Topical Collection "Featured Review in Acoustics Science"

Editor

Topical Collection Information

Dear Colleagues,

In the past year, Acoustics followed a strategy aimed at highlighting important topics of acoustics science with dedicated collections and reviews. As it turned out, these selected state-of-the-art topics filled more than just one collection and were worthy of more than one review; thus, we decided to set up this Topical Collection to keep an ongoing, stimulating discussion of hot topics. In this Topical Collection, we will publish contributed and invited reviews with a clear focus on a certain hot topic, providing our readers with new and stimulating insights relating to recent developments in a range of fields/topics in acoustics.

We look forward to receiving your contributions.

Prof. Jian Kang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Acoustics is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (4 papers)

2019

Open AccessReview
Are Cry Studies Replicable? An Analysis of Participants, Procedures, and Methods Adopted and Reported in Studies of Infant Cries
Acoustics 2019, 1(4), 866-883; https://doi.org/10.3390/acoustics1040052 - 04 Dec 2019
Cited by 3
Abstract
Infant cry is evolutionarily, psychologically, and clinically significant. Over the last half century, several researchers and clinicians have investigated acoustical properties of infant cry for medical purposes. However, this literature suffers a lack of standardization in conducting and reporting cry-based studies. In this [...] Read more.
Infant cry is evolutionarily, psychologically, and clinically significant. Over the last half century, several researchers and clinicians have investigated acoustical properties of infant cry for medical purposes. However, this literature suffers a lack of standardization in conducting and reporting cry-based studies. In this work, methodologies and procedures employed to analyze infant cry are reviewed and best practices for reporting studies are provided. First, available literatures on vocal and audio acoustic analysis are examined to identify critical aspects of participant information, data collection, methods, and data analysis. Then, 180 peer-reviewed research articles have been assessed to certify the presence of critical information. Results show a general lack of critical description. Researchers in the field of infant cry need to develop a consensual standard set of criteria to report experimental studies to ensure the validity of their methods and results. Full article
Show Figures

Figure 1

Open AccessReview
The Present and Future Role of Acoustic Metamaterials for Architectural and Urban Noise Mitigations
Acoustics 2019, 1(3), 590-607; https://doi.org/10.3390/acoustics1030035 - 01 Aug 2019
Cited by 2
Abstract
Owing to a steep rise in urban population, there has been a continuous growth in construction of buildings, public or private transport like cars, motorbikes, trains, and planes at a global level. Hence, urban noise has become a major issue affecting the health [...] Read more.
Owing to a steep rise in urban population, there has been a continuous growth in construction of buildings, public or private transport like cars, motorbikes, trains, and planes at a global level. Hence, urban noise has become a major issue affecting the health and quality of human life. In the current environmental scenario, architectural acoustics has been directed towards controlling and manipulating sound waves at a desired level. Structural engineers and designers are moving towards green technologies, which may help improve the overall comfort level of residents. A variety of conventional sound absorbing materials are being used to reduce noise, but attenuation of low-frequency noise still remains a challenge. Recently, acoustic metamaterials that enable low-frequency sound manipulation, mitigation, and control have been widely used for architectural acoustics and traffic noise mitigation. This review article provides an overview of the role of acoustic metamaterials for architectural acoustics and road noise mitigation applications. The current challenges and prominent future directions in the field are also highlighted. Full article
Show Figures

Figure 1

Open AccessReview
Acoustic Black Holes in Structural Design for Vibration and Noise Control
Acoustics 2019, 1(1), 220-251; https://doi.org/10.3390/acoustics1010014 - 25 Feb 2019
Cited by 2
Abstract
It is known that in the design of quieter mechanical systems, vibration and noise control play important roles. Recently, acoustic black holes have been effectively used for structural design in controlling vibration and noise. An acoustic black hole is a power-law tapered profile [...] Read more.
It is known that in the design of quieter mechanical systems, vibration and noise control play important roles. Recently, acoustic black holes have been effectively used for structural design in controlling vibration and noise. An acoustic black hole is a power-law tapered profile to reduce phase and group velocities of wave propagation to zero. Additionally, the vibration energy at the location of acoustic black hole increases due to the gradual reduction of its thickness. The vibration damping, sound reduction, and vibration energy harvesting are the major applications in structural design with acoustic black holes. In this paper, a review of basic theoretical, numerical, and experimental studies on the applications of acoustic black holes is presented. In addition, the influences of the various geometrical parameters and the configuration of acoustic black holes are presented. The studies show that the use of acoustic black holes results in an effective control of vibration and noise. It is seen that the acoustic black holes have a great potential for quiet design of complex structures. Full article
Show Figures

Figure 1

Open AccessReview
Turbomachinery Noise Predictions: Present and Future
Acoustics 2019, 1(1), 92-116; https://doi.org/10.3390/acoustics1010008 - 04 Jan 2019
Cited by 2
Abstract
In future Ultra-High By-Pass Ratio turboengines, the turbomachinery noise (fan and turbine stages mainly) is expected to increase significantly. A review of analytical models and numerical methods to yield both tonal and broadband contributions of such noise sources is presented. The former rely [...] Read more.
In future Ultra-High By-Pass Ratio turboengines, the turbomachinery noise (fan and turbine stages mainly) is expected to increase significantly. A review of analytical models and numerical methods to yield both tonal and broadband contributions of such noise sources is presented. The former rely on hybrid methods coupling gust response over very thin flat plates of finite chord length, either isolated or in cascade, and acoustic analogies in free-field and in a duct. The latter yields tonal noise with unsteady Reynolds-Averaged Navier–Stokes (u-RANS) simulations, and broadband noise with Large Eddy Simulations (LES). The analytical models are shown to provide good and fast first sound estimates at pre-design stages, and to easily separate the different noise sources. The u-RANS simulations are now able to give accurate estimates of tonal noise of the most complex asymmetric, heterogeneous fan-Outlet Guiding Vane (OGV) configurations. Wall-modeled LES on rescaled stage configurations have now been achieved on all components: a low-pressure compressor stage, a transonic high-pressure turbine stage and a fan-OGV configuration with good overall sound power level predictions for the latter. In this case, hybrid Lattice–Boltzmann/very large-eddy simulations also appear to be an excellent alternative to yield both contributions accurately at once. Full article
Show Figures

Figure 1

Back to TopTop