Journal Description
Immuno
Immuno
is an international, peer-reviewed, open access journal on immunological research and clinical applications published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, EBSCO, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 31.6 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the first half of 2025).
- Journal Rank: CiteScore - Q2 (Medicine (miscellaneous))
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Impact Factor:
2.5 (2024);
5-Year Impact Factor:
2.0 (2024)
Latest Articles
The Relationship Between Autoimmune Disease and Intermittent Fasting: A Narrative Review
Immuno 2025, 5(4), 60; https://doi.org/10.3390/immuno5040060 - 5 Dec 2025
Abstract
Autoimmune disease (AD) is a breakdown of self-tolerance by the immune system and has a variety of clinical manifestations and complications across all organ systems. One of the targets for treatment of AD aims at reducing inflammation and upregulating factors that eliminate autoreactive
[...] Read more.
Autoimmune disease (AD) is a breakdown of self-tolerance by the immune system and has a variety of clinical manifestations and complications across all organ systems. One of the targets for treatment of AD aims at reducing inflammation and upregulating factors that eliminate autoreactive cells. Intermittent fasting (IF) has recently gained popularity as a dietary intervention for weight management, but has also been found to interact and positively interfere with pathways involved in the pathophysiology of AD. Methods include searching in the PubMed and Google Scholar databases for reviews and clinical trials studying any relationships between AD and IF. The search results have identified a variety of anti-inflammatory effects IF has on the immune system that can potentially reduce AD severity and several trials specifically studying IF’s effects on type I diabetes (T1D), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), and multiple sclerosis (MS). Based on the findings, IF has potential anti-inflammatory effects that could assist with decreasing AD severity. Future directions include studies to further determine safety and efficacy of IF with AD, broader investigations to include IF’s impact on a wide variety of ADs, an ideal time frame of how long patients should remain on IF, and any potential interactions IF may have on current drug therapies used to treat AD. This review also aims to encourage more human studies of IF and its application to AD given that many of these results are largely from in vitro, cellular and molecular, and animal studies.
Full article
(This article belongs to the Section Autoimmunity and Immunoregulation)
►
Show Figures
Open AccessArticle
Investigating the Dichotomous Nature of Nitric Oxide During the Enteral Phase of Trichinella spiralis Infection in Mice: An Experimental Study
by
Marwa Omar, Ghada Fathy, Samira Mohammed and Asmaa El-taib
Immuno 2025, 5(4), 59; https://doi.org/10.3390/immuno5040059 - 1 Dec 2025
Abstract
►▼
Show Figures
The exact role of nitric oxide (NO) in the complex interplay between the host and Trichinella spiralis (T. spiralis) parasite remains uncovered. While much has been revealed about the role of the inducible isoenzyme (iNOS) in different parasitic infections, research is
[...] Read more.
The exact role of nitric oxide (NO) in the complex interplay between the host and Trichinella spiralis (T. spiralis) parasite remains uncovered. While much has been revealed about the role of the inducible isoenzyme (iNOS) in different parasitic infections, research is slowly progressing toward understanding the neuronal enzyme (nNOS)-derived impacts on trichinosis. This study aims to clarify the dual nature of (NO) during the enteral phase of experimental trichinosis by examining the participation of both iNOS and nNOS in T. spiralis-infected mice. The experimental design included 48 male Swiss albino mice divided into six groups: (G1) negative control, (G2) infected control, (G3) infected–Albendazole-treated, (G4) infected-infected–L-arginine-treated, (G5) infected–Aminoguanidine-treated, and (G6) infected–7-Nitroindazole-treated. On the seventh day post-infection, the study groups underwent parasitological (adult worm count), histopathological, immunohistochemical, and biochemical assessments. Our results showed that (nNOS) predominance during the enteral phase of trichinosis enhanced parasitic clearance. Conversely, NO produced by iNOS was not essential for worm expulsion but contributed to T. spiralis-mediated enteropathy. Nitric oxide seems to play a puzzling role in T. spiralis infection. While (iNOS) is known for eliminating numerous infections, this is the first example we are aware of where the activity of the neuronal isoform (nNOS) is required in trichinosis.
Full article

Figure 1
Open AccessArticle
Analysis of Acute Leukemia-Associated Hemophagocytic Lymphohistiocytosis in Adults: A Single-Center Experience
by
Wen-Jing Yu, Ying Wu, Wen-Bing Duan, Qi Chen, Xu-Ying Pei, Jin-Song Jia, Jing Wang, Xiao-Lu Zhu, Xiao-Su Zhao, Xiao-Jun Huang and Hao Jiang
Immuno 2025, 5(4), 58; https://doi.org/10.3390/immuno5040058 - 26 Nov 2025
Abstract
►▼
Show Figures
The clinical features and outcomes of adult acute leukemia (AL)-associated hemophagocytic lymphohistiocytosis (AL-HLH) remain insufficiently characterized. We retrospectively analyzed 45 adult patients diagnosed with AL-HLH between December 2019 and June 2023. Among 746 AL patients, 45 developed HLH, with 40 developing acute myeloid
[...] Read more.
The clinical features and outcomes of adult acute leukemia (AL)-associated hemophagocytic lymphohistiocytosis (AL-HLH) remain insufficiently characterized. We retrospectively analyzed 45 adult patients diagnosed with AL-HLH between December 2019 and June 2023. Among 746 AL patients, 45 developed HLH, with 40 developing acute myeloid leukemia (AML), 4 developing acute lymphoblastic leukemia (ALL), and 1 developing mixed-phenotype acute leukemia (MPAL). According to the ELN 2022 criteria, 16 (35.6%) had favorable, 3 (6.7%) had interediate, and 26 (57.7%) had poor risk. At the time of HLH onset, seven (15.6%) patients were in composite complete remission (CCR), and 38 (84.4%) were in non-CCR states; 25 (55.6%) patients were newly diagnosed before induction chemotherapy. The HLH-94/04-based regimens (etoposide and dexamethasone) with or without ruxolitinib achieved an ORR (overall remission rate) of 82.2% and a CR rate of 66.7%. After anti-leukemic therapy, 60% (27/45) of patients achieved CCR for leukemia (including patients in CCR at HLH onset and those achieving CCR after treatment). Hematopoietic stem cell transplantation (HSCT) independently predicted sustained remission. The estimated overall rates at 6 and 12 months after HLH diagnosis were 73.1% and 59.2%, respectively. Multivariate Cox analysis identified failure to achieve CCR for leukemia as the only independent adverse prognostic factor. AL-HLH is an uncommon but severe complication that predominantly occurs in AML patients with poor-risk cytogenetics or active disease. Early recognition, effective HLH control, and achievement of CCR in AL are crucial for improving patient prognosis.
Full article

Figure 1
Open AccessReview
Immune Responses to Filarial Nematodes: A Mechanistic Evaluation of Evasion and Modulation Strategies
by
Tripti Singh, Shivani Sharma, Animesh Tripathi, Sunil Kumar and Anchal Singh
Immuno 2025, 5(4), 57; https://doi.org/10.3390/immuno5040057 - 26 Nov 2025
Abstract
►▼
Show Figures
Filarial parasites are long-lived organisms that cause extreme morbidity due to pathological manifestations, including lymphedema, hydrocele, and elephantiasis. Understanding the hosts’ immune responses to filarial parasites is crucial to developing new and effective anti-filarial treatments. The review thoroughly examines and summarises immunological modulation,
[...] Read more.
Filarial parasites are long-lived organisms that cause extreme morbidity due to pathological manifestations, including lymphedema, hydrocele, and elephantiasis. Understanding the hosts’ immune responses to filarial parasites is crucial to developing new and effective anti-filarial treatments. The review thoroughly examines and summarises immunological modulation, evasion strategies, and filarial–host immune interactions to provide an updated knowledge of the immune evasion manoeuvres used by filarial parasites. An extensive literature search was conducted using databases such as PubMed, Google Scholar, ScienceDirect, Web of Science, and Scopus to identify articles published mostly between 2000 and 2025 that focus on the crucial molecular, cellular, and immunomodulatory strategies of filarial parasites. The immune evasion mechanisms include the modulation of effector T cells, induction of apoptosis in immune cells, the release of immunomodulatory proteins, and the induction of regulatory immune cell populations, thereby ensuring the mutual survival of both the parasite and the host. An antigen-specific T helper 2 (Th2) response and an increase in Interleukin-10 (IL-10) producing CD4+ T cells, along with a suppressed T helper 1 (Th1) response, are the key immunological characteristics of filarial pathogenesis. This antigen-specific T-cell hyporesponsiveness seems necessary for keeping the long-term infection going, which often involves large parasite densities. This review summarises filarial parasites’ mechanisms and strategies in regulating host immune responses and will facilitate future studies on the filarial pathogenesis, leading to the development of novel anti-filarial therapeutics.
Full article

Figure 1
Open AccessArticle
Immunophenotypic Characterization of LAMP-1 on Cytotoxic T Cells in Systemic Lupus Erythematosus Patients and Its Correlation with Disease Activity
by
Asmaa K. K. AbdelMaogood, Marwa G. Tawfik, Sally Khattab, Heba A. Attea, Hidi A. A. Abdellatif, Nora Hosny and Aya Mohamed Askar
Immuno 2025, 5(4), 56; https://doi.org/10.3390/immuno5040056 - 14 Nov 2025
Abstract
Background: Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease in which cytotoxic T cells contribute to tissue damage through dysregulated effector pathways. CD107a (LAMP-1) serves as a functional marker of CD8+ T-cell degranulation and may reflect disease-related alterations in cytotoxicity. Objective:
[...] Read more.
Background: Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease in which cytotoxic T cells contribute to tissue damage through dysregulated effector pathways. CD107a (LAMP-1) serves as a functional marker of CD8+ T-cell degranulation and may reflect disease-related alterations in cytotoxicity. Objective: To investigate the expression of CD107a on cytotoxic T cells in SLE patients and evaluate its relationship with disease activity and immunological features. Methods: Demographic, hematological, and immunological profiles of SLE patients and controls were compared. Flow cytometry was used to evaluate CD3+, CD3+CD8+, CD4+, double-negative T cells, and CD107a+CD8+ subsets. Correlations with disease activity and diagnostic performance were assessed. Results: SLE patients showed anemia, thrombocytopenia, and lymphopenia compared with controls. Immunophenotyping revealed significantly elevated CD3+CD8+, CD107a+CD8+ T cells in SLE, and reduced CD4+ counts. While CD107a+CD8+ levels were strongly elevated, they did not correlate with disease activity scores, suggesting persistent upregulation of CD107a expression independent of clinical severity. ROC curve analysis indicated that CD3+ and CD3+CD8+ subsets had diagnostic utility, while double-negative T cells showed additional value. Conclusion: SLE is associated with increased CD107a+CD8+ T cells, reflecting heightened basal expression of this degranulation marker regardless of disease activity level. These findings underscore the role of altered cytotoxic T-cell function in SLE immunopathogenesis and support CD107a as a potential biomarker of immune dysregulation.
Full article
(This article belongs to the Section Autoimmunity and Immunoregulation)
►▼
Show Figures

Figure 1
Open AccessArticle
Assessment of Kir Genes in the Venezuelan Ad-Mixed Population with Either Idiopathic Recurrent Pregnancy Loss or Unexplained Infertility
by
Jenny Valentina Garmendia, Isaac Blanca and Juan Bautista De Sanctis
Immuno 2025, 5(4), 55; https://doi.org/10.3390/immuno5040055 - 13 Nov 2025
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) play a crucial role in the cytotoxic activity of natural killer (NK) cells, encompassing both inhibitory and activating types. A higher ratio of cytotoxic to inhibitory receptors may harm successful pregnancies by disrupting the uterine environment. Ongoing debates surround
[...] Read more.
Killer-cell immunoglobulin-like receptors (KIRs) play a crucial role in the cytotoxic activity of natural killer (NK) cells, encompassing both inhibitory and activating types. A higher ratio of cytotoxic to inhibitory receptors may harm successful pregnancies by disrupting the uterine environment. Ongoing debates surround the impact of KIR gene variations on recurrent pregnancy loss (RPL) and infertility across populations. This study aimed to explore KIR gene polymorphisms in RPL and infertility among the Venezuelan admixed population. The Venezuelan population exhibits a genetic mix of Caucasian, African, and local Amerindian ancestry, distinguishing it from other Latin American admixed populations. This study included 100 controls and 86 patients: 73 women with idiopathic RPL (53 primary and 20 secondary) and 13 infertile patients (4 primary and 9 secondary). The frequency of activating receptors KIR2DS2 and KIR2DS3 was significantly lower (p < 0.05) in the whole patient group compared to controls. However, when analyzing the haplotypes and genotypes, the significance between patients and controls was lost. When comparing RPL and infertile patients, KIR2DS2, KIR2DL3, 2DL5, and 3DL1 were significantly less frequent in infertile women. In infertile women, KIR2DS3 frequency was increased compared to controls and RPL. The results suggest that the frequency of inhibitory receptors may differentiate patients with RPL and infertility. Further studies should ascertain the expression and function of KIRs in uterine NK cells in patients with RPL and infertility.
Full article
(This article belongs to the Section Reproductive Immunology)
Open AccessArticle
Intrauterine Autologous PBMC Therapy: Effects on Endometrial Immunity and IVF Success in Repeated Implantation Failure
by
Rumiana Ganeva, Dimitar Parvanov, Margarita Ruseva, Maria Handzhiyska, Jinahn Safir, Lachezar Jelezarsky, Teodora Tihomirova, Dimitar Metodiev, Georgi Stamenov and Savina Hadjidekova
Immuno 2025, 5(4), 54; https://doi.org/10.3390/immuno5040054 - 13 Nov 2025
Abstract
►▼
Show Figures
Nearly 10% of IVF patients experience repeated implantation failure (RIF). Although several meta-analyses report improved outcomes following peripheral blood mononuclear cell (PBMC) administration, the uterine mechanisms remain poorly understood. We first analyzed PBMC composition and cytokine secretion in a preliminary cohort (n
[...] Read more.
Nearly 10% of IVF patients experience repeated implantation failure (RIF). Although several meta-analyses report improved outcomes following peripheral blood mononuclear cell (PBMC) administration, the uterine mechanisms remain poorly understood. We first analyzed PBMC composition and cytokine secretion in a preliminary cohort (n = 18), followed by endometrial immune profiling in a larger cohort (n = 70) before and after PBMC treatment. Embryo transfer was performed in 41 women, enabling the assessment of associations between immune profiles and implantation success. Successful implantation occurred in 16 of 41 embryo transfers (39%). PBMCs were predominantly composed of lymphocytes (60.7%), with T helper cells as the predominant T cell subset (Th/cytT ratio 1.44). Cytokine assays confirmed secretion of TNF-α, IL-6, IL-4, and IL-10. C-reactive protein levels remained below the threshold for systemic inflammation and were unaffected by PBMC administration. In the full cohort, PBMC infusion significantly enriched stromal macrophages and T helper cells, reflected by higher Th/T, Th/MΦ, and Th/cytotoxic T cell ratios and a reduced cytotoxic T/T cell ratio (all p ≤ 0.001). Importantly, women with successful implantation exhibited a significantly higher macrophage/T cell ratio (1.15 vs. 0.74; p = 0.024). These findings suggest that PBMC administration reshapes the endometrial immune landscape and that the macrophage/T cell ratio may serve as a promising biomarker of treatment efficacy.
Full article

Figure 1
Open AccessReview
Intersectionality of Autoimmunity and Social–Emotional Dysregulation Among Children: The Case of Celiac Disease
by
Sana Amreen, Fakeha Masood, Glenda Rosas Zuniga, Saloni Parkar and Yossef Alnasser
Immuno 2025, 5(4), 53; https://doi.org/10.3390/immuno5040053 - 13 Nov 2025
Abstract
►▼
Show Figures
Celiac disease (CD) is a chronic autoimmune condition traditionally recognized for its gastrointestinal symptoms. However, growing evidence indicates that CD can also affect social and emotional health, particularly among children. This narrative review explores how the autoimmunity of CD may contribute to social–emotional
[...] Read more.
Celiac disease (CD) is a chronic autoimmune condition traditionally recognized for its gastrointestinal symptoms. However, growing evidence indicates that CD can also affect social and emotional health, particularly among children. This narrative review explores how the autoimmunity of CD may contribute to social–emotional dysregulation through mechanisms such as neuroinflammation, nutrient deficiencies, and disruption of the gut–brain axis. It summarizes the current literature on anxiety, attention-deficit/hyperactivity disorder (ADHD), oppositional defiant disorder (ODD), and autism spectrum disorder (ASD), highlighting how immune dysregulation may influence children’s social–emotional wellbeing. Delayed diagnosis, poor dietary adherence, and ongoing inflammation were recognized among children with social–emotional dysregulation. While digestive problems are commonly recognized and treated, social–emotional dysregulation among children with CD is frequently overlooked. However, a gluten-free diet without a confirmed diagnosis of CD is not sufficient to improve social–emotional outcomes. Children presenting with social–emotional dysregulation and clinical features suggestive of CD should be screened using standard serology and, when indicated, biopsy. Starting a gluten-free diet (GFD) without a confirmed diagnosis is not recommended. While mechanistic pathways are described, most evidence remains observational and clinically descriptive, underscoring the need for longitudinal and experimental studies to understand the intersectionality of CD with social–emotional dysregulation.
Full article

Figure 1
Open AccessReview
Micro- and Nanoplastics and the Immune System: Mechanistic Insights and Future Directions
by
Jeffrey Fan and Yang Ha
Immuno 2025, 5(4), 52; https://doi.org/10.3390/immuno5040052 - 28 Oct 2025
Abstract
►▼
Show Figures
Micro- and nanoplastics (MNPs) are emerging environmental immunotoxins with widespread human exposure through ingestion, inhalation, and dermal contact. Detected in the placenta, lungs, blood, bone marrow, and brain, MNPs accumulate in immune organs where they disrupt innate and adaptive cell functions. This review
[...] Read more.
Micro- and nanoplastics (MNPs) are emerging environmental immunotoxins with widespread human exposure through ingestion, inhalation, and dermal contact. Detected in the placenta, lungs, blood, bone marrow, and brain, MNPs accumulate in immune organs where they disrupt innate and adaptive cell functions. This review aims to provide a comprehensive summary of the current knowledge on how MNPs affect the immune system at the cellular and molecular levels. Experimental evidence shows that MNPs impair macrophage phagocytosis, skew dendritic cell maturation, trigger neutrophil extracellular traps, and alter T and B cell responses. Mechanistically, these effects are driven by oxidative stress, mitochondrial dysfunction, and activation of key inflammatory signaling pathways, including NF-κB, MAPK, and NLRP3 inflammasome, leading to apoptosis, pyroptosis, and chronic low-grade inflammation. Furthermore, MNP-induced disruption of epithelial barriers and gut microbiota composition undermines immune tolerance and contributes to the pathogenesis of autoimmune conditions. Preclinical models provide evidence linking MNP exposure to exacerbation of diseases such as systemic lupus erythematosus, inflammatory bowel disease, and rheumatoid arthritis. However, human epidemiological data remain limited, highlighting the urgent need for standardized exposure protocols, advanced omics technologies, and longitudinal cohort studies are urgently needed to establish causal links and inform public health strategies.
Full article

Figure 1
Open AccessArticle
IFN-τ Modulates PBMC Cytokine Profile and T Cell Phenotype to Improve Endometrial Immune Composition in the Implantation Window: A Combined In Vitro and In Vivo Study
by
Margarita Ruseva, Dimitar Parvanov, Rumiana Ganeva, Maria Handzhiyska, Jinahn Safir, Dimitar Metodiev, Georgi Stamenov and Savina Hadjidekova
Immuno 2025, 5(4), 51; https://doi.org/10.3390/immuno5040051 - 24 Oct 2025
Abstract
Embryo implantation requires a finely tuned immune balance at the maternal–fetal interface. Interferon tau (IFN-τ), a key immunomodulator in ruminant implantation, may have therapeutic potential in human reproduction. This study investigated its effects on peripheral blood mononuclear cells (PBMCs) in vitro and the
[...] Read more.
Embryo implantation requires a finely tuned immune balance at the maternal–fetal interface. Interferon tau (IFN-τ), a key immunomodulator in ruminant implantation, may have therapeutic potential in human reproduction. This study investigated its effects on peripheral blood mononuclear cells (PBMCs) in vitro and the subsequent impact on endometrial immune composition following intrauterine administration of these cells. The work was conducted in two stages. First, in vitro assays were performed with PBMCs from 20 patients with recurrent implantation failure (RIF) cultured with or without IFN-τ for 24 h. Cytokines (IL-10, IL-4, TNF-α, IL-6) were measured by ELISA, and T cell subsets (Th, cytT, Th1, Th2, Th9, Tfh, Th17, Treg) were analyzed by flow cytometry. IFN-τ increased IL-4 and reduced TNF-α and IL-6, indicating a Th2 profile shift. T-cell analysis revealed fewer cytT, Th1, Th9, and Th17 cells, more Th2 cells, and improved Th/Tk, Th1/Th2, and Th17/Treg ratios after IFN-τ. A second clinical study included 55 RIF patients who received intrauterine IFN-τ-modulated PBMCs. Post-treatment endometrial biopsies revealed more helper T cells and macrophages, with higher Th/total T, Th/cytT, and Th/macrophage ratios, suggesting a tolerogenic environment. Overall, IFN-τ modulates PBMCs in vitro and promotes a favorable endometrial immune profile in vivo, highlighting its potential as an immunotherapy in assisted reproduction.
Full article
(This article belongs to the Special Issue The Role of Cytokines and Autoantibodies Against Cytokines in Health and Disease)
►▼
Show Figures

Figure 1
Open AccessArticle
Immunomodulatory Effects of Epilobium angustifolium Extract in DSS-Induced Colitis: Attenuation of Inflammatory and Metabolic Markers in Mice
by
Rositsa Mihaylova, Viktoria Elincheva, Reneta Gevrenova, Dimitrina Zheleva-Dimitrova, Georgi Momekov and Rumyana Simeonova
Immuno 2025, 5(4), 50; https://doi.org/10.3390/immuno5040050 - 19 Oct 2025
Abstract
The inflammatory and metabolic complexity of colitis necessitates therapies that act on multiple immune pathways. Using serum proteomic profiling, the present study evaluated the systemic immunomodulatory profile of Epilobium angustifolium lyophilized methanol-aqueous extract rich in oenothein B (EAE) in a dextran sulfate sodium
[...] Read more.
The inflammatory and metabolic complexity of colitis necessitates therapies that act on multiple immune pathways. Using serum proteomic profiling, the present study evaluated the systemic immunomodulatory profile of Epilobium angustifolium lyophilized methanol-aqueous extract rich in oenothein B (EAE) in a dextran sulfate sodium (DSS)-induced mouse model of ulcerative colitis in a comparative manner to dexamethasone (DXM). DSS exposure triggered robust inflammatory activation, evidenced by elevated chemokines (CXCL9, CXCL10, CCL11), proinflammatory cytokines (IL-1α, IL-12, PAI-1, RAGE) and metabolic stress mediators (leptin, resistin, FGF-21). Treatment with EAE significantly attenuated this inflammatory profile, notably reducing Th2-skewed chemokines and eosinophil recruitment. In contrast to DXM, EAE uniquely normalized pro-thrombotic and tissue-remodeling markers, including PAI-1 and RAGE, both implicated in intestinal barrier dysfunction and chronic inflammation. Furthermore, EAE demonstrated superior modulation of inflammation-associated growth factors (IGFBP-5, HGF, Flt3L) and adipokines (leptin, resistin), indicating a broader therapeutic scope that includes metabolic dysfunctions. Collectively, our data reveal that EAE exerts a distinct immunoregulatory profile, modulating both innate and adaptive immune pathways while simultaneously addressing metabolic pathologies. These multifaceted actions underscore its promise as a phytotherapeutic candidate for the management of ulcerative colitis and other inflammatory conditions, with potential advantages over conventional steroid treatment.
Full article
(This article belongs to the Special Issue Young Scholars’ Developments in Immunology)
►▼
Show Figures

Graphical abstract
Open AccessArticle
PD-1 Expression in Endometriosis
by
José Lourenço Reis, Catarina Martins, Miguel Ângelo-Dias, Natacha Nurdine Rosa, Luís Miguel Borrego and Jorge Lima
Immuno 2025, 5(4), 49; https://doi.org/10.3390/immuno5040049 - 17 Oct 2025
Abstract
Background: Endometriosis, believed by many to be rooted in immunology, is a chronic disease. Upregulation of programmed cell death protein 1 (PD-1) in immune cells may compromise their defensive function, a mechanism demonstrated in the context of cancer spread. This study aims to
[...] Read more.
Background: Endometriosis, believed by many to be rooted in immunology, is a chronic disease. Upregulation of programmed cell death protein 1 (PD-1) in immune cells may compromise their defensive function, a mechanism demonstrated in the context of cancer spread. This study aims to explore the potential involvement of PD-1 in the pathophysiology and progression of endometriosis. A total of 62 patients who underwent laparoscopic surgery were analyzed, with 47 diagnosed with endometriosis and 15 serving as controls. We collected peritoneal fluid and peripheral blood samples during surgery and examined them using flow cytometry. Using a panel of monoclonal antibodies, the samples were stained and the expression of PD-1 in immune cells was evaluated. Results: We observed a statistically significant rise in the percentage of the CD56+ CD16+ NK cell subset expressing PD-1 within the peritoneal fluid of endometriosis patients compared to the control group (p = 0.021). Similarly, we found that PD-1 expression on immune cells significantly differed based on factors such as body mass index and smoking habits. Moreover, peritoneal subsets of PD-1+ T and NK cells showed an increase in patients presenting symptomatic endometriosis and those with more widespread disease. Conclusions: Our evaluation of the inhibitory PD-1 receptor has strengthened the potential connection between immune escape mechanisms often seen in cancer cells and those in endometriotic cells. This concept could pave the way for future research in the field of immunomodulation and endometriosis.
Full article
(This article belongs to the Section Reproductive Immunology)
►▼
Show Figures

Figure 1
Open AccessReview
From Incision to Immunity: Integrating Surgery and Immunotherapy in Non-Small Cell Lung Cancer
by
Michael J. Janes, Aidan A. Schmidt, Garret A. Krieg, Amitoj S. Chouhan, Mark R. Wakefield and Yujiang Fang
Immuno 2025, 5(4), 48; https://doi.org/10.3390/immuno5040048 - 14 Oct 2025
Abstract
►▼
Show Figures
Lung cancer is the most common cause of death due to cancer in the world, and non-small cell lung cancer (NSCLC) is the most common form of lung cancer, representing approximately 84% of all cases. Due to its frequency and mortality, the amount
[...] Read more.
Lung cancer is the most common cause of death due to cancer in the world, and non-small cell lung cancer (NSCLC) is the most common form of lung cancer, representing approximately 84% of all cases. Due to its frequency and mortality, the amount of research on this subject has been greatly increased and new techniques to improve health outcomes have been established. While surgery remains the gold standard of treatment, immunotherapy used alone or in conjunction with surgery shows promising results. This review aims to give an overview of current and new surgical and immunotherapy methods used for the treatment of NSCLC, as well as ways in which they can be combined and the clinical outcomes for patients with each treatment modality. Additionally, it will seek to highlight any gaps in current knowledge of treatment and propose further studies to improve the efficacy of NSCLC treatments.
Full article

Figure 1
Open AccessArticle
Hydrogen Peroxide and Neutrophil Chemotaxis in a Mouse Model of Bacterial Infection
by
Hassan O. J. Morad, Larissa Garcia-Pinto, Georgia Clayton, Foad Davoodbeglou, Arturo Monzon and Peter A. McNaughton
Immuno 2025, 5(4), 47; https://doi.org/10.3390/immuno5040047 - 8 Oct 2025
Abstract
Neutrophils are an essential protective component of the innate immune system. However, in severe bacterial infections, neutrophils are known to mis-localise from the primary site of infection to other organs, where excessive release of cytokines, chemokines, and neutrophil extracellular traps (NETs) can induce
[...] Read more.
Neutrophils are an essential protective component of the innate immune system. However, in severe bacterial infections, neutrophils are known to mis-localise from the primary site of infection to other organs, where excessive release of cytokines, chemokines, and neutrophil extracellular traps (NETs) can induce organ damage and death. In this study, we use an animal model of bacterial infection originating in the peritoneum to show that hydrogen peroxide (H2O2, a potent neutrophil chemoattractant) is initially released in high concentrations both in the peritoneum and in multiple ‘off-target’ organs (lungs, liver and kidneys). The initial high H2O2 release inhibits neutrophil chemotaxis, but after 24 h concentrations of H2O2 reduce and can promote neutrophil migration to organs, where they release pro-inflammatory cytokines and chemokines along with NETs. The antimalarial compound artesunate potently inhibits neutrophil migration to off-target organs. It also abolishes cytokine, chemokine, and NET production, suggesting that artesunate may be a valuable novel therapy for preventing off-target organ inflammation associated with severe bacterial infections. Finally, the potency of H2O2 as a chemoattractant is shown by in vitro experiments in which, faced with competing gradients of H2O2 and other chemoattractants, neutrophils preferentially migrate towards H2O2.
Full article
(This article belongs to the Section Innate Immunity and Inflammation)
►▼
Show Figures

Figure 1
Open AccessReview
Role of Interferon-Gamma (IFN-γ) in Pathophysiology and Management of Deep Vein Thrombosis
by
Kawaljit Kaur
Immuno 2025, 5(4), 46; https://doi.org/10.3390/immuno5040046 - 4 Oct 2025
Abstract
►▼
Show Figures
Immune cells like neutrophils, monocytes/macrophages, and lymphocytes play key roles in the development, progression, and resolution of deep vein thrombosis (DVT) by contributing to inflammation, coagulation, and fibrinolysis. IFN-γ, a cytokine mainly secreted by natural killer (NK) and T cells, is a critical
[...] Read more.
Immune cells like neutrophils, monocytes/macrophages, and lymphocytes play key roles in the development, progression, and resolution of deep vein thrombosis (DVT) by contributing to inflammation, coagulation, and fibrinolysis. IFN-γ, a cytokine mainly secreted by natural killer (NK) and T cells, is a critical factor in DVT pathogenesis. It links immune responses to coagulation activation by promoting endothelial activation, leukocyte recruitment, cytokine release, and coagulation imbalance. Its strong pro-inflammatory and prothrombotic effects make IFN-γ a promising target for DVT treatment beyond standard anticoagulants. Exploring ways to block IFN-γ signaling or its downstream effects could open doors to novel therapies for DVT, aiding in resolution and preventing post-thrombotic complications. This review delves into DVT pathophysiology, diagnostics, and management, emphasizing the importance of targeting immune cells and IFN-γ to advance treatment options.
Full article

Figure 1
Open AccessFeature PaperReview
The Neuro-Immune Axis in Cardiomyopathy: Molecular Mechanisms, Clinical Phenotypes, and Therapeutic Frontiers
by
Dwaipayan Saha, Preyangsee Dutta and Abhijit Chakraborty
Immuno 2025, 5(4), 45; https://doi.org/10.3390/immuno5040045 - 3 Oct 2025
Abstract
►▼
Show Figures
Cardiomyopathies affect over 3 million individuals globally, with conventional treatments exhibiting up to 60% resistance and 25% 30-day readmission rates. This review synthesizes the current evidence on the role of neuro-immune interactions in the pathogenesis of cardiomyopathy and evaluates emerging therapies targeting this
[...] Read more.
Cardiomyopathies affect over 3 million individuals globally, with conventional treatments exhibiting up to 60% resistance and 25% 30-day readmission rates. This review synthesizes the current evidence on the role of neuro-immune interactions in the pathogenesis of cardiomyopathy and evaluates emerging therapies targeting this axis. We systematically examined clinical trials and mechanistic and multi-omics data across cardiomyopathy phenotypes, focusing on autonomic-immune dysregulation. Sympathetic overactivation, present in approximately 85% of patients, correlates with elevated pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and contributes significantly to therapeutic non-response. Concurrent parasympathetic withdrawal impairs cholinergic anti-inflammatory pathways, as reflected by reduced heart rate variability and baroreflex sensitivity. At the molecular level, shared mechanisms include inflammasome activation, neuroimmune synaptic signaling, and neurogenic inflammation. Emerging therapies targeting this axis are promising. Vagus nerve stimulation, as demonstrated in the INOVATE-HF trial, improves functional outcomes, whereas IL-1β antagonists reduce cardiovascular events by 15–20% in the context of inflammatory diseases. Bioelectronic interventions, such as transcutaneous vagal nerve stimulation and baroreflex activation therapy, offer noninvasive dual-modulatory strategies that address both neural and immune pathways, positioning the neuroimmune axis as a central driver of cardiomyopathy, regardless of etiology. The integration of genetic and metabolomic profiling may enable precision therapies targeting neuroimmune circuits, thereby overcoming the limitations of hemodynamic-focused care. This mechanistic framework shifts the therapeutic paradigm from symptomatic relief to targeted modulation of pathogenic pathways, with implications for millions of patients with cardiomyopathy and broader inflammatory cardiovascular disorders.
Full article

Figure 1
Open AccessReview
Cold and Cholinergic Urticaria: Predictors of Anaphylaxis and Therapeutic Approaches—What We Know and What We Do Not Know?
by
Natalia P. Maltseva, Ksenja A. Riabova and Yury V. Zhernov
Immuno 2025, 5(4), 44; https://doi.org/10.3390/immuno5040044 - 23 Sep 2025
Abstract
►▼
Show Figures
Inducible forms of chronic urticaria are characterized by an early age of onset and a long duration of disease. In addition, cold and cholinergic urticaria have a risk of developing systemic, sometimes life-threatening, reactions. Determining the pathogenetic mechanisms and laboratory and clinical predictors
[...] Read more.
Inducible forms of chronic urticaria are characterized by an early age of onset and a long duration of disease. In addition, cold and cholinergic urticaria have a risk of developing systemic, sometimes life-threatening, reactions. Determining the pathogenetic mechanisms and laboratory and clinical predictors of their development is an open question in the understanding of these diseases. This literature review demonstrates the current known facts that allow the identification of patients with cold and cholinergic urticaria in high-risk groups of anaphylaxis development and, therefore, the possibility to prevent emergency situations and to manage them in time. For cold and cholinergic urticaria, observations of Kounis syndrome–acute coronary syndrome (myocardial infarction or unstable angina) have been described. A series of trials, including the large international multicenter COLD-CE study of anaphylaxis in cold urticaria, have identified early age of urticaria onset, severe clinical symptoms, shortening of the critical temperature threshold, comorbid bronchial asthma, concomitant angioedema, and pruritus of the earlobes as warning signs. No such large-scale studies have been conducted for cholinergic urticaria. Among the few high-risk factors for systemic reactions in cholinergic urticaria described in the literature is the occurrence of angioedema. Thus, it is possible to identify some patients in the high-risk group already at the stage of initial anamnesis collection, and additional data can be collected during the examination. Laboratory biomarkers, clinical predictors, understanding the mechanisms of anaphylaxis by physical triggers or their consequences, and optimal options for pathogenetic therapy are still unresolved issues that require further research. The aim of this review is to provide a content analysis of current knowledge about chronic inducible urticarias in order to increase clinicians’ awareness and, consequently, reduce the risk of urgent conditions associated with them.
Full article

Figure 1
Open AccessArticle
The Role of CD68+ Cells in Bronchoalveolar Lavage Fluid for the Diagnosis of Respiratory Diseases
by
Igor D. Zlotnikov, Natalia I. Kolganova, Shamil A. Gitinov, Dmitry Y. Ovsyannikov and Elena V. Kudryashova
Immuno 2025, 5(3), 43; https://doi.org/10.3390/immuno5030043 - 22 Sep 2025
Abstract
►▼
Show Figures
Addressing the critical challenge in the differential diagnosis of severe inflammatory lung diseases, we propose a novel methodology for the analysis of macrophage surface receptors, CD68 and CD206, using specific non-antibody ligands. We developed a non-antibody alternative for the fluorometric detection of CD68+
[...] Read more.
Addressing the critical challenge in the differential diagnosis of severe inflammatory lung diseases, we propose a novel methodology for the analysis of macrophage surface receptors, CD68 and CD206, using specific non-antibody ligands. We developed a non-antibody alternative for the fluorometric detection of CD68+ cells, focusing on macrophages as key functional markers in inflammatory processes. Our marker based on dioleylphosphatidylserine (DOPS), a specific ligand to CD68, was incorporated into a liposomal delivery system. The specificity of this DOPS-based ligand can be precisely modulated by the liposome’s composition and the polyvalent presentation of the ligand. We synthesized a series of fluorescently-labeled DOPS-based ligands and developed a liposome-based sandwich fluorometric assay. This assay enables the isolation and quantification of CD68 receptor presence from bronchoalveolar lavage fluid (BALF). The results confirmed the specific binding of DOPS/lecithin liposomes to CD68+ cells compared to control lecithin systems. Furthermore, the incorporation of PEGylated ‘stealth’ liposomes significantly enhanced binding specificity and facilitated the generation of distinct binding profiles, which proved valuable in differentiating various inflammatory conditions. This approach yielded unique binding profiles of PS-based ligands to CD68+ cells, which varied significantly among a broad range of respiratory conditions, including primary ciliary dyskinesia, bronchial asthma, bronchitis, bacterial infection, pneumonia, and bronchiectasis. Confocal Laser Scanning Microscopy demonstrated selective binding and intracellular localization of the DOPS-based marker within CD68+ macrophages from BALF samples of patients with bronchitis or asthma. The binding parameters of this multivalent composite ligand with the CD68 receptor are comparable to those of antibodies. The inherent binding specificity of phosphatidylserine may offer a sufficient and viable alternative to conventional antibodies. Our results demonstrate the remarkable potential of this novel DOPS-based assay as a complementary tool for the developing non-antibody-based systems for the differential diagnosis of the respiratory diseases, warranting further investigation in larger clinical studies.
Full article

Figure 1
Open AccessArticle
Myostatin Regulates Inflammatory Cytokine and Chemokine Expression, Rheumatoid Arthritis Synovial Fibroblast Invasion, and CD4+ Th Cell Transmigration
by
Samudra Lansakara, Janis Weis, Chathura Siriwardhana and Yongsoo Kim
Immuno 2025, 5(3), 42; https://doi.org/10.3390/immuno5030042 - 19 Sep 2025
Abstract
Rheumatoid arthritis synovial fibroblasts (RASFs) play a pivotal role in joint destruction in RA. Myostatin (MSTN), a myokine, is highly expressed in the RA synovium; however, its role in the function of RASFs is unclear. We hypothesized that MSTN amplifies inflammatory cytokines/chemokines, promotes
[...] Read more.
Rheumatoid arthritis synovial fibroblasts (RASFs) play a pivotal role in joint destruction in RA. Myostatin (MSTN), a myokine, is highly expressed in the RA synovium; however, its role in the function of RASFs is unclear. We hypothesized that MSTN amplifies inflammatory cytokines/chemokines, promotes RASF invasion, and facilitates CD4+ Th cell transmigration. Immortalized MH7A cells (RASFs) and healthy synovial fibroblasts (HSFs) were treated with MSTN (0, 10, 20 ng/mL) for 0, 24, and 48 h. Cytokines (IL-8, IL-17, TNF-α, IL-6, IL-23, IFN-γ, IFN-β) and chemokines (CCL2, CCL20, CXCL13, CXCL1) were quantified by ELISA, RT-qPCR, and Western blotting. To evaluate MSTN regulation, cells were treated with pro-inflammatory mediators (TNF-α, IL-17, IFN-γ, IFN-β, CCL2, CXCL1). MSTN’s effects on Thy-1(CD90)+ RASF/HSF proliferation, RASF invasion, and CD4+ T-cell transmigration were assessed. Compared with HSFs, RASFs exhibited greater proliferative activity. MSTN significantly upregulated cytokines/chemokines, with CXCL1 showing the strongest induction in RASFs. IFN-γ and IL-17 robustly increased MSTN expression, indicating a feed-forward loop. MSTN did not alter Thy-1(CD90)+ fibroblast proliferation but significantly enhanced RASF invasion and CD4+ T-cell transmigration. Neutralizing CXCL1 or IL-17 reduced transmigration, with stronger inhibition via CXCL1. These findings offer new insights into the role of MSTN in RA pathogenesis and highlight its potential as a therapeutic target.
Full article
(This article belongs to the Special Issue The Role of Cytokines and Autoantibodies Against Cytokines in Health and Disease)
►▼
Show Figures

Figure 1
Open AccessReview
A Scoping Review of Clinical, Genetic, and Mechanistic Evidence Linking IL-6/IL-6R Signaling and Type 1 Diabetes Mellitus
by
Ryuichi Ohta, Taichi Fujimori, Chiaki Sano and Kunihiro Ichinose
Immuno 2025, 5(3), 41; https://doi.org/10.3390/immuno5030041 - 19 Sep 2025
Abstract
►▼
Show Figures
Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by immune-mediated β-cell destruction, where interleukin-6 (IL-6) signaling plays a complex and context-dependent role. Tocilizumab, an IL-6 receptor (IL-6R) inhibitor, is effective in several autoimmune conditions, but its influence on the onset and
[...] Read more.
Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by immune-mediated β-cell destruction, where interleukin-6 (IL-6) signaling plays a complex and context-dependent role. Tocilizumab, an IL-6 receptor (IL-6R) inhibitor, is effective in several autoimmune conditions, but its influence on the onset and progression of T1DM remains uncertain. This scoping review aimed to map current clinical, genetic, and mechanistic evidence linking IL-6/IL-6R signaling to T1DM risk and to identify key research gaps. Following PRISMA-ScR guidelines, PubMed, Embase, and Web of Science were searched for studies from 2005 to 2025 reporting associations between tocilizumab or IL-6R modulation and T1DM onset. Six studies were included: one case report describing T1DM onset during tocilizumab therapy in a genetically predisposed patient, one randomized controlled trial showing no significant β-cell preservation with tocilizumab, three Mendelian randomization analyses with conflicting findings on IL-6R signaling, and one mechanistic study showing enhanced IL-6 responsiveness in early-stage T1DM. Collectively, evidence remains fragmented and inconclusive, highlighting research gaps in the differential roles of IL-6 classic versus trans-signaling and the impact of genetic predisposition. Future prospective studies should clarify whether selective IL-6 trans-signaling blockade may offer safer, targeted strategies for modulating autoimmune β-cell destruction.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Cells, Immuno, IJMS, JCM, Allergies, Dermato
Skin Barrier Function and Immune Mediators as Key Therapeutic Targets of Main Inflammatory Diseases
Topic Editors: Marco Manfredini, Carlo PincelliDeadline: 31 August 2026
Topic in
Biomedicines, Cancers, Immuno, IJMS, Biologics
New Advancements in Innate Immunity and Cancer Immunotherapy
Topic Editors: Jeonghyun Ahn, Zhiwei HuDeadline: 30 June 2027
Special Issues
Special Issue in
Immuno
Nano-Pharmacology: Nanotechnology Based Therapeutics for Targeting Neuroinflammation
Guest Editor: Supriya MahajanDeadline: 31 December 2025
Special Issue in
Immuno
The Role of Cytokines and Autoantibodies Against Cytokines in Health and Disease
Guest Editor: Juan Bautista De SanctisDeadline: 20 February 2026
Special Issue in
Immuno
Young Scholars’ Developments in Immunology
Guest Editors: Toshihiko Torigoe, Bashar SaadDeadline: 28 February 2026
Special Issue in
Immuno
New Insights of Anti-cancer Immunity and Cancer Immune Evasion
Guest Editor: Vadim SumbayevDeadline: 31 May 2026
Topical Collections
Topical Collection in
Immuno
Recent Advances in Onco-Rheumatology
Collection Editor: Kosaku Murakami

