Actuator Technologies and Control: Materials, Devices and Applications

A special issue of Actuators (ISSN 2076-0825).

Deadline for manuscript submissions: 30 November 2025 | Viewed by 7000

Special Issue Editor

Special Issue Information

Dear Colleagues,

We plan to publish a Special Issue in the journal Actuators to provide a broad overview of the latest achievements of actuator technologies, control and their application in many fields of industry. Papers could be original research papers, as well as review papers, focused on the current state of the art in one of the areas covered by the journal’s aims and scopes. The main topics of this Special Issue include, but are not limited to, the following:

  • New actuator materials;
  • Innovative actuator designs and device concepts;
  • Miniaturized and micro-actuators;
  • Assessment and precision measurements;
  • Actuators for drive/control technologies;
  • Actuators for manufacturing;
  • Actuators for aircrafts and on- and off-road vehicles/machines;
  • Actuators for robotics and other autonomous applications;
  • Actuators for biomedical applications;
  • Emerging control strategies for actuators.

This Special Issue will also include high-quality papers presented during the 2nd International Electronic Conference on Actuator Technology (IECAT 2024, https://sciforum.net/event/IECAT2024), sponsored by the MDPI open access journal Actuators. The primary aim of IECAT is to promote scientific and technological exchanges among researchers and engineers around the world. Following the end of the conference, selected papers (extended from conference proceedings) will be published in this Special Issue.

Prof. Dr. Paolo Mercorelli
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Actuators is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • materials
  • actuator design
  • efficiency
  • dynamics
  • energy consumption
  • applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

14 pages, 1776 KB  
Article
A Fluid Elastomeric Actuator Design for Soft Robots
by Dennis Els, Theo van Niekerk, Paolo Mercorelli and Jacques Welgemoed
Actuators 2025, 14(9), 417; https://doi.org/10.3390/act14090417 - 25 Aug 2025
Viewed by 456
Abstract
The field of robotics faces significant challenges in creating adaptable and flexible end-effectors. Soft robotics, specifically soft robotic end-effectors, offer an innovative solution. This paper focuses on designing fluid elastomeric actuators (FEAs) for soft robotic end-effectors. The study presents key design considerations and [...] Read more.
The field of robotics faces significant challenges in creating adaptable and flexible end-effectors. Soft robotics, specifically soft robotic end-effectors, offer an innovative solution. This paper focuses on designing fluid elastomeric actuators (FEAs) for soft robotic end-effectors. The study presents key design considerations and evaluates the use of Finite Element Method (FEM) simulations for optimizing FEA performance. The study then concludes by proposing design guidelines for developing application-specific fluid elastomeric actuators. Full article
Show Figures

Figure 1

21 pages, 854 KB  
Article
An Event-Triggered Observer-Based Control Approach for Enhancing Resilience of Cyber–Physical Systems Under Markovian Cyberattacks
by Eya Hassine, Assem Thabet, Noussaiba Gasmi and Ghazi Bel Haj Frej
Actuators 2025, 14(8), 412; https://doi.org/10.3390/act14080412 - 21 Aug 2025
Viewed by 298
Abstract
This paper presents a resilient observer-based and event-triggered control scheme for discrete-time Cyber–Physical Systems (CPS) under Markovian Cyber-Attacks (MCA). The proposed framework integrates a Luenberger observer for cyberattack detection with a state-feedback controller designed to preserve system stability in the presence of Denial-of-Service [...] Read more.
This paper presents a resilient observer-based and event-triggered control scheme for discrete-time Cyber–Physical Systems (CPS) under Markovian Cyber-Attacks (MCA). The proposed framework integrates a Luenberger observer for cyberattack detection with a state-feedback controller designed to preserve system stability in the presence of Denial-of-Service (DoS) and False Data Injection (FDI) attacks. Attack detection is achieved through residual signal generation combined with Markovian modeling of the attack dynamics. System stability is guaranteed by formulating relaxed Linear Matrix Inequality (LMI) conditions that incorporate relaxation variables, a diagonal Lyapunov function, the S-procedure, and congruence transformations. Moreover, the Event-Triggered Mechanism (ETM) efficiently reduces communication load without degrading control performance. Numerical simulations conducted on a three-tank system benchmark confirm enhanced detection accuracy, faster recovery, and strong robustness against uncertainties. Full article
Show Figures

Figure 1

23 pages, 5678 KB  
Article
Modeling, Dynamic Characterization, and Performance Analysis of a 2.2 kW BLDC Motor Under Fixed Load Torque Levels and Variable Speed Inputs: An Experimental Study
by Ayman Ibrahim Abouseda, Resat Doruk, Ali Emin and Ozgur Akdeniz
Actuators 2025, 14(8), 400; https://doi.org/10.3390/act14080400 - 12 Aug 2025
Viewed by 530
Abstract
Accurate modeling and performance analysis of brushless DC (BLDC) motors are essential for high-efficiency control in modern drive systems. In this article, a BLDC motor was modeled using system identification techniques. In addition, experimental data were collected from the BLDC motor, including its [...] Read more.
Accurate modeling and performance analysis of brushless DC (BLDC) motors are essential for high-efficiency control in modern drive systems. In this article, a BLDC motor was modeled using system identification techniques. In addition, experimental data were collected from the BLDC motor, including its speed response to various input signals. Using system identification tools, particularly those provided by MATLAB/Simulink R2024b, an approximation model of the BLDC motor was constructed to represent the motor’s dynamic behavior. The identified model was experimentally validated using various input signals, demonstrating its accuracy and generalizability under different operating conditions. Additionally, a series of mechanical load tests was conducted using the AVL eddy-current dynamometer to evaluate performance under practical operating conditions. Fixed load torques were applied across a range of motor speeds, and multiple torque levels were tested to assess the motor’s dynamic response. Electrical power, mechanical power, and efficiency of the entire system were computed for each case to assess overall system performance. Moreover, the real-time state of charge (SOC) of Lithium-ion (Li-ion) battery was estimated using the Coulomb counting method to analyze the impact of Li-ion battery energy level on the BLDC motor efficiency. The study offers valuable insights into the motor’s dynamic and energetic behavior, forming a foundation for robust control design and real-time application development. Full article
Show Figures

Figure 1

22 pages, 6150 KB  
Article
Minimizing Power Losses in BLDC Motor Drives Through Adaptive Flux Control: A Real-Time Experimental Study
by Mohamed Fadi Kethiri, Omar Charrouf, Achour Betka, Muhammad Salman and Chiara Boccaletti
Actuators 2025, 14(8), 395; https://doi.org/10.3390/act14080395 - 8 Aug 2025
Viewed by 458
Abstract
This paper presents a novel methodology for minimizing power losses in brushless DC (BLDC) motors through the implementation of adaptive flux control techniques. Conventional motor control strategies, such as direct torque control (DTC), typically employ fixed flux values, which often result in suboptimal [...] Read more.
This paper presents a novel methodology for minimizing power losses in brushless DC (BLDC) motors through the implementation of adaptive flux control techniques. Conventional motor control strategies, such as direct torque control (DTC), typically employ fixed flux values, which often result in suboptimal performance, particularly under dynamic load and speed variations. To mitigate this inherent limitation, two adaptive flux control methods are introduced: incremental conductance (IncCond) and fuzzy logic. These proposed strategies facilitate real-time dynamic adjustment of the stator flux, thereby optimizing motor performance and significantly enhancing system efficiency. Experimental validation confirms the efficacy of these adaptive techniques, demonstrating substantial improvements in power loss reduction and overall efficiency when compared to traditional fixed flux control strategies. Notably, the fuzzy logic control strategy achieves the highest efficiency, registering a system efficiency of 66.59%, which surpasses both the incremental conductance method and conventional fixed flux control. These findings underscore the considerable potential of adaptive flux control in applications where energy efficiency is paramount, including electric vehicles and renewable energy-driven systems. Full article
Show Figures

Figure 1

16 pages, 3276 KB  
Article
Actuation and Control of Railcar-Mounted Sensor Systems
by Caroline Craig and Mehdi Ahmadian
Actuators 2025, 14(6), 289; https://doi.org/10.3390/act14060289 - 13 Jun 2025
Viewed by 372
Abstract
This study provides the design, analysis, and prototype fabrication of a remotely controlled actuation system for railcar-mounted sensors. Frequent railway inspections are essential for detecting and preventing major defects that could lead to train derailments or accidents. Integrating supplemental automated inspection systems into [...] Read more.
This study provides the design, analysis, and prototype fabrication of a remotely controlled actuation system for railcar-mounted sensors. Frequent railway inspections are essential for detecting and preventing major defects that could lead to train derailments or accidents. Integrating supplemental automated inspection systems into existing trains can aid inspection crews without interfering with standard railway operations. However, many sensors and cameras require protection during transit, motivating the need for a deployable mounting assembly. The feasibility of a deployable sensor system was successfully assessed by creating and demonstrating a functional prototype mounting assembly that can be used with future automated inspection systems. Typical loads and accelerations experienced by a train were used to design a lead screw and stepper motor system capable of working within desired tolerances. Optimized inputs controlling this motion with an Arduino Uno were found through the iterative testing of digital signals and direct port manipulation. Further research testing in a field-like environment is suggested. Full article
Show Figures

Figure 1

17 pages, 3385 KB  
Article
Optimal Realtime Toolpath Planning for Industrial Robots with Sparse Sensing
by Enkhsaikhan Boldsaikhan and Cole Birney
Actuators 2025, 14(6), 279; https://doi.org/10.3390/act14060279 - 7 Jun 2025
Viewed by 1218
Abstract
Non-contact surface processing does not involve direct contact between the tool and a worksurface. An industrial robot mostly uses preplanned toolpaths to perform non-contact surface processing. A preplanned toolpath may work well in repetitive conditions but may easily become inaccurate and unsafe if [...] Read more.
Non-contact surface processing does not involve direct contact between the tool and a worksurface. An industrial robot mostly uses preplanned toolpaths to perform non-contact surface processing. A preplanned toolpath may work well in repetitive conditions but may easily become inaccurate and unsafe if the tool needs to follow unknown worksurface variations. Many industrial processes, e.g., painting, coating, and sandblasting, typically involve worksurfaces with unknown variations. This study proposes an optimal toolpath planning method for an industrial robot equipped with end-of-arm distance sensors to automatically guide its tool motion along unknown worksurface variations. The distance sensors facilitate sparse sensing to acquire sparse data that is just enough for the quick and adequate perception of unknown worksurfaces by requiring fewer measurements and less computing. Optimization facilitates the optimality of multi-objective toolpath planning with a customizable value function, where the multiple objectives comprise adapting to unknown worksurface variations and traveling between known tool targets. To validate the proposed toolpath planning method, this study conducts a simulation experiment on a virtual robot with four end-of-arm distance sensors and a workpiece with unknown surface variations. The experimental results indicate that the proposed method is accurate and near-optimal even in the presence of sensor noises. Full article
Show Figures

Figure 1

15 pages, 8248 KB  
Article
A Lightweight, Simple-Structure, Low-Cost and Compliant Twisted String Actuator Featuring Continuously Variable Transmission
by Chanchan Xu, Tong Liu, Shuai Dong, Yucheng Wang and Xiaojie Wang
Actuators 2024, 13(12), 477; https://doi.org/10.3390/act13120477 - 25 Nov 2024
Cited by 1 | Viewed by 1939
Abstract
Twisted string actuators, which are an emerging artificial muscle, efficiently convert rotary motor motion into linear load movement, with advantages like high transmission ratio, compliance, simple structure, and long-distance power transmission. However, the limited range of transmission ratio adjustment remains a challenge. Thus, [...] Read more.
Twisted string actuators, which are an emerging artificial muscle, efficiently convert rotary motor motion into linear load movement, with advantages like high transmission ratio, compliance, simple structure, and long-distance power transmission. However, the limited range of transmission ratio adjustment remains a challenge. Thus, this paper introduces a novel twisted string actuator design that automatically and continuously adjusts its transmission ratio in response to external loads. Utilizing lightweight hyperelastic slender rods, the twisted string actuator with continuously variable transmission achieves a simple, compact, and cost-effective design. By manipulating the distance between two twisted strings through rod deformation, the transmission ratio continuously adapts to varying load conditions. Mathematical models of the twisted string actuator with continuously variable transmission are derived and experimentally validated, demonstrating a 2.1-fold transmission ratio variation from 0.1 kg to 1.5 kg loads. Application in an anthropomorphic robot finger showcases a 6.2-fold transmission ratio change between unloaded and loaded states. Our twisted string actuator with continuously variable transmission offers unparalleled advantages in weight, cost, simplicity, compliance, and continuous transmission ratio adjustability, making it highly suitable for robotic systems. Full article
Show Figures

Graphical abstract

Other

Jump to: Research

24 pages, 2404 KB  
Systematic Review
A Systematic Review on Smart Insole Prototypes: Development and Optimization Pathways
by Vítor Miguel Santos, Beatriz B. Gomes, Maria Augusta Neto, Patrícia Freitas Rodrigues and Ana Martins Amaro
Actuators 2025, 14(8), 408; https://doi.org/10.3390/act14080408 - 15 Aug 2025
Viewed by 849
Abstract
This review synthesizes research on smart insole prototypes and their designs, focusing on those incorporating artificial intelligence (AI) and a wireless communication/transmission system. The main objective of this work is to summarize existing studies, identify key trends, evaluate the performance of these innovative [...] Read more.
This review synthesizes research on smart insole prototypes and their designs, focusing on those incorporating artificial intelligence (AI) and a wireless communication/transmission system. The main objective of this work is to summarize existing studies, identify key trends, evaluate the performance of these innovative biomechanical tools, and recognize the factors that could lead to optimization. This comprehensive analysis includes studies from PubMed, Scopus, and Web of Science databases and other investigations on the critical themes to consider. It follows strict inclusion and exclusion criteria, ensuring the quality and accuracy of the overview. The findings emphasize significant progress in smart insoles, particularly in AI-enhanced prototypes, while addressing existing challenges and problems. This review helps guide potential future research and define practical application directions. The growing importance of biomechanics, especially on smart insoles, underscores the considerable potential of these innovations to monitor and improve human movement in both clinical and non-clinical settings, promising a future of more effective and personalized health and performance interventions. This protocol was registered with the International Platform of Registered Systematic Review and Meta-Analysis Protocols (INPLASY) on 6 February 2025 and was last updated on 6 February 2025. Full article
Show Figures

Figure 1

Back to TopTop