applsci-logo

Journal Browser

Journal Browser

Advances in Metallic Mineral Deposits and Geochemistry

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Earth Sciences".

Deadline for manuscript submissions: closed (20 March 2025) | Viewed by 1200

Special Issue Editors


E-Mail Website
Guest Editor
School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
Interests: orogenic gold deposit; mafic magmatism; mineralization

E-Mail Website
Guest Editor
School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
Interests: REE-rich phosphorite deposits; carbonatite-related REE deposits; IOCG deposits
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue on “Advances in Metallic Mineral Deposits and Geochemistry” encompasses the latest research and developments for understanding the formation, distribution, and extraction of metallic minerals. This field integrates geological, geochemical, and technological advancements to enhance exploration and mining efficiency. Key areas of focus include the identification of new metallic deposits, the assessment of their economic viability, and innovative extraction methods that minimize environmental impact.

Recent studies highlight the role of geochemical processes in ore formation, including the influence of fluid dynamics, temperature, and pressure conditions on mineralization. Advances in analytical techniques, such as isotope geochemistry and remote sensing, have improved the ability to characterize deposits and understand their genesis.

Moreover, the integration of sustainable practices into mining operations is becoming increasingly important, with research aimed at reducing waste and improving resource recovery. Overall, this field is crucial for addressing global demands for metals while ensuring responsible stewardship of natural resources, contributing to the development of more efficient and environmentally friendly mining practices.

Dr. Yayun Liang
Dr. Pei Liang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • advances
  • geochemistry
  • genesis
  • resources and environment
  • metallic mineral deposits

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 6484 KiB  
Article
Geochemistry of Pyrite from the Jiaojia Gold Deposit, Jiaodong Peninsula, North China Craton: Implications for Source of Ore-Forming Fluids and Gold Precipitation
by Yayi Fang, Yayun Liang, Rui Xia, Lei Shu, Bi He, Wenhao Xue, Chenxi Zhang, Haiyi Wang and Senmiao Xue
Appl. Sci. 2025, 15(3), 1548; https://doi.org/10.3390/app15031548 - 3 Feb 2025
Viewed by 917
Abstract
The Jiaojia gold deposit in the Jiaodong Peninsula, located in the northwestern part of the Jiaodong gold province in eastern China, has a gold reserve of over 300 t. Gold mineralization in Jiaojia deposit occurred in three stages: (1) The Pyrite–Quartz–Sericite Stage (Stage [...] Read more.
The Jiaojia gold deposit in the Jiaodong Peninsula, located in the northwestern part of the Jiaodong gold province in eastern China, has a gold reserve of over 300 t. Gold mineralization in Jiaojia deposit occurred in three stages: (1) The Pyrite–Quartz–Sericite Stage (Stage I) developed primary minerals that included quartz, sericite, and a small amount of anhedral pyrite, appearing as disseminations within milky quartz and foliated sericite. (2) The Quartz–Pyrite Stage (Stage II) developed quartz that appears smoky gray and pyrite that appears with a euhedral cubic morphology, with crystal faces oriented in a longitudinal pattern. Native gold occurs as fracture filling in pyrite. (3) The Quartz–Polymetallic Sulfides Stage (Stage III) developed polymetallic sulfides, including pyrite, chalcopyrite, galena, sphalerite, and magnetite. Native gold filled the pyrite fractures and was enclosed within the pyrite. (4) The Quartz–Carbonate Stage (Stage IV) developed the main minerals of quartz and carbonate, with scattered occurrences of pyrite. In situ geochemical analysis of pyrite, the main gold-carrying mineral from mineralization Stages I to III in the Jiaojia gold deposit, was conducted, including major element, trace element, and sulfur isotope analyses. The δ34S values of Jiaojia pyrite range from 4.5 to 8.0‰. Pyrite in Stage I (Py I) has δ34S values ranging from 4.5 to 7.4‰, with an average of 6.4‰. Pyrite in the Stage II (Py II) has δ34S values ranging from 5.9 to 8.0‰, with an average of 6.8‰. Pyrite in Stage III (Py III) has δ34S values ranging from 6.4 to 7.9‰, with an average of 7.4‰. Combined with the C-D-O-He isotopes, the ore-forming fluids of the Jiaojia gold deposit likely originated from subducted oceanic plate-related metasomatized mantle. The Co/Ni ratios of Jiaojia pyrite range from 0.50 to 1.47 in Stage I, 0.27 to 1.69 in Stage II, and 0.58 to 295 in Stage III. The Cu/Au ratios in the Jiaojia pyrite in all mineralization stages were >1. These geochemical features imply that the ore-forming fluids of the Jiaojia gold deposit were in a medium- to low-temperature reducing environment, with temperatures gradually decreasing from ore Stages I to III. The increase in Co and As in the pyrite of Stage III implies that gold precipitation resulted from fluid immiscibility caused by a decrease in pressure and temperature and an increase in the oxygen fugacity of the ore-forming fluid. Full article
(This article belongs to the Special Issue Advances in Metallic Mineral Deposits and Geochemistry)
Show Figures

Figure 1

Back to TopTop