A Systematic Review on Smart Insole Prototypes: Development and Optimization Pathways
Abstract
1. Introduction
2. Materials and Methods
3. Results
Authors | Insole Manufacturing Materials | Types of Sensors | Number of Sensors | Microcontrollers (Hardware) | Power Supply (Hardware) | Communication/Transmission (Hardware) | Software Programs | Wireless (Yes (Y)/No (N)) | AI/ML Techniques (Yes (Y)/No (N)) |
---|---|---|---|---|---|---|---|---|---|
Sorrentino et al. (2020) [8] | Flexible printed circuit boards/dielectric layer, 3D-printed support made of plastic with gaps and conductive Lycra | Capacitive (pressure and temperature) | 336 (280 + 56) each insole | Microcontroller tactile board (MTB) | Connection to a host computer through a controller area network (CAN) bus interface | MTBs—host computer—CAN | MATLAB (process and visualize data) (The Mathworks Inc., Natick, MA, USA), YARP protocol (stream data), qpOASES (C++ software package) | N | N |
Ho et al. (2022) [9] | Textile pressure sensor (W-290-PCN) | Capacitive | 10 per insole | Capacitance to Digital Converter (CDC) | ND * | ND * | MATLAB R2021a (The Mathworks Inc., Natick, MA, USA) | Y | N |
Eguchi, R. and Takahashi, M. (2023) [10] | FlexiForce A301 (Tekscan, South Boston, MA, USA), insole-shaped polyethylene terephthalate sheet using polytetrafluoroethylene tape | Force-sensing resistors | 15 each | mbed NXP (LPC1768, Arm, Cambridge, UK) | ND * | Radio module (XBee, Digi International, Hopkins, MN, USA), op-amps (LMC6484AIM, Texas Instruments, Dallas, TX, USA), 12-bit analog-to-digital (A/D) converters (MCP3204T-BI/SL, Microchip Technology, Chandler, AZ, USA), a microSD card (Transcend, Taipei, Taiwan) | MATLAB (The Mathworks Inc., Natick, MA, USA) | N | Y |
Haron et al. (2024) [11] | Flexible silicone insole, phenolic sheet stiffener | Strain gauge rosettes, FlexiForce normal pressure sensors | 6 (3 + 3) each | Teensy 4.1 32-bit microcontroller (PJRC Electronic Projects, ARM Cortex-M7 processor, Portland, OR, USA) | 3.7 V 3500 mAh Lithium Polymer battery (LP104567, EEMB, Moscow, Russian Federation), linear regulator (LDO, B08HQQ32M2, DollaTek, Hong Kong, China) | Analog-to-digital amplifier (HX711 ADC, HALJIA, Zhongai, China), ESP8266 UART WiFi adapter (Espressif Systems, Shanghai, China) | MATLAB (The Mathworks Inc., Natick, MA, USA) | Y | N |
Peyer et al. (2017) [12] | F-Scan VersaTek wireless insole system (Tekscan, Boston, MA, USA) | Pressure sensors | 960 each | mbed NXP LPC1768 | ND * | F-Scan VersaTek wireless insole system, Motive’s sync output | MATLAB R2014a (The Mathworks Inc., Natick, MA, USA) | Y | N |
Lakho et al. (2022) [13] | Insole with 3 layers: A commercial shoe insole (not specified), a Polyvinyl Chloride (PVC) insole with the sensors and a fabric layer | Flexi force sensor and resistive flex sensor | 5 (4 + 1) each | ND * | ND * | Bluetooth module and USB connection panel (not specified) | ND * | Y | N |
Luna-Perejón et al. (2023) [7] | Insole with 3 layers: Ground layer (not specified), a flexible Polydimethylsiloxane (PDMS)-based dielectric layer, and last layer with the measurement electrodes | Capacitive sensors were made using PDMS as the dielectric material | 12 each | STM32L432KC microcontroller with an Arm Cortex-M4 MCU | two 7.4 V LiPo batteries | Bluetooth module (HC-06), AD7147-1 capacitance-to-digital converter (CDC) | ND * | Y | N |
Ciniglio et al. (2021) [14] | Pedar-X®, Novel, 100 Hz | Capacitive pressure sensors | 99 each | ND * | ND * | ND * | Novel EmedLink, MATLAB 2018b (The Mathworks Inc., Natick, MA, USA) | ND * | N |
Khandakar et al. (2022) [15] | (not specified) | Force-sensitive resistor (FSR) sensors and thermistor-based temperature sensors | 24 (16 + 8) each | ESP32 TinyPico | Lithium Polymer (Li-Po) batteries | Bluetooth Low Energy (BLE) | Arduino software and a Python-based Real-Time Data Logger | Y | N |
Lin et al. (2017) [16] | Advanced conductive eTextile fabric coated with a piezoelectric polymer. The insole also contained a flexible Printed Circuit Board (PCB) that housed the microcontroller | Pressure sensors and Inertial Measurement Unit (IMU) | 48 + 3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer | CC2541 microcontroller (Texas Instruments) | Rechargeable battery (not specified) | BLE module | ND * | Y | Y|Action Manifold Learning (AML) framework |
Matthies et al. (2017) [17] | Electrodes attached to a laser-cut polyacrylate sheet, a compressible foam plastic layer that acts as dielectric, a flexible plastic sheath as a protector of the electrodes and a silicone insole | Capacitive pressure sensors | 6 each | Arduino Nano microcontroller | Lithium Polymer (Li-Po) battery | BLE module | Arduino IDE, CapSense library, Weka tools | Y | Y|ML techniques (classifiers such as, Random Forest (RF), Bayes Net (BN), Naive Bayes (NB), Instance Based Learner (IBK), and Sequential Minimal Optimization (SMO) |
Ishtiaque et al. (2022) [18] | Plastic housing for the electronics | Pressure sensors | ND * | ND * | ND * | Narrowband Internet of Things (NB-IoT) | Custom mobile application | Y | Y|ML (Neural Networks (NNs)) |
Yang et al. (2017) [19] | Sennotech Insole X, Sennotech Inc. | Pressure sensors and IMU | 16 + 3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer | Microcontroller Unit (MCU) (model not specified) and integrated with a 16 to 1 channel multiplexer (MUX) | Battery module (model not specified) rechargeable via USB | BLE module | Smartphone application with graphical user interface and cloud server hosts a TUG data analysis module | Y | Y|ML techniques (not specified) |
Eldrige et al. (2019) [20] | NA | Pressure sensors | 4 each | ND * | ND * | ND * | Smartphone application, ML-based analysis module, Edge computing software, Microsoft Kinect and OpenPose | Y | Y|ML techniques (RF, Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Gradient Boosting (GB)) |
Ivanov et al. (2019) [21] | Sensors were affixed on a flexible printed circuit board inserted between two flexible polyvinyl chloride sheets | Force sensors (FlexiForce A301) and inertial sensor (BMI160) | 9 + 1 each | nRF52832 (by Nordic Semiconductor) | Rechargeable battery (2.5 V) | BLE, 12-bit ADC (ADS7042) | GaitPy | Y | Y|ML technique (RF classifier) |
He et al. (2021) [22] | piezoresistive carbon nanotube conductive films, silver-plated conductive yarn (by Jinan Yumo Technology and Trade Co., Ltd. (Shandong, China)), Ethylene-vinyl acetate copolymer (PEVA) foam insoles (by Jinjiang Jinyi Shoe Material Co., Ltd. (Fujian, China)), Fusible interlining (by Dongguan Yufang Interlining Co., Ltd. (Guangdong, China)) | Wearable textile-film sensors | 5 each | ND * | ND * | ND * | LabView | N | N |
Burch et al. (2023) [23] | Carbon nanotube (CNT)-based pressure sensors, textile substrate, conductive threads | Textile-based pressure sensors (piezoresistive sensors) | 8 each | Arduino Uno Rev3, microSD card and adapter | ND * | ND * | Arduino IDE, MATLAB (The Mathworks Inc., Natick, MA, USA) | N | N |
Jiang et al. (2024) [24] | NA | Pressure sensors, IMU, MoCap | 230 + 2 + 2 each | ND * | ND * | BLE | ND * | Y | Y|ML technique (NN, Linear Discriminant Analysis (LDA)) |
Lueken et al. (2020) [25] | NA | Force-sensing resistors (FSRs) | 4 FSR402 sensors each | CC1310 wireless microcontroller (by Texas Instruments) | 230 mAh lithium-ion battery | 868 MHz radio communication interface, 12-bit ADC MCP3204 (Microchip Technology Inc., Chandler, AZ, USA) | ND * | Y | N |
Samarentsis et al. (2020) [6] | 3-layer sensors: Protopasta CDP11705 composite conductive PLA (top and bottom), Filaflex 70A TPU; 2-layer insoles: Filaflex 82A (upper and lower layer) | 3D-printed capacitive pressure sensors | 16 each | 2x Arduino Nano system boards (Arduino LLC, Boston, MA, USA) | ND * | Stepper motor (Nema 23 57BYGH115 from Wantai motors), motor driver (TB6600), microdisplay (1300 OLED Display Module from Waveshare) | Fusion 360 CAD (Autodesk, San Rafael, CA, USA), Ultimaker Cura 4.6.2 (Ultimaker B.V., Utrecht, The Netherlands), Graphical User Interface (GUI), Arduino IDE | Y | N |
Zheng et al. (2023) [26] | 3-layer insole-shaped sensing unit: The upper triboelectric layer is made of polydimethylsiloxane (PDMS) and has 44 hollow grooves. The middle layer consists of Cu electrodes and the bottom has polyimide layer | Triboelectric nanogenerators (TENG) | 44-pixel TENG-based sensor array each | 2x STM32F427 | Self-powered using TENG | ADC, multichannel data acquisition (DAQ) board, SD card | ND * | N | N |
Crossland et al. (2023) [27] | Strain Analysis and Mapping of the Plantar Surface (STAMPS). 3 layers: a 5 mm thickness plasticine slab, a cross-patterned Nylon mesh, and an optimized computer-generated stochastic speckle (Correlated Solutions Speckle Generator, v1.0.5) | - | - | ND * | ND * | ND * | Digital Image Correlation (DIC), MATLAB (R2021b) | N | N |
Gupta et al. (2023) [28] | 3D-printed flexible insole (PLA), Velostat®, a polyethylene–carbon-black-infused composite material, Copper adhesive tape, Two layers of medium-density EVA (Ethylene–vinyl acetate), and high-quality leather | Piezoresistive pressure sensors made with Velostat® | 5 each | ESP32 | 600 mAh lithium-ion battery | BLE | SolidWorks 2020, Mondopoint system, Arduino IDE, custom mobile app | Y | N |
Fuchs et al. (2024) [29] | Pedar-X insole (Novel Electronics Inc., Saint Paul, MN, USA) | Capacitive sensors | 99 each | ND * | ND * | ND * | Vicon Nexus 2.10.1 software, PASW Statistics 18.0 (SPSS Inc, Chicago, IL, USA) and Excel 365 (Microsoft Corporation, Redmond, WA, USA) | Y | N |
Choi et al. (2024) [30] | F-Scan system and low-cost insole sensors | FSR sensors | 6 each | ND * | ND * | ND * | ML models | Y | Y|Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) |
Willemstein et al. (2023) [31] | 3D-printed sensors: soft foam layer with the sensor, two insulating (top and bottom) layers, and a layer with grounding electrodes | Piezoresistive porous (foam-like) sensors | 4 each | Arduino Uno (Arduino AG, Italy) | ND * | 16-bit analog-to-digital converter ADS1115 (Texas Instruments, Dallas, TX, USA), breakout board (Adafruit, NY, USA) laptop | MATLAB (The MathWorks, Natick, MA USA) System Identification Toolbox | N | Y|Hammerstein-Wiener (HW) model |
4. Discussion
4.1. Insole Manufacturing Materials
4.2. Significance of Hardware
4.3. Size and Type of Data
4.4. Types and Numbers of Sensors
4.5. Integration of ML Techniques and Others
4.6. Limitations
5. Future Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AML | Action Manifold Learning |
ANT | Adaptive Network Topology |
BLE | Bluetooth Low Energy |
BN | Bayes Net |
CAN | Controller Area Network |
CDC | Capacitance-to-Digital Converter |
CNT | Carbon Nanotube |
CoP | Center of Pressure |
DAQ | Data Acquisition (Board) |
DIC | Digital Image Correlation |
DT | Decision Tree |
EMG | Electromyography |
EVA | Ethylene–Vinyl Acetate |
FSR | Force Sensing Resistor |
GB | Gradient Boosting |
GPS | Global Positioning System |
GRF | Ground Reaction Forces |
HSPA | High-Speed Packet Access |
HW | Hammerstein–Wiener |
IBK | Instance-Based Learner |
IMU | Inertial Measurement Unit |
K-NN | k-Nearest Neighbors |
LDA | Linear Discriminant Analysis |
Li-Po | Lithium Polymer |
LSTM | Long Short-Term Memory |
LTE | Long-Term Evolution |
MCU | Microcontroller Unit |
MEMS | Micro-Electromechanical Sensors |
ML | Machine Learning |
MTB | Microcontroller Tactile Board |
MUX | Multiplexer |
NB | Naive Bayes |
NB-IoT | Narrowband Internet of Things |
NFC | Near-Field Communication |
NN | Nearest Neighbor |
NNs | Neural Networks |
PC | Personal Computer |
PCB | Printed Circuit Board |
PDMS | Polydimethylsiloxane |
PETG | Poly(ethylene terephthalate)-glycol |
PETG + CF | Poly(ethylene terephthalate)-glycol with Carbon Fibers |
PETG + KF | Poly(ethylene terephthalate)-glycol with Aramid Fiber |
PEVA | Ethylene-Vinyl Acetate Copolymer |
PLA | Poly(lactic) Acid |
PVC | Polyvinyl Chloride |
RF | Random Forest |
RGB | Red–green–blue |
RNN | Recurrent Neural Networks |
SITUG | Smart Insole Timed Up and Go (system) |
SMO | Sequential Minimal Optimization |
STAMPS | Strain Analysis and Mapping of the Plantar Surface |
SVM | Support Vector Machine |
TENG | Triboelectric Nanogenerators |
TPU | Thermoplastic Polyurethane |
References
- De Fazio, R.; Mastronardi, V.M.; De Vittorio, M.; Visconti, P. Wearable Sensors and Smart Devices to Monitor Rehabilitation Parameters and Sports Performance: An Overview. Sensors 2023, 23, 1856. [Google Scholar] [CrossRef]
- Almuteb, I.; Hua, R.; Wang, Y. Smart Insoles Review (2008–2021): Applications, Potentials, and Future. Smart Health 2022, 25, 100301. [Google Scholar] [CrossRef]
- Abdollahi, M.; Zhou, Q.; Yuan, W. Smart Wearable Insoles in Industrial Environments: A Systematic Review. Appl. Ergon. 2024, 118, 104250. [Google Scholar] [CrossRef]
- Wei, S.; Wu, Z. The Application of Wearable Sensors and Machine Learning Algorithms in Rehabilitation Training: A Systematic Review. Sensors 2023, 23, 7667. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Samarentsis, A.G.; Makris, G.; Spinthaki, S.; Christodoulakis, G.; Tsiknakis, M.; Pantazis, A.K. A 3D-Printed Capacitive Smart Insole for Plantar Pressure Monitoring. Sensors 2022, 22, 9725. [Google Scholar] [CrossRef]
- Luna-Perejón, F.; Salvador-Domínguez, B.; Perez-Peña, F.; Corral, J.M.R.; Escobar-Linero, E.; Morgado-Estévez, A. Smart Shoe Insole Based on Polydimethylsiloxane Composite Capacitive Sensors. Sensors 2023, 23, 1298. [Google Scholar] [CrossRef]
- Sorrentino, I.; Andrade Chavez, F.J.; Latella, C.; Fiorio, L.; Traversaro, S.; Rapetti, L.; Tirupachuri, Y.; Guedelha, N.; Maggiali, M.; Dussoni, S.; et al. A Novel Sensorised Insole for Sensing Feet Pressure Distributions. Sensors 2020, 20, 747. [Google Scholar] [CrossRef]
- Ho, J.-G.; Kim, Y.; Min, S.-D. Customized Textile Capacitive Insole Sensor for Center of Pressure Analysis. Sensors 2022, 22, 9390. [Google Scholar] [CrossRef]
- Eguchi, R.; Takahashi, M. Estimation of Three-Dimensional Ground Reaction Forces During Walking and Turning Using Insole Pressure Sensors Based on Gait Pattern Recognition. IEEE Sens. J. 2023, 23, 31278–31286. [Google Scholar] [CrossRef]
- Haron, A.H.; Li, L.; Shuang, J.; Lin, C.; Dawes, H.; Mansoubi, M.; Crosby, D.; Massey, G.; Reeves, N.; Bowling, F.; et al. In-Shoe Plantar Shear Stress Sensor Design, Calibration and Evaluation for the Diabetic Foot. PLoS ONE 2024, 19, e0309514. [Google Scholar] [CrossRef] [PubMed]
- Peyer, K.E.; Brassey, C.A.; Rose, K.A.; Sellers, W.I. Locomotion Pattern and Foot Pressure Adjustments during Gentle Turns in Healthy Subjects. J. Biomech. 2017, 60, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Lakho, R.A.; Abro, Z.A.; Chen, J.; Min, R. Smart Insole Based on Flexi Force and Flex Sensor for Monitoring Different Body Postures. Sensors 2022, 22, 5469. [Google Scholar] [CrossRef] [PubMed]
- Ciniglio, A.; Guiotto, A.; Spolaor, F.; Sawacha, Z. The Design and Simulation of a 16-Sensors Plantar Pressure Insole Layout for Different Applications: From Sports to Clinics, a Pilot Study. Sensors 2021, 21, 1450. [Google Scholar] [CrossRef]
- Khandakar, A.; Mahmud, S.; Chowdhury, M.E.H.; Reaz, M.B.I.; Kiranyaz, S.; Mahbub, Z.B.; Ali, S.H.; Bakar, A.A.A.; Ayari, M.A.; Alhatou, M.; et al. Design and Implementation of a Smart Insole System to Measure Plantar Pressure and Temperature. Sensors 2022, 22, 7599. [Google Scholar] [CrossRef]
- Lin, F.; Song, C.; Xu, X.; Cavuoto, L.; Xu, W. Patient Handling Activity Recognition through Pressure-Map Manifold Learning Using a Footwear Sensor. Smart Health. 2017, 1–2, 77–92. [Google Scholar] [CrossRef]
- Matthies, D.J.C.; Roumen, T.; Kuijper, A.; Urban, B. CapSoles: Who is walking on what kind of floor? In Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services, Vienna, Austria, 4–7 September 2017; ACM: New York, NY, USA, 2017; pp. 1–14. [Google Scholar]
- Ishtiaque, T.A.; Cepuran, A.; Salaj, A.T.; Torp, O.; Diaconu, M.G. Developing an AI-Powered Smart Insole System to Reduce the Possibility of Back Pain among Older Workers: Lessons from the Norwegian Construction Industry. IOP Conf. Ser. Earth Environ. Sci. 2022, 1101, 032027. [Google Scholar] [CrossRef]
- Yang, Z.; Song, C.; Lin, F.; Langan, J.; Xu, W. Empowering a Gait Feature-Rich Timed-Up-and-Go System for Complex Ecological Environments. In Proceedings of the 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Philadelphia, PA, USA, 17–19 July 2017; IEEE: Piscataway, NJ, USA; pp. 340–347. [Google Scholar]
- Poluan, S.E.R.; Chen, Y.-A. Using Smart Insoles and RGB Camera for Identifying Stationary Human Targets. In Proceedings of the 2019 IEEE 10th International Conference on Awareness Science and Technology, Morioka, Japan, 23–25 October 2019; Yuan Ze University: Taiwan, 2019. [Google Scholar]
- Ivanov, K.; Mei, Z.; Lubich, L.; Guo, N.; Xile, D.; Zhao, Z.; Omisore, O.M.; Ho, D.; Wang, L. Design of a Sensor Insole for Gait Analysis. In Proceedings of the International Conference on Intelligent Robotics and Applications, Shenyang, China, 8–11 August 2019; pp. 433–444. [Google Scholar]
- He, Y.; Lin, M.; Wang, X.; Liu, K.; Liu, H.; He, T.; Zhou, P. Textile-Film Sensors for a Comfortable Intelligent Pressure-Sensing Insole. Measurement 2021, 184, 109943. [Google Scholar] [CrossRef]
- Burch, K.; Doshi, S.; Chaudhari, A.; Thostenson, E.; Higginson, J. Estimating Ground Reaction Force with Novel Carbon Nanotube-Based Textile Insole Pressure Sensors. Wearable Technol. 2023, 4, e8. [Google Scholar] [CrossRef]
- Jiang, X.; Li, J.; Zhu, Z.; Liu, X.; Yuan, Y.; Chou, C.; Yan, S.; Dai, C.; Jia, F. MovePort: Multimodal Dataset of EMG, IMU, MoCap, and Insole Pressure for Analyzing Abnormal Movements and Postures in Rehabilitation Training. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 2633–2643. [Google Scholar] [CrossRef]
- Lueken, M.; Mueller, L.; Decker, M.G.; Bollheimer, C.; Leonhardt, S.; Ngo, C. Evaluation and Application of a Customizable Wireless Platform: A Body Sensor Network for Unobtrusive Gait Analysis in Everyday Life. Sensors 2020, 20, 7325. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Dai, X.; Wu, Y.; Liang, Q.; Wu, Y.; Yang, J.; Dong, B.; Gao, G.; Qin, Q.; Huang, L. Self-powered High-resolution Smart Insole System for Plantar Pressure Mapping. BMEMat 2023, 1, e12008. [Google Scholar] [CrossRef]
- Crossland, S.R.; Siddle, H.J.; Brockett, C.L.; Culmer, P. Evaluating the Use of a Novel Low-Cost Measurement Insole to Characterise Plantar Foot Strain during Gait Loading Regimes. Front. Bioeng. Biotechnol. 2023, 11, 1187710. [Google Scholar] [CrossRef]
- Gupta, S.; Jayaraman, R.; Sidhu, S.; Malviya, A.; Chatterjee, S.; Chhikara, K.; Singh, G.; Chanda, A. Diabot: Development of a Diabetic Foot Pressure Tracking Device. J 2023, 6, 32–47. [Google Scholar] [CrossRef]
- Fuchs, P.X.; Chen, W.-H.; Shiang, T.-Y. Center of Pressure Measurement Accuracy via Insoles with a Reduced Pressure Sensor Number during Gaits. Sensors 2024, 24, 4918. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Yoon, S.; Kim, J.; Seo, H.; Choi, J.K. Calibrating Low-Cost Smart Insole Sensors with Recurrent Neural Networks for Accurate Prediction of Center of Pressure. Sensors 2024, 24, 4765. [Google Scholar] [CrossRef]
- Willemstein, N.; Sridar, S.; Van Der Kooij, H.; Sadeghi, A. 3D Printed Graded Porous Sensors for Soft Sensorized Insoles with Gait Phase & Ground Reaction Forces Estimation. arXiv 2023, arXiv:2303.04719. [Google Scholar] [CrossRef]
- Crabtree, P.; Dhokia, V.G.; Newman, S.T.; Ansell, M.P. Manufacturing Methodology for Personalised Symptom-Specific Sports Insoles. Robot. Comput. Integr. Manuf. 2009, 25, 972–979. [Google Scholar] [CrossRef]
- Valvez, S.; Silva, A.P.; Reis, P.N.B. Optimization of Printing Parameters to Maximize the Mechanical Properties of 3D-Printed PETG-Based Parts. Polymers 2022, 14, 2564. [Google Scholar] [CrossRef]
- Rehman, R.U.; Zaman, U.K.u.; Aziz, S.; Jabbar, H.; Shujah, A.; Khaleequzzaman, S.; Hamza, A.; Qamar, U.; Jung, D.-W. Process Parameter Optimization of Additively Manufactured Parts Using Intelligent Manufacturing. Sustainability 2022, 14, 15475. [Google Scholar] [CrossRef]
- Babich, N.; DeCohen, D.; Sun, H.; Faruk Emon, O. Effect of printing parameters on the sensing performance of a 3D printed elastomeric pressure sensor. Manuf. Lett. 2023, 35, 805–810. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, H.; Song, X.; Wu, Y.; Lyu, Y.; Zeng, W. Advancements in Diabetic Foot Insoles: A Comprehensive Review of Design, Manufacturing, and Performance Evaluation. Front. Bioeng. Biotechnol. 2024, 12, 1394758. [Google Scholar] [CrossRef] [PubMed]
- Gurchiek, R.D.; Cheney, N.; McGinnis, R.S. Estimating Biomechanical Time-Series with Wearable Sensors: A Systematic Review of Machine Learning Techniques. Sensors 2019, 19, 5227. [Google Scholar] [CrossRef] [PubMed]
- Abdul Razak, A.H.; Zayegh, A.; Begg, R.K.; Wahab, Y. Foot Plantar Pressure Measurement System: A Review. Sensors 2012, 12, 9884–9912. [Google Scholar] [CrossRef]
- Santos, V.M.; Gomes, B.B.; Neto, M.A.; Amaro, A.M. A Systematic Review of Insole Sensor Technology: Recent Studies and Future Directions. Appl. Sci. 2024, 14, 6085. [Google Scholar] [CrossRef]
- Resendes, T.; Freitas Rodrigues, P.; Cruz, F.; Gatões, D.; Santos, V.M.; Ramos, A.S.; Vieira, M.T. Advanced Medical Monitoring: 3D Printed Prosthetics with Integrated Strain Sensor. Prog. Addit. Manuf. 2024, 10, 219–229. [Google Scholar] [CrossRef]
- Xiao, X.; Yin, J.; Xu, J.; Tat, T.; Chen, J. Advances in Machine Learning for Wearable Sensors. ACS Nano 2024, 18, 22734–22751. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Takahashi, Y.; Sasaki, Y. Prediction of Three-Directional Ground Reaction Forces during Walking Using a Shoe Sole Sensor System and Machine Learning. Sensors 2023, 23, 8985. [Google Scholar] [CrossRef]
Database Name | Platform | Date Coverage | Date of Search | Search Within | Source Title | Command | # (No.) of Results |
---|---|---|---|---|---|---|---|
Scopus | Elsevier | –2024 | 17 September 2024 | Article title, Abstract, Keywords | All | “smart insole” AND “artificial intelligence” OR “machine learning” AND “prototype” OR “design” | 12 |
Web of Science | Clarivate | –2024 | 17 September 2024 | All Fields | All | “smart insole” AND “artificial intelligence” OR “machine learning” AND “prototype” OR “design” | 6 |
PubMed | NLB/NIH | –2024 | 17 September 2024 | All Fields | All | “smart insole” AND “artificial intelligence” OR “machine learning” AND “prototype” OR “design” | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, V.M.; Gomes, B.B.; Neto, M.A.; Freitas Rodrigues, P.; Amaro, A.M. A Systematic Review on Smart Insole Prototypes: Development and Optimization Pathways. Actuators 2025, 14, 408. https://doi.org/10.3390/act14080408
Santos VM, Gomes BB, Neto MA, Freitas Rodrigues P, Amaro AM. A Systematic Review on Smart Insole Prototypes: Development and Optimization Pathways. Actuators. 2025; 14(8):408. https://doi.org/10.3390/act14080408
Chicago/Turabian StyleSantos, Vítor Miguel, Beatriz B. Gomes, Maria Augusta Neto, Patrícia Freitas Rodrigues, and Ana Martins Amaro. 2025. "A Systematic Review on Smart Insole Prototypes: Development and Optimization Pathways" Actuators 14, no. 8: 408. https://doi.org/10.3390/act14080408
APA StyleSantos, V. M., Gomes, B. B., Neto, M. A., Freitas Rodrigues, P., & Amaro, A. M. (2025). A Systematic Review on Smart Insole Prototypes: Development and Optimization Pathways. Actuators, 14(8), 408. https://doi.org/10.3390/act14080408