tissue engineering
  • bone regeneration
  • bibliometrics
  • systematic review

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 10152 KB  
Article
In Vivo Comparison of Resin-Modified and Pure Calcium-Silicate Cements for Direct Pulp Capping
by Fatma Fenesha, Aonjittra Phanrungsuwan, Brian L. Foster, Anibal Diogenes and Sarah B. Peters
Appl. Sci. 2025, 15(19), 10639; https://doi.org/10.3390/app151910639 - 1 Oct 2025
Viewed by 568
Abstract
Introduction: Direct pulp capping (DPC) aims to preserve the vitality of the dental pulp by placing a protective biocompatible material over the exposed pulp tissue to facilitate healing. There are several calcium-silicate materials that have been designed to promote mineralization and the regulation [...] Read more.
Introduction: Direct pulp capping (DPC) aims to preserve the vitality of the dental pulp by placing a protective biocompatible material over the exposed pulp tissue to facilitate healing. There are several calcium-silicate materials that have been designed to promote mineralization and the regulation of inflammation. These have strong potential for the repair and regeneration of dental pulp. Among them, Biodentine (BD) and EndoSequence RRM Putty (ES) have been found to promote in vitro and in vivo mineralization while minimizing some of the limitations of the first-generation calcium-silicate-based materials. Theracal-LC (TLC), a light-cured, resin-modified calcium-silicate material, is a newer product with potential to improve the clinical outcomes of DPC, but existing studies have reported conflicting findings regarding its biocompatibility and ability to support pulpal healing in direct contact with the pulp. A comprehensive assessment of the biocompatibility and pulpal protection provided by these three capping materials has not yet been performed. Aim: We aimed to quantify the inflammatory response, dentin bridge formation, and material adaptation following DPC using three calcium-silicate materials: ES, BD, and TLC. Materials and Methods: DPC was performed on the maxillary first molar of C57BL/6 female mice. Maxilla were collected and processed at 1 and 21 days post-DPC. The early inflammatory response was measured 24 h post-procedure using confocal imaging of anti-Lys6G6C, which indicates the extent of neutrophil and monocyte infiltration. Reparative mineralized bridge formation was assessed at 21 days post-procedure using high-resolution micro-computed tomography (micro-CT) and histology. Lastly, the homogeneity of the capping materials was evaluated by quantifying voids in calcium-silicate restorations using micro-CT. Results: DPC using TLC induced less infiltration of Lys6G6C+ cells at 24 h than BD or ES. BD promoted higher volumes of tertiary dentin than TLC, but TLC and ES showed no significant differences in volume. No differences were observed in material adaptation and void spaces among the three capping materials. Conclusions: All three materials under investigation supported pulp healing and maintained marginal integrity. However, TLC induced a lower inflammatory response on day 1 and induced similar levels of tertiary dentin to ES. These observations challenge the common perception that resin-based capping materials are not suitable for direct pulp capping. Our findings underscore the need to balance biological responses with physical properties when selecting pulp capping materials to improve long-term clinical success. Full article
Show Figures

Figure 1

13 pages, 3585 KB  
Article
Three-Dimensional Finite Element Analysis (FEM) of Tooth Stress: The Impact of Cavity Design and Restorative Materials
by Yasemin Derya Fidancioğlu, Sinem Alkurt Kaplan, Reza Mohammadi and Hakan Yasin Gönder
Appl. Sci. 2025, 15(17), 9677; https://doi.org/10.3390/app15179677 - 3 Sep 2025
Viewed by 743
Abstract
Finite element analysis has been widely applied in restorative dentistry, but there is limited evidence directly comparing the biomechanical behavior of amalgam and bulk-fill composite resins in standardized cavity designs. This study aimed to evaluate the stress distribution in enamel, dentin, and restorative [...] Read more.
Finite element analysis has been widely applied in restorative dentistry, but there is limited evidence directly comparing the biomechanical behavior of amalgam and bulk-fill composite resins in standardized cavity designs. This study aimed to evaluate the stress distribution in enamel, dentin, and restorative materials under different cavity configurations and filling materials. A 3D model of a maxillary molar was reconstructed from dental tomography using Geomagic Design X 2020. Four cavity models were created with Solidworks 2013: Class I (occlusal, Group A), Class II disto-occlusal (Group B), Class II mesio-occlusal (Group C), and Class II mesio-occluso-distal (Group D) cavities. Each model was restored with either amalgam or bulk-fill composite and a 600 N occlusal force was applied. Maximum principal stresses were analyzed with ABAQUS software. The highest stress was observed in the bulk-fill composite restoration of the Class II MO cavity (231 Mpa), whereas the lowest stress occurred in amalgam restoration of Class I cavity. Overall, amalgam restorations showed lower stress concentrations than bulk-fill composites, especially in complex cavity designs. These results suggest that cavity configuration and restorative material selection influence stress distribution and may impact the long-term biomechanical stability of restored teeth. Full article
Show Figures

Figure 1

Back to TopTop