Ecological Validity of Immersive Virtual Reality (IVR) Techniques for the Perception of Urban Sound Environments
Abstract
:1. Introduction
2. Methodologies
2.1. Search Strategy and Eligibility Criteria
2.2. Data Extraction
3. Results
3.1. Ecological Validity with Subjective Responses
3.2. Reproduction Systems
4. Discussion
4.1. Subjective Response, Cognitive Performance and Physiological Response
4.2. Other Visual Rendering Methods
4.3. Verisimilitude and Veridicality
4.4. Limitations
5. Conclusions
- Through the approaches of laboratory tests including subjective response surveys, cognitive performance tests and physiological responses, the ecological validity of complex sound environment perception can be assessed for IVR. With participatory experiments in situ and in a laboratory, the veridicality of IVR can be verified through subjective responses including environmental preferences/quality, audio–visual indicators (e.g., pleasantness and annoyance), coupled interactions and reproduction quality (e.g., realism and immersiveness).
- A head-tracking unit with a display and synchronized spatial audio (e.g., HMD with FOA-tracked binaural playback) is advantageous to assess ecological validity in immersive virtual environments. When the urban sound environment research involves interaction among multiple users, a CAVE system should be considered. With higher spatial resolutions, HOA also shows increasing potential for the ecological validity of IVR in urban sound environment research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibson, J.J. The Ecological Approach to Visual Perception: Classic Edition; Psychology Press: Hove, UK, 2014. [Google Scholar] [CrossRef]
- Naugle, R.I.; Chelune, G.J. Integrasting neuropsychological and “real-life” data: A neuropsychological model for assessing everyday functioning. In The Neuropsychology of Everyday Life: Assessment and Basic Competencies; Springer: Berlin, Germany, 1990; pp. 57–73. [Google Scholar]
- Parsons, T.D. Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Front. Hum. Neurosci. 2015, 9, 660. [Google Scholar] [CrossRef] [Green Version]
- Guastavino, C.; Katz, B.F.; Polack, J.-D.; Levitin, D.J.; Dubois, D. Ecological validity of soundscape reproduction. Acta Acust. United Acust. 2005, 91, 333–341. [Google Scholar]
- Maffei, L.; Masullo, M.; Pascale, A.; Ruggiero, G.; Romero, V.P. Immersive virtual reality in community planning: Acoustic and visual congruence of simulated vs real world. Sustain. Cities Soc. 2016, 27, 338–345. [Google Scholar] [CrossRef]
- Kotz, S.; Iachini, T.; Coello, Y.; Frassinetti, F.; Ruggiero, G. Body Space in Social Interactions: A Comparison of Reaching and Comfort Distance in Immersive Virtual Reality. PLoS ONE 2014, 9, e111511. [Google Scholar] [CrossRef] [Green Version]
- Loomis, J.M.; Blascovich, J.J.; Beall, A.C. Immersive virtual environment technology as a basic research tool in psychology. Behav. Res. Methods Instrum. Comput. 1999, 31, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Bishop, I.D.; Wherrett, J.R.; Miller, D.R. Assessment of path choices on a country walk using a virtual environment. Landsc. Urban Plan. 2001, 52, 225–237. [Google Scholar] [CrossRef]
- Spooner, D.M.; Pachana, N.A. Ecological validity in neuropsychological assessment: A case for greater consideration in research with neurologically intact populations. Arch. Clin. Neuropsychol. 2006, 21, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Sbordone, R.J.; Long, C. Ecological Validity of Neuropsychological Testing; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Chaytor, N.; Schmitter-Edgecombe, M. The ecological validity of neuropsychological tests: A review of the literature on everyday cognitive skills. Neuropsychol. Rev. 2003, 13, 181–197. [Google Scholar] [CrossRef]
- Kenworthy, L.; Yerys, B.E.; Anthony, L.G.; Wallace, G.L. Understanding executive control in autism spectrum disorders in the lab and in the real world. Neuropsychol. Rev. 2008, 18, 320–338. [Google Scholar] [CrossRef] [Green Version]
- Wood, R.L.; Liossi, C. The ecological validity of executive tests in a severely brain injured sample. Arch. Clin. Neuropsychol. 2006, 21, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Jallouli, J.; Moreau, G. An immersive path-based study of wind turbines’ landscape: A French case in Plouguin. Renew. Energy 2009, 34, 597–607. [Google Scholar] [CrossRef]
- Ruotolo, F.; Maffei, L.; Di Gabriele, M.; Iachini, T.; Masullo, M.; Ruggiero, G.; Senese, V.P. Immersive virtual reality and environmental noise assessment: An innovative audio–visual approach. Environ. Impact Assess. Rev. 2013, 41, 10–20. [Google Scholar] [CrossRef]
- Slater, M. Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3549–3557. [Google Scholar] [CrossRef] [Green Version]
- Oberman, T.; Šćitaroci, B.B.O.; Jambrošić, K. Towards a Virtual Soundwalk. In Handbook of Research on Perception-Driven Approaches to Urban Assessment and Design; IGI Global: Hershey, PA, USA, 2018; pp. 317–343. [Google Scholar]
- Diemer, J.; Alpers, G.W.; Peperkorn, H.M.; Shiban, Y.; Mühlberger, A. The impact of perception and presence on emotional reactions: A review of research in virtual reality. Front. Psychol. 2015, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Bishop, I.D.; Rohrmann, B. Subjective responses to simulated and real environments: A comparison. Landsc. Urban Plan. 2003, 65, 261–277. [Google Scholar] [CrossRef]
- Chamilothori, K.; Wienold, J.; Andersen, M. Adequacy of immersive virtual reality for the perception of daylit spaces: Comparison of real and virtual environments. Leukos 2019, 15, 203–226. [Google Scholar] [CrossRef] [Green Version]
- Higuera-Trujillo, J.L.; Maldonado, J.L.-T.; Millán, C.L. Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360 Panoramas, and Virtual Reality. Appl. Ergon. 2017, 65, 398–409. [Google Scholar] [CrossRef]
- Kort, Y.A.D.; Ijsselsteijn, W.A.; Kooijman, J.; Schuurmans, Y. Virtual laboratories: Comparability of real and virtual environments for environmental psychology. Presence Teleoperators Virtual Environ. 2003, 12, 360–373. [Google Scholar] [CrossRef]
- Rossetti, T.; Hurtubia, R. An assessment of the ecological validity of immersive videos in stated preference surveys. J. Choice Model. 2020, 34, 100198. [Google Scholar] [CrossRef]
- Rumsey, F. Spatial Audio; Taylor & Francis: Oxfordshire, UK, 2001. [Google Scholar]
- Daniel, J.; Moreau, S.; Nicol, R. Further Investigations of High-Order Ambisonics and Wavefield Synthesis for Holophonic Sound Imaging; Audio Engineering Society Convention 114; Audio Engineering Society: New York, NY, USA, 2003. [Google Scholar]
- Tylka, J.G.; Choueiri, E.Y. Models for Evaluating Navigational Techniques for Higher-Order Ambisonics. In Proceedings of the Meetings on Acoustics 173EAA; Acoustical Society of America: Washington, DC, USA, 2017; p. 050009. [Google Scholar]
- Gerzon, M.A. Ambisonics in multichannel broadcasting and video. J. Audio Eng. Soc. 1985, 33, 859–871. [Google Scholar]
- Gardner, W.G.; Martin, K.D. HRTF measurements of a KEMAR. J. Acoust. Soc. Am. 1995, 97, 3907–3908. [Google Scholar] [CrossRef]
- Seeber, B.U.; Fastl, H. Subjective Selection of Non-Individual Head-Related Transfer Functions; Georgia Institute of Technology: Atlanta, GA, USA, 2003. [Google Scholar]
- Wenzel, E.M.; Arruda, M.; Kistler, D.J.; Wightman, F.L. Localization using nonindividualized head‐related transfer functions. J. Acoust. Soc. Am. 1993, 94, 111–123. [Google Scholar] [CrossRef]
- Simon, L.S.; Zacharov, N.; Katz, B.F. Perceptual attributes for the comparison of head-related transfer functions. J. Acoust. Soc. Am. 2016, 140, 3623–3632. [Google Scholar] [CrossRef]
- Tan, C.-J.; Gan, W.-S. User-defined spectral manipulation of HRTF for improved localisation in 3D sound systems. Electron. Lett. 1998, 34, 2387–2389. [Google Scholar] [CrossRef]
- Cadena, L.F.H.; Soares, A.C.L.; Pavón, I.; Coelho, L.B. Assessing soundscape: Comparison between in situ and laboratory methodologies. Noise Mapp. 2017, 4, 57–66. [Google Scholar] [CrossRef]
- ISO. TS 12913-2: 2018—Acoustics—Soundscape Part 2: Data Collection and Reporting Requirements; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- Carles, J.; Bernáldez, F.; Lucio, J.D. Audio‐visual interactions and soundscape preferences. Landsc. Res. 1992, 17, 52–56. [Google Scholar] [CrossRef]
- Galbrun, L.; Calarco, F.M. Audio-visual interaction and perceptual assessment of water features used over road traffic noise. J. Acoust. Soc. Am. 2014, 136, 2609–2620. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.Y.; Jeon, J.Y. The effects of audio–visual factors on perceptions of environmental noise barrier performance. Landsc. Urban Plan. 2014, 125, 28–37. [Google Scholar] [CrossRef]
- Liu, F.; Kang, J. Relationship between street scale and subjective assessment of audio-visual environment comfort based on 3D virtual reality and dual-channel acoustic tests. Build. Environ. 2018, 129, 35–45. [Google Scholar] [CrossRef]
- Preis, A.; Kociński, J.; Hafke-Dys, H.; Wrzosek, M. Audio-visual interactions in environment assessment. Sci. Total. Environ. 2015, 523, 191–200. [Google Scholar] [CrossRef]
- Szychowska, M.; Hafke-Dys, H.; Preis, A.; Kociński, J.; Kleka, P. The influence of audio-visual interactions on the annoyance ratings for wind turbines. Appl. Acoust. 2018, 129, 190–203. [Google Scholar] [CrossRef]
- Viollon, S.; Lavandier, C.; Drake, C. Influence of visual setting on sound ratings in an urban environment. Appl. Acoust. 2002, 63, 493–511. [Google Scholar] [CrossRef]
- Muhammad, I.; Vorländer, M.; Schlittmeier, S.J. Audio-video virtual reality environments in building acoustics: An exemplary study reproducing performance results and subjective ratings of a laboratory listening experiment. J. Acoust. Soc. Am. 2019, 146, EL310–EL316. [Google Scholar] [CrossRef] [Green Version]
- Thery, D.; Boccara, V.; Katz, B.F. Auralization uses in acoustical design: A survey study of acoustical consultants. J. Acoust. Soc. Am. 2019, 145, 3446–3456. [Google Scholar] [CrossRef]
- Postma, B.N.; Katz, B.F. The influence of visual distance on the room-acoustic experience of auralizations. J. Acoust. Soc. Am. 2017, 142, 3035–3046. [Google Scholar] [CrossRef]
- Abdalrahman, Z.; Galbrun, L. Audio-visual preferences, perception, and use of water features in open-plan offices. J. Acoust. Soc. Am. 2020, 147, 1661–1672. [Google Scholar] [CrossRef]
- Picinali, L.; Afonso, A.; Denis, M.; Katz, B.F. Exploration of architectural spaces by blind people using auditory virtual reality for the construction of spatial knowledge. Int. J. Hum. Comput. Stud. 2014, 72, 393–407. [Google Scholar] [CrossRef]
- Afonso, A.; Blum, A.; Katz, B.F.; Tarroux, P.; Borst, G.; Denis, M. Structural properties of spatial representations in blind people: Scanning images constructed from haptic exploration or from locomotion in a 3-D audio virtual environment. Mem. Cogn. 2010, 38, 591–604. [Google Scholar] [CrossRef]
- Brown, A.; Kang, J.; Gjestland, T. Towards standardization in soundscape preference assessment. Appl. Acoust. 2011, 72, 387–392. [Google Scholar] [CrossRef]
- Kang, J.; Yu, L. Modelling subjective evaluation of soundscape: Towards soundscape standardization. J. Acoust. Soc. Am. 2011, 129, 2570. [Google Scholar] [CrossRef]
- ISO. TS 12913-3: 2018—Acoustics—Soundscape Part 3: Data Analysis; ISO: Geneva, Switzerland, 2019. [Google Scholar]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.Y.; Jo, H.I. Effects of audio-visual interactions on soundscape and landscape perception and their influence on satisfaction with the urban environment. Build. Environ. 2020, 169, 106544. [Google Scholar] [CrossRef]
- Aletta, F.; Masullo, M.; Maffei, L.; Kang, J. The effect of vision on the perception of the noise produced by a chiller in a common living environment. Noise Control. Eng. J. 2016, 64, 363–378. [Google Scholar] [CrossRef]
- Iachini, T.; Maffei, L.; Ruotolo, F.; Senese, V.P.; Ruggiero, G.; Masullo, M.; Alekseeva, N. Multisensory assessment of acoustic comfort aboard metros: A virtual reality study. Appl. Cogn. Psychol. 2012, 26, 757–767. [Google Scholar] [CrossRef]
- Maffei, L.; Iachini, T.; Masullo, M.; Aletta, F.; Sorrentino, F.; Senese, V.P.; Ruotolo, F. The effects of vision-related aspects on noise perception of wind turbines in quiet areas. Int. J. Environ. Res. Public Health 2013, 10, 1681–1697. [Google Scholar] [CrossRef]
- Maffei, L.; Masullo, M.; Aletta, F.; Di Gabriele, M. The influence of visual characteristics of barriers on railway noise perception. Sci. Total Environ. 2013, 445, 41–47. [Google Scholar] [CrossRef]
- Sanchez, G.M.E.; Van Renterghem, T.; Sun, K.; De Coensel, B.; Botteldooren, D. Using Virtual Reality for assessing the role of noise in the audio-visual design of an urban public space. Landsc. Urban Plan. 2017, 167, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Behm, H.; Bill, R.; Kang, J. Audio-visual perception of new wind parks. Landsc. Urban Plan. 2017, 165, 1–10. [Google Scholar] [CrossRef]
- Hong, J.Y.; Lam, B.; Ong, Z.-T.; Ooi, K.; Gan, W.-S.; Kang, J.; Feng, J.; Tan, S.-T. Quality assessment of acoustic environment reproduction methods for cinematic virtual reality in soundscape applications. Build. Environ. 2019, 149, 1–14. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Jo, H.I. Three-dimensional virtual reality-based subjective evaluation of road traffic noise heard in urban high-rise residential buildings. Build. Environ. 2019, 148, 468–477. [Google Scholar] [CrossRef]
- Sun, K.; De Coensel, B.; Filipan, K.; Aletta, F.; Van Renterghem, T.; De Pessemier, T.; Joseph, W.; Botteldooren, D. Classification of soundscapes of urban public open spaces. Landsc. Urban Plan. 2019, 189, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Kang, J. Urban Sound Environment; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and non-auditory effects of noise on health. Lancet 2014, 383, 1325–1332. [Google Scholar] [CrossRef] [Green Version]
- Stansfeld, S.A.; Matheson, M.P. Noise pollution: Non-auditory effects on health. Br. Med Bull. 2003, 68, 243–257. [Google Scholar] [CrossRef]
- Annerstedt, M.; Jönsson, P.; Wallergård, M.; Johansson, G.; Karlson, B.; Grahn, P.; Hansen, Å.M.; Währborg, P. Inducing physiological stress recovery with sounds of nature in a virtual reality forest—Results from a pilot study. Physiol. Behav. 2013, 118, 240–250. [Google Scholar] [CrossRef]
- Hedblom, M.; Gunnarsson, B.; Schaefer, M.; Knez, I.; Thorsson, P.; Lundström, J.N. Sounds of nature in the city: No evidence of bird song improving stress recovery. Int. J. Environ. Res. Public Health 2019, 16, 1390. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Masullo, M.; Maffei, L.; Meng, F.; Vorländer, M. How do shared-street design and traffic restriction improve urban soundscape and human experience?—An online survey with virtual reality. Build. Environ. 2018, 143, 318–328. [Google Scholar] [CrossRef]
- Jiang, L.; Masullo, M.; Maffei, L.; Meng, F.; Vorländer, M. A demonstrator tool of web-based virtual reality for participatory evaluation of urban sound environment. Landsc. Urban Plan. 2018, 170, 276–282. [Google Scholar] [CrossRef]
- Jahncke, H.; Eriksson, K.; Naula, S. The effects of auditive and visual settings on perceived restoration likelihood. Noise Health 2015, 17, 1. [Google Scholar] [CrossRef]
- Guastavino, C.; Katz, B.F. Perceptual evaluation of multi-dimensional spatial audio reproduction. J. Acoust. Soc. Am. 2004, 116, 1105–1115. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Kang, J. Effect of traffic noise on perceived visual impact of motorway traffic. Landsc. Urban Plan. 2016, 150, 50–59. [Google Scholar] [CrossRef]
- Chau, C.K.; Leung, T.M.; Xu, J.M.; Tang, S.K. Modelling noise annoyance responses to combined sound sources and views of sea, road traffic, and mountain greenery. J. Acoust. Soc. Am. 2018, 144, 3503–3513. [Google Scholar] [CrossRef] [PubMed]
- Thery, D.; Poirier-Quinot, D.; Postma, B.N.; Katz, B.F. Impact of The Visual Rendering System on Subjective Auralization Assessment in VR. In Proceedings of the International Conference on Virtual Reality and Augmented Reality; Springer: Berlin, Germany, 2017; pp. 105–118. [Google Scholar]
- Cruz-Neira, C.; Sandin, D.J.; DeFanti, T.A.; Kenyon, R.V.; Hart, J.C. The CAVE: Audio visual experience automatic virtual environment. Commun. ACM 1992, 35, 64–73. [Google Scholar] [CrossRef]
- Muhanna, M.A. Virtual reality and the CAVE: Taxonomy, interaction challenges and research directions. J. King Saud Univ. Comput. Inf. Sci. 2015, 27, 344–361. [Google Scholar] [CrossRef] [Green Version]
- Havig, P.; McIntire, J.; Geiselman, E. Virtual Reality in a Cave: Limitations and the Need for HMDs? Head-and Helmet-Mounted Displays XVI: Design and Applications; International Society for Optics and Photonics: Bellingham, WA, USA, 1 June 2011; p. 804107. [Google Scholar]
- Postma, B.N.; Katz, B.F. Perceptive and objective evaluation of calibrated room acoustic simulation auralizations. J. Acoust. Soc. Am. 2016, 140, 4326–4337. [Google Scholar] [CrossRef]
- Lokki, T.; McLeod, L.; Kuusinen, A. Perception of loudness and envelopment for different orchestral dynamics. J. Acoust. Soc. Am. 2020, 148, 2137–2145. [Google Scholar] [CrossRef]
- Poirier-Quinot, D.; Postma, B.N.; Katz, B.F. Augmented Auralization: Complimenting Auralizations with Immersive Virtual Reality Technologies. In Proceedings of the International Symposium on Music and Room Acoustics (ISMRA), La Plata, Argentina, 11–13 September 2016; pp. 1–10. [Google Scholar]
- Schissler, C.; Nicholls, A.; Mehra, R. Efficient HRTF-based spatial audio for area and volumetric sources. IEEE Trans. Vis. Comput. Graph. 2016, 22, 1356–1366. [Google Scholar] [CrossRef] [PubMed]
- Serafin, S.; Geronazzo, M.; Erkut, C.; Nilsson, N.C.; Nordahl, R. Sonic interactions in virtual reality: State of the art, current challenges, and future directions. IEEE Comput. Graph. Appl. 2018, 38, 31–43. [Google Scholar] [CrossRef]
- Xu, C.; Kang, J. Soundscape evaluation: Binaural or monaural? J. Acoust. Soc. Am. 2019, 145, 3208–3217. [Google Scholar] [CrossRef]
- Oberman, T.; Jambrošic, K.; Aletta, F.; Kang, J. Towards a Soundscape Surround Index. In Proceedings of the International Conference on Acoustics, Aachen, Germany, 9–13 September 2019; pp. 9–13. [Google Scholar]
- Narbutt, M.; O’Leary, S.; Allen, A.; Skoglund, J.; Hines, A. Streaming VR for immersion: Quality aspects of compressed spatial audio. In Proceedings of the 2017 23rd International Conference on Virtual System & Multimedia (VSMM); IEEE: Dublin, Ireland, 2017; pp. 1–6. [Google Scholar]
- Pausch, F.; Aspöck, L.; Vorländer, M.; Fels, J. An extended binaural real-time auralization system with an interface to research hearing aids for experiments on subjects with hearing loss. Trends Hear. 2018, 22. [Google Scholar] [CrossRef] [Green Version]
- Favrot, S.; Buchholz, J.M. LoRA: A loudspeaker-based room auralization system. Acta Acust. United Acust. 2010, 96, 364–375. [Google Scholar] [CrossRef]
- Perotin, L.; Serizel, R.; Vincent, E.; Guérin, A. Multichannel Speech Separation with Recurrent Neural Networks from High-Order Ambisonics Recordings. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018), Calgary, AB, Canada, 15–20 April 2018; pp. 36–40. [Google Scholar]
References | Research Focus | Participant Number | In Situ Responses vs. Experiment Data | Auditory Perception | Visual Perception | Coupled or Other Variables |
---|---|---|---|---|---|---|
(Iachini et al., 2012) [54] | Acoustic comfort aboard metros | 51 | x | Annoyance | − | − |
(Ruotolo et al., 2013) [15] | Noise assessment for a motorway | 20 | x | Audio annoyance | Visual annoyance | − |
(Maffei, Iachini, et al., 2013) [55] | The effects of visual and acoustical aspects of the impact of a wind farm in a quiet area | 46 | x | Perceived attributes | Visual Pleasantness | General environment evaluation |
(Maffei, Masullo, et al., 2013) [56] | The influence of visual characteristics of barriers on railway noise perception | 41 | x | Annoyance, perceived loudness | Visual pleasantness | − |
(Aletta et al., 2016) [53] | The effect of vision on the perception of the chiller noise | 26 | x | Perceived loudness, noise annoyance | Visual unpleasantness | − |
(Maffei et al., 2016) [5] | Global sound environmental quality | 16 in situ, 16 in the laboratory | √ | Acoustic coherence, and familiarity | Visual coherence, and familiarity | Global qualitative evaluations |
(Sanchez et al., 2017) [57] | The role of noise in the audio-visual design of an urban public space | 71 | x | − | − | The audio-visual interaction for preference and reality evaluation |
(Yu et al., 2017) [58] | Noise and visual intrusion from wind parks on affective and cognitive performances | 20 | x | Audio annoyance | Visual annoyance | − |
(Hong et al., 2019) [59] | The FOA reproduction comparison with in situ soundscape evaluation | 5, 12, 13 in three days (in situ), the same participants in the laboratory | √ | Overall soundscape quality | Perceived spatial quality | Distinctiveness, immersiveness, realism, reproduction fidelity |
(Jeon and Jo, 2019) [60] | Road traffic noise perception in urban high-rise residential buildings | 40 | x | Perceived loudness, annoyance, sound acceptance | − | Perceived distance, perceived directionality, perceived width, immersion, realism, and perceived externalization |
(Sun et al., 2019) [61] | Classifying soundscapes of urban public open spaces | 20 for Group 1, 20 for Group 2 | x | Classification components, psycho-acoustical indicators, and saliency | Visual factors | − |
(Jeon and Jo, 2020) [52] | The relationship between overall satisfaction of the urban environment and audio-visual interactions | 30 | x | Sound preference, soundscape attributes | Visual preference, visual attributes | Environment satisfaction |
Auralization | |
---|---|
Recordings | Playback |
Binaural audio signal recordings [15,53,54,55,56,58] | Headphones [15,52,54,57,58,60,61] |
Ambisonics recordings [5,52,57,59,61] | A number of loudspeakers, and a sub-woofer [55,56] |
Headphones with a sub-woofer [53] | |
5.1-format loudspeaker configuration [5] | |
Visualization | |
Visual construction methods | Visual rendering |
3ds Max [56,57] | HMD [5,15,42,52,53,54,55,56,57,58,59,60,61] |
Google SketchUp [5,15,54,60] | |
WorldViz [53,54,55] | |
Unity [57,58] | |
Kubity [60] | |
Panoramic views [52,58,60,61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Oberman, T.; Aletta, F.; Tong, H.; Kang, J. Ecological Validity of Immersive Virtual Reality (IVR) Techniques for the Perception of Urban Sound Environments. Acoustics 2021, 3, 11-24. https://doi.org/10.3390/acoustics3010003
Xu C, Oberman T, Aletta F, Tong H, Kang J. Ecological Validity of Immersive Virtual Reality (IVR) Techniques for the Perception of Urban Sound Environments. Acoustics. 2021; 3(1):11-24. https://doi.org/10.3390/acoustics3010003
Chicago/Turabian StyleXu, Chunyang, Tin Oberman, Francesco Aletta, Huan Tong, and Jian Kang. 2021. "Ecological Validity of Immersive Virtual Reality (IVR) Techniques for the Perception of Urban Sound Environments" Acoustics 3, no. 1: 11-24. https://doi.org/10.3390/acoustics3010003