Skip to Content
You are currently on the new version of our website. Access the old version .

Applied Mechanics

Applied Mechanics is an international, peer-reviewed, open access journal on applied mechanics, published quarterly online by MDPI. 
The South African Association for Theoretical and Applied Mechanics (SAAM) is affiliated with Applied Mechanics and its members receive discounts on the article processing charges.

All Articles (382)

This work reports the elaboration and testing of polydimethylsiloxane/titanium dioxide (PDMS/TiO2) polymer nanocomposites, focusing on producing and combining TiO2 nanoparticles with a polymer matrix through an ex situ route. By mixing the inherent flexibility of PDMS with the unique properties of nanoparticles, the nanocomposites aim to enhance mechanical stability, optical response, and photocatalytic activity. X-ray diffraction (XRD) confirmed the successful incorporation of TiO2 into the PDMS matrix. UV–visible spectroscopy monitored photocatalytic performance using metronidazole as a model pollutant under 365 nm irradiation. Kinetic analysis revealed degradation and showed that the reaction rate constant (k) increased with TiO2 loading, reaching a maximum of 0.0019 min−1 for the 6 wt.% composite. These findings indicate that while the reaction kinetics are slower than those of free powders, the PDMS/TiO2 nanocomposites provide a viable, recoverable, and flexible solution for environmental remediation applications. Future efforts will target improved durability, broadened visible light absorption, and process optimization for scalable fabrication.

14 February 2026

A schematic representation of the ex situ preparation of PDMS/TiO2 nanocomposites.

Non-crimp fabric (NCF) composites are increasingly adopted for structural components due to their high mechanical performance and processability. Like other fibre-reinforced plastics, NCFs remain vulnerable to in-service damage from tool drops or unintended collisions, which can substantially reduce load-bearing capacity. This study aimed to develop a validated numerical model capable of simulating damage initiation and post-impact behaviour through an integrated experimental–numerical approach. The mechanical properties of a representative unidirectional NCF composite were first experimentally established. Then, tubular NCF subcomponents were fabricated and tested under a two-phase loading protocol. In the first phase, damage was introduced using quasi-static indentation or controlled low-velocity impact. In the second phase, the residual load-bearing capacity of the damaged subcomponents was assessed under four-point bending. To support the research objective, a finite element model was developed in LS-DYNA to simulate both phases, using the MAT_ENHANCED_COMPOSITE_DAMAGE (MAT54) material formulation. Non-measurable input parameters, including stress limit factors and erosion strain thresholds, were calibrated via parameter estimation, sensitivity analysis, and iterative refinement. The final model showed close agreement with experiments in predicted damage location, deformation mode, and residual strength. X-ray computed tomography was used to validate delamination predictions. The findings support the development of reliable and cost-effective numerical tools for damage assessment in advanced composite structures.

11 February 2026

SEM study: right view (orange arrow)—cross-section of fibre tows; top view (purple arrow)—localized fibre distortion; front view (green arrow)—through-the-thickness stack-up and lateral fibre distortions due to the presence of the binder.

The dynamic behavior of the DS306 detacher, a critical component in industrial fiber processing lines, plays a decisive role in maintenance performance and overall operational reliability. This study introduces a strengthened preventive maintenance strategy that leverages vibration analysis and dynamic modeling with a strong emphasis on early fault anticipation. A detailed numerical finite element model of the detacher was developed to determine its natural frequencies, critical modes, and dynamic response under real operating conditions. Experimental vibration measurements were conducted to validate the numerical model and identify characteristic frequencies associated with imbalance and wear. The results show that the proposed predictive framework not only reproduces the machine’s dynamic behavior with high accuracy but also anticipates mechanical degradation trends well before the occurrence of critical failures. This early-warning capability allows maintenance teams to plan interventions proactively, significantly reducing unexpected downtime, avoiding cascading damage, and improving long-term equipment availability. Overall, the study provides a robust and practical methodology for dynamic diagnosis, fault prediction, and optimized preventive maintenance in industrial rotating machinery.

9 February 2026

Schematic diagram of the DS306 Detacher drive system.

The Discrete Element Method is widely used in applied mechanics, particularly in situations where material continuity breaks down (fracturing, crushing, friction, granular flow) and classical rheological models fail (phase transition between solid and granular). In this study, the Discrete Element Method was employed to simulate stick–slip cycles, i.e., numerical earthquakes. At 2000 selected, regularly spaced time checkpoints, parameters describing the average state of all particles forming the numerical fault were recorded. These parameters were related to the average velocity of the particles and were treated as the numerical equivalent of (pseudo) Acoustic Emission. The collected datasets were used to train the Random Forest and Deep Learning models that successfully predicted the time to failure. SHapley Additive exPlanations (SHAP) was used to quantify the contribution of individual physical parameters of the particles to the prediction results. The main novelty of this study was the prediction of time to failure for entire event sequences. Using only instantaneous particle velocity statistics and without using information about the history of previous events, coefficients of determination in the range R2 = 0.81–0.96 were obtained.

5 February 2026

Schematic representation of the DEM numerical model of the fault.

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Appl. Mech. - ISSN 2673-3161