Special Issue "Effects of Pollutants on Fish"

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Aquatic Animals".

Deadline for manuscript submissions: 31 August 2020.

Special Issue Editors

Assoc. Prof. Francesco Fazio
E-Mail Website
Guest Editor
Università degli Studi di Messina, Messina, Italy
Interests: Aquatic Physiology; transport stress livestock; biomarkers stress.
Dr. Stefano Cecchini
E-Mail Website
Guest Editor
Università degli Studi della Basilicata, Department of Science, Potenza, Italy
Interests: small ruminants; Flathead mullet (Mugil cephalus); Gilthead sea bream (Sparus aurata)
Dr. Gioele Capillo
E-Mail Website
Guest Editor
Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy
Interests: Marine Biology; aquaculture; Fluorescence Imaging; Wastewater
Dr. Gaetano Cammilleri
E-Mail Website
Guest Editor
Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, via Gino Marinuzzi 3, 90129 Palermo, Italy
Interests: Chemistry of Food & Nutrition; Parasitology

Special Issue Information

Dear Colleagues,

Today, environmental pollution is one of the most serious problems of our planet and it causes serious harm to many aquatic organisms. A great part of pollutants exhibit biomagnification and bioaccumulation capabilities with a broad spectrum of impacts and can stress aquatic organisms. Fish have been widely documented as useful indicators of environmental water quality. The analyses of bioaccumulation of contaminants in the biotic components of ecosystems and of modifications of blood parameters represent an important and useful tool for understanding persistence, movement, and allocation of pollutants. This Special Issue also welcomes epidemiological studies on the presence and accumulation of pollutants in wild and farmed fish in order to give a comprehensible comparison on the presence of toxicants, such as heavy metals, POPs, veterinary drugs, etc., in fish reared in different conditions. Epidemiological studies focused on the analysis of the accumulation levels of pollutants in the tissues of benthonic, demersal, and pelagic fish are also welcome.

Potential topics include:

  1. Hematological response to environmental pollution in fish
  2. Chemical pollution in aquatic environment and oxidative stress in teleost
  3. Pollution and immune response in fish
  4. Aquatic animal (fish) models for bioaccumulation
  5. The toxicological effects of pollutants on physiological functions in fish
  6. Effects of chemical stressors at the biochemical and cellular levels
  7. Epidemiological studies on the presence of pollutants in fish
  8. Morpho-physiological adaptations of fish to water pollutants

Assoc. Prof. Francesco Fazio
Dr. Stefano Cecchini
Dr. Gioele Capillo
Dr. Gaetano Cammilleri
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Aquatic environment
  • fish
  • hematological and hemato-chemical parameters
  • immunity
  • oxidative stress
  • pollutions
  • xenobiotics.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessCommunication
Mercury Detection in Benthic and Pelagic Fish Collected from Western Sicily (Southern Italy)
Animals 2019, 9(9), 594; https://doi.org/10.3390/ani9090594 - 22 Aug 2019
Abstract
In highly polluted water, fish can accumulate mercury up to a concentration of 10 mgKg−1. This has occurred on the eastern coasts of Sicily (Southern Italy), probably due to the intense industrial activity of this area. However, little is known about [...] Read more.
In highly polluted water, fish can accumulate mercury up to a concentration of 10 mgKg−1. This has occurred on the eastern coasts of Sicily (Southern Italy), probably due to the intense industrial activity of this area. However, little is known about Hg accumulation in fish of the western Sicilian coasts. In this work, we examined the Hg accumulation of 108 fish samples belonging to 14 species collected from western Sicilian coasts using a direct mercury analyzer. The samples showed a mean mercury concentration of 0.165 ± 0.22 mg kg−1 with a maximum in Lepidopus caudatus (1.72 mgKg−1), exceeding the limits provided by EC Reg. 1881/2006. The lowest Hg levels were found in Sparus aurata samples (0.001 mgKg−1). A significant difference was found between the fish species examined (p < 0.05). The comparison between benthic and pelagic species did not show statistical differences (p < 0.05). Fish food constitutes the main route of Hg uptake for humans. Only four of the 130 samples examined reached a mercury concentration over the European limits. The comparative analysis of Hg pollution for benthic and pelagic species did not confirm a different trend in metal contamination. Full article
(This article belongs to the Special Issue Effects of Pollutants on Fish)
Show Figures

Figure 1

Open AccessArticle
Increasing River Temperature Shifts Impact the Yangtze Ecosystem: Evidence from the Endangered Chinese Sturgeon
Animals 2019, 9(8), 583; https://doi.org/10.3390/ani9080583 - 20 Aug 2019
Abstract
The Yangtze River has the third greatest water flow and is one of the most human-influenced rivers in the world. Since 1950, this river system has experienced drastic human interventions, leading to various environmental changes, including water temperature. In this study, based on [...] Read more.
The Yangtze River has the third greatest water flow and is one of the most human-influenced rivers in the world. Since 1950, this river system has experienced drastic human interventions, leading to various environmental changes, including water temperature. In this study, based on observations during the past sixty years, we found that the seasonal temperature regime has been altered, both temporally (1–5 °C variation) and spatially (>626 km distance). Temperature shifts not only delay the timing of fish spawning directly, but also lead to degeneration in gonad development. Temperature regime alterations have delayed the suitable spawning temperature window by approximately 29 days over a decade (2003–2016). It confirmed that a period of lower temperature, higher cumulative temperature, and relatively higher temperature differences promoted the maturation of potential spawners based on the correlation analysis (p < 0.05). Also, thermal alterations were highly correlated with reservoir capacity upstream (R2 = 0.866). On-going cascade dam construction and global warming will lead to further temperature shifts. Currently, rigorous protection measures on the breeding population of the Chinese sturgeon and its critical habitats is urgently needed to prevent the crisis of the species extinction. Increasing river thermal shifts not only threaten the Chinese sturgeon but also affect the entire Yangtze aquatic ecosystem. Full article
(This article belongs to the Special Issue Effects of Pollutants on Fish)
Show Figures

Graphical abstract

Open AccessArticle
The Change of Metallothionein and Oxidative Response in Gills of the Oreochromis niloticus after Exposure to Copper
Animals 2019, 9(6), 353; https://doi.org/10.3390/ani9060353 - 14 Jun 2019
Cited by 1
Abstract
In the present study, we investigated the effects of waterborne copper (Cu) on the levels of metallothionein (MT) and malondialdehyde (MDA), as well as activities of superoxide dismutase (SOD) and catalase (CAT) in gills of cichlid fish Oreochromis niloticus. The Cu concentrations [...] Read more.
In the present study, we investigated the effects of waterborne copper (Cu) on the levels of metallothionein (MT) and malondialdehyde (MDA), as well as activities of superoxide dismutase (SOD) and catalase (CAT) in gills of cichlid fish Oreochromis niloticus. The Cu concentrations in gills were measured using an atomic absorption spectrometer. The sandwich-ELISA was used to measure MT, SOD, CAT, and MDA. The Cu concentrations in gills of fish that were exposed to 1, 5, and 10 mg Cu/L were significantly increased at day 1 (D1), then gradually decreased starting from D2, and reaches the similar value with the controls at D5. A similar tendency has been observed in the MT levels in the gills. All of the Cu-exposed fish showed the highest level of MT on D1, and then decreased at D3 and a plateau at D4 and D5. The levels of SOD and CAT in gills in all Cu-exposed fish showed a similar pattern: increased significantly at D1, then gradually decreased starting from D2, and increased again at D4 and D5. The levels of MDA in gills of all Cu-exposed fish showed no significant difference. The indifference levels of MDA in gills of all Cu-exposed fish suggested the antioxidant defense systems (SOD and CAT) combined with the induction of MT were able to completely scavenge the increased ROS. Full article
(This article belongs to the Special Issue Effects of Pollutants on Fish)
Show Figures

Figure 1

Back to TopTop