applsci-logo

Journal Browser

Journal Browser

Seismic and Energy Retrofitting of Existing Buildings

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Civil Engineering".

Deadline for manuscript submissions: closed (31 August 2024) | Viewed by 2343

Special Issue Editor


E-Mail Website
Guest Editor
Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Via Gramsci, 53, 00184 Rome, Italy
Interests: seismic design of structures; assessment and retrofitting of existing bridges and structures; seismic protection of structures with dissipative devices
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The seismic and energy retrofitting of existing buildings represents a significant engineering and environmental imperative, particularly notable in regions with high seismicity and in cases where optimizing the use of energy resources is crucial for environmental sustainability. From the perspective of seismic safety, existing buildings may be inherently vulnerable due to less stringent or even absent seismic regulations at the time of their design and construction. Therefore, seismic retrofitting is fundamental to the preservation of the existing building stock and, simultaneously, the enhancement of the structural resilience of the built environment through targeted interventions such as implementing seismic energy dissipation systems. Concurrently, energy retrofitting is essential for reducing the environmental footprint of the construction sector, which significantly contributes to gas emissions and overall energy consumption. Synergizing seismic and energy retrofitting presents an opportunity to ensure the greater resilience of buildings against natural hazards and contribute to the creation of more sustainable built environments.

Dr. Alessandro Vittorio Bergami
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • seirsmic retrofitting
  • energy retrofitting
  • sustainability
  • green buildings
  • earthquakes
  • seismic risk

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 7886 KiB  
Article
Seismic Resilience of CRC- vs. RC-Reinforced Buildings: A Long-Term Evaluation
by Moab Maidi, Gili Lifshitz Sherzer, Igor Shufrin and Erez Gal
Appl. Sci. 2024, 14(23), 11079; https://doi.org/10.3390/app142311079 - 28 Nov 2024
Cited by 3 | Viewed by 976
Abstract
Corrosion-induced degradation in concrete and reinforced concrete (RC) structures, often initiated within the first few decades of their lifespan, significantly challenges seismic resistance. While existing research tools can assess performance, they fall short in predicting changes in seismic resistance resulting from alterations in [...] Read more.
Corrosion-induced degradation in concrete and reinforced concrete (RC) structures, often initiated within the first few decades of their lifespan, significantly challenges seismic resistance. While existing research tools can assess performance, they fall short in predicting changes in seismic resistance resulting from alterations in the core properties of RC structures. To bridge this gap, we introduce a numerical seismic resistance prediction method (SRPM) specifically designed to predict changes in the seismic resistance of structures, including those reinforced with carbon-fiber-reinforced polymer (CFRP), known for its non-corrosive properties. This study utilizes classical models to estimate corrosiveness and employs these models alongside section strength predictions to gauge durability. The nonlinear static pushover analysis (POA) model is implemented utilizing SAP-2000 and Response-2000 software. A comparative analysis between steel-reinforced and carbon-fiber-reinforced polymer concrete (CRC) structures reveals distinct differences in their seismic resistance over time. Notably, steel-reinforced structures experience a significant decrease in their ability to dissipate seismic energy, losing 54.4% of their capacity after 170 years. In contrast, CFRP-reinforced structures exhibit a much slower degradation rate, with only 25.5% reduction over the same period. The discrepancy demonstrates CFRP’s superior durability and ability to maintain structural integrity in the face of seismic stresses. Full article
(This article belongs to the Special Issue Seismic and Energy Retrofitting of Existing Buildings)
Show Figures

Figure 1

21 pages, 4140 KiB  
Article
Investigation of the Seismic Performance of a Multi-Story, Multi-Bay Special Truss Moment Steel Frame with X-Diagonal Shape Memory Alloy Bars
by Dimitrios S. Sophianopoulos and Maria I. Ntina
Appl. Sci. 2024, 14(22), 10283; https://doi.org/10.3390/app142210283 - 8 Nov 2024
Viewed by 943
Abstract
In this work, the seismic response of a multi-story, multi-bay special truss moment frame (STMF) with Ni-Ti shape memory alloys (SMAs) incorporated in the form of X-diagonal braces in the special segment is investigated. The diameter of the SMAs per diagonal in each [...] Read more.
In this work, the seismic response of a multi-story, multi-bay special truss moment frame (STMF) with Ni-Ti shape memory alloys (SMAs) incorporated in the form of X-diagonal braces in the special segment is investigated. The diameter of the SMAs per diagonal in each floor was initially determined, considering the expected ultimate strength of the special segment, developed when the frame reaches its target drift and the desirable collapse mechanism, i.e., the formation of plastic hinges, according to the performance-based plastic design procedure. To further investigate the response of the structure with the SMAs incorporated, half the calculated SMA diameters were introduced. Continuing, three more cases were investigated: the mean value of the SMA diameter was introduced at each floor (case DC1), half the SMA diameter of case DC1 (case DC2), and twice the SMA diameter of case DC1 (case CD3). Dynamic time history analyses under seven benchmark earthquakes were conducted using commercial nonlinear Finite Element software (SeismoStruct 2024). Results were presented in the form of top-displacement time histories, the SMAs force–displacement curves, and maximum inter-story drifts, calculating also maximum SMA displacements. The analysis outcomes highlight the potential of the SMAs to be considered as a novel material in the seismic retrofit of steel structures. Both design approaches presented exhibit a certain amount of effectiveness, depending on the distribution, with the placement of the SMA bars and the seismic excitation considered. Further research is suggested to fully understand the capabilities of the use of SMAs as dissipation devices in steel structures. Full article
(This article belongs to the Special Issue Seismic and Energy Retrofitting of Existing Buildings)
Show Figures

Figure 1

Back to TopTop