The Neuro-Immune Axis in Cardiomyopathy: Molecular Mechanisms, Clinical Phenotypes, and Therapeutic Frontiers
Abstract
1. Introduction
2. Review Methodology
2.1. Search Strategy
- “CARDIOMYOPATHY AND NEUROIMMUNE AXIS” (n = 14)
- “CARDIOMYOPATHY, NEUROIMMUNE AXIS AND AUTONOMIC NERVOUS SYSTEM” (n = 4)
- “CARDIOMYOPATHY, NEUROIMMUNE AXIS, AUTONOMIC NERVOUS SYSTEM AND INFLAMMATION” (n = 4)
- “CARDIOMYOPATHY, NEUROIMMUNE AXIS AND INFLAMMATION” (n = 10)
- “CARDIOMYOPATHY, NEUROIMMUNE AXIS AND HEART FAILURE” (n = 4)
- “CARDIOMYOPATHY AND IMMUNE SYSTEM” (n = 2524)
- “CARDIOMYOPATHY AND VAGUS NERVE” (n = 96)
- “CARDIOMYOPATHY AND HEART RATE VARIABILITY” (n = 851)
- “CARDIOMYOPATHY AND BIOELECTRONIC MEDICINE” (n = 2)
- “CARDIOMYOPATHY, BIOELECTRONIC MEDICINE AND HEART FAILURE” (n = 2)
2.2. Study Selection
2.3. Inclusion Criteria
2.4. Exclusion Criteria
3. Fundamental Mechanisms of the Immuno-Neural Axis in Cardiac Disease
3.1. Autonomic Nervous System Dysregulation and Inflammatory Cascades
3.1.1. Catecholamine-Mediated Inflammatory Activation
3.1.2. Metabolic Reprogramming and Immune Activation
3.2. Parasympathetic Withdrawal and Loss of Anti-Inflammatory Control
3.2.1. Vagal Dysfunction and Cholinergic Anti-Inflammatory Control in Cardiomyopathy Pathophysiology
3.2.2. Baroreflex Dysfunction and Heart Rate Variability
3.3. Central Nervous System Integration and Neuro-Immune Signaling
3.4. Inflammasome Activation and Pyroptosis
4. Clinical Phenotypes and Neuro-Immune Signatures
4.1. Dilated Cardiomyopathy and Chronic Heart Failure
4.2. Hypertrophic Cardiomyopathy and Genetic Neuro-Immune Interactions
4.3. Takotsubo Cardiomyopathy- an Acute Neuro-Immune Crisis
4.4. Arrhythmogenic Cardiomyopathy
4.5. Pediatric and Developmental Cardiomyopathy
4.6. COVID-19 and Post-Viral Neuro-Immune Cardiomyopathy
5. Therapeutic Interventions Targeting the Neuro-Immune Axis
5.1. Conventional Treatments of Cardiomyopathies and Their Limitations
5.2. Beyond Hemodynamics and Neuro-Immune Actions of Traditional Therapies
5.3. Emerging Metabolic-Immune Modulators
5.4. Targeted Anti-Inflammatory Interventions
5.5. Clinical Implications and Future Directions
5.6. Targeted Immunotherapy
5.7. Bioelectronic Medicine: The Future of Heart Healing
5.8. Integrated Therapeutic Approaches–Healing Beyond Medication
5.8.1. Exercise-Based Cardiac Rehabilitation
5.8.2. Psychosocial Interventions and Stress Management
6. Precision Medicine and Future Directions
6.1. Biomarker Development
6.2. Genetic and Molecular Insights into Neuro-Immune Susceptibility
6.3. Sex Based Considerations
6.4. Inflammatory Cardiomyopathy as a Spectrum of Immune and Neural Dysfunction
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- Sapna, F.; Raveena, F.; Chandio, M.; Bai, K.; Sayyar, M.; Varrassi, G.; Khatri, M.; Kumar, S.; Mohamad, T. Advancements in Heart Failure Management: A Comprehensive Narrative Review of Emerging Therapies. Cureus. 2023, 15, e46486. [Google Scholar] [CrossRef] [PubMed]
- Riehle, C.; Abel, E.D. Insulin Signaling and Heart Failure. Circ. Res. 2016, 118, 1151–1169. [Google Scholar] [CrossRef] [PubMed]
- Khosravirad, Z.; Rostamzadeh, M.; Azizi, S.; Khodashenas, M.; Khodadoustan Shahraki, B.; Ghasemi, F.; Ghorbanzadeh, M. The Efficacy of Self-care Behaviors, Educational Interventions, and Follow-up Strategies on Hospital Readmission and Mortality Rates in Patients with Heart Failure. Galen Med. J. 2023, 12, e3116. [Google Scholar] [CrossRef]
- Carnevale, D. Neuroimmune axis of cardiovascular control: Mechanisms and therapeutic implications. Nat. Rev. Cardiol. 2022, 19, 379–394. [Google Scholar] [CrossRef]
- Koc, A.; Cagavi, E. Cardiac Immunology: A New Era for Immune Cells in the Heart. Adv. Exp. Med. Biol. 2021, 1312, 75–95. [Google Scholar] [CrossRef]
- Bahrar, H.; Bekkering, S.; Stienstra, R.; Netea, M.G.; Riksen, N.P. Innate immune memory in cardiometabolic disease. Cardiovasc. Res. 2024, 119, 2774–2786. [Google Scholar] [CrossRef]
- Asatryan, B.; Asimaki, A.; Landstrom, A.P.; Khanji, M.Y.; Odening, K.E.; Cooper, L.T.; Marchlinski, F.E.; Gelzer, A.R.; Semsarian, C.; Reichlin, T.; et al. Inflammation and Immune Response in Arrhythmogenic Cardiomyopathy: State-of-the-Art Review. Circulation 2021, 144, 1646–1655. [Google Scholar] [CrossRef]
- Cohen, C.D.; Rousseau, S.T.; Bermea, K.C.; Bhalodia, A.; Lovell, J.P.; Zita, M.D.; Cihakova, D.; Adamo, L. Myocardial Immune Cells: The Basis of Cardiac Immunology. J. Immunol. 2023, 210, 1198–1207. [Google Scholar] [CrossRef]
- Lymperopoulos, A.; Rengo, G.; Koch, W.J. Adrenergic nervous system in heart failure: Pathophysiology and therapy. Circ. Res. 2013, 113, 739–753. [Google Scholar] [CrossRef]
- Ziegler, K.A.; Engelhardt, S.; Carnevale, D.; McAlpine, C.S.; Guzik, T.J.; Dimmeler, S.; Swirski, F.K. Neural Mechanisms in Cardiovascular Health and Disease. Circ. Res. 2025, 136, 1233–1261. [Google Scholar] [CrossRef]
- Gigli, M.; Stolfo, D.; Merlo, M.; Sinagra, G.; Taylor, M.R.G.; Mestroni, L. Pathophysiology of dilated cardiomyopathy: From mechanisms to precision medicine. Nat. Rev. Cardiol. 2025, 22, 183–198. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Anderson, A.S. The sympathetic nervous system and heart failure. Cardiol. Clin. 2014, 32, 33–45. [Google Scholar] [CrossRef]
- Corbi, G.; Conti, V.; Russomanno, G.; Longobardi, G.; Furgi, G.; Filippelli, A.; Ferrara, N. Adrenergic signaling and oxidative stress: A role for sirtuins? Front. Physiol. 2013, 4, 324. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Vannella, K.M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016, 44, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Bazoukis, G.; Stavrakis, S.; Armoundas, A.A. Vagus Nerve Stimulation and Inflammation in Cardiovascular Disease: A State-of-the-Art Review. J. Am. Heart Assoc. 2023, 12, e030539. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, V.A.; Wang, H.; Czura, C.J.; Friedman, S.G.; Tracey, K.J. The cholinergic anti-inflammatory pathway: A missing link in neuroimmunomodulation. Mol. Med. 2003, 9, 125–134. [Google Scholar] [CrossRef]
- Olivieri, F.; Biscetti, L.; Pimpini, L.; Pelliccioni, G.; Sabbatinelli, J.; Giunta, S. Heart rate variability and autonomic nervous system imbalance: Potential biomarkers and detectable hallmarks of aging and inflammaging. Ageing Res. Rev. 2024, 101, 102521. [Google Scholar] [CrossRef]
- Bellocchi, C.; Carandina, A.; Montinaro, B.; Targetti, E.; Furlan, L.; Rodrigues, G.D.; Tobaldini, E.; Montano, N. The Interplay between Autonomic Nervous System and Inflammation across Systemic Autoimmune Diseases. Int. J. Mol. Sci. 2022, 23. [Google Scholar] [CrossRef]
- Paulus, W.J.; Zile, M.R. From Systemic Inflammation to Myocardial Fibrosis: The Heart Failure With Preserved Ejection Fraction Paradigm Revisited. Circ. Res. 2021, 128, 1451–1467. [Google Scholar] [CrossRef]
- Pongratz, G.; Straub, R.H. The sympathetic nervous response in inflammation. Arthritis Res. Ther. 2014, 16, 504. [Google Scholar] [CrossRef] [PubMed]
- Wróbel-Nowicka, K.; Wojciechowska, C.; Jacheć, W.; Zalewska, M.; Romuk, E. The Role of Oxidative Stress and Inflammatory Parameters in Heart Failure. Medicina 2024, 60, 760. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, E.M. Neural regulation of innate immunity: A coordinated nonspecific host response to pathogens. Nat. Rev. Immunol. 2006, 6, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Huston, J.M.; Tracey, K.J. The pulse of inflammation: Heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J. Intern. Med. 2011, 269, 45–53. [Google Scholar] [CrossRef]
- Wu, Z.; Liao, J.; Liu, Q.; Zhou, S.; Chen, M. Chronic vagus nerve stimulation in patients with heart failure: Challenge or failed translation? Front. Cardiovasc. Med. 2023, 10, 1052471. [Google Scholar] [CrossRef]
- Komegae, E.N.; Farmer, D.G.S.; Brooks, V.L.; McKinley, M.J.; McAllen, R.M.; Martelli, D. Vagal afferent activation suppresses systemic inflammation via the splanchnic anti-inflammatory pathway. Brain Behav. Immun. 2018, 73, 441–449. [Google Scholar] [CrossRef]
- Siepmann, M.; Weidner, K.; Petrowski, K.; Siepmann, T. Heart Rate Variability: A Measure of Cardiovascular Health and Possible Therapeutic Target in Dysautonomic Mental and Neurological Disorders. Appl. Psychophysiol Biofeedback 2022, 47, 273–287. [Google Scholar] [CrossRef]
- Mohanta, S.K.; Yin, C.; Weber, C.; Godinho-Silva, C.; Veiga-Fernandes, H.; Xu, Q.J.; Chang, R.B.; Habenicht, A.J.R. Cardiovascular Brain Circuits. Circ. Res. 2023, 132, 1546–1565. [Google Scholar] [CrossRef]
- Yang, J.; Chen, S.; Duan, F.; Wang, X.; Zhang, X.; Lian, B.; Kou, M.; Chiang, Z.; Li, Z.; Lian, Q. Mitochondrial Cardiomyopathy: Molecular Epidemiology, Diagnosis, Models, and Therapeutic Management. Cells 2022, 11, 3511. [Google Scholar] [CrossRef]
- Paik, S.; Kim, J.K.; Silwal, P.; Sasakawa, C.; Jo, E.K. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol. Immunol. 2021, 18, 1141–1160. [Google Scholar] [CrossRef]
- Lu, L.; Ahmed, F.S.; Akin, O.; Luk, L.; Guo, X.; Yang, H.; Yoon, J.; Hakimi, A.A.; Schwartz, L.H.; Zhao, B. Uncontrolled Confounders May Lead to False or Overvalued Radiomics Signature: A Proof of Concept Using Survival Analysis in a Multicenter Cohort of Kidney Cancer. Front. Oncol. 2021, 11, 638185. [Google Scholar] [CrossRef]
- Ware, J.S.; Cook, S.A. Role of titin in cardiomyopathy: From DNA variants to patient stratification. Nat. Rev. Cardiol. 2018, 15, 241–252. [Google Scholar] [CrossRef]
- Mahmaljy, H.; Yelamanchili, V.S.; Singhal, M. Dilated Cardiomyopathy; StatPearls Publishing: Orlando, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441911/ (accessed on 18 July 2025).
- Yoshikawa, T. Contribution of acquired factors to the pathogenesis of dilated cardiomyopathy—The cause of dilated cardiomyopathy: Genetic or acquired? (Acquired-Side). Circ. J. 2011, 75, 1766–1773. [Google Scholar] [CrossRef]
- Khattab, E.; Myrianthefs, M.M.; Sakellaropoulos, S.; Alexandrou, K.; Mitsis, A. Precision medicine applications in dilated cardiomyopathy: Advancing personalized care. Curr. Probl. Cardiol. 2025, 50, 103076. [Google Scholar] [CrossRef] [PubMed]
- Bakalakos, A.; Ritsatos, K.; Anastasakis, A. Current perspectives on the diagnosis and management of dilated cardiomyopathy Beyond heart failure: A Cardiomyopathy Clinic Doctor’s point of view. Hellenic J. Cardiol. 2018, 59, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Schultheiss, H.P.; Fairweather, D.; Caforio, A.L.P.; Escher, F.; Hershberger, R.E.; Lipshultz, S.E.; Liu, P.P.; Matsumori, A.; Mazzanti, A.; McMurray, J.; et al. Dilated cardiomyopathy. Nat. Rev. Dis. Primers 2019, 5, 32. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Chen, C.; Wu, S.; Chen, J.; Han, Y.; Zhu, Q.; Xu, M.; Nie, Q.; Wang, L. Mechanism of angiotensin-converting enzyme inhibitors in the treatment of dilated cardiomyopathy based on a protein interaction network and molecular docking. Cardiovasc. Diagn. Ther. 2023, 13, 534–549. [Google Scholar] [CrossRef]
- Antunes, M.O.; Scudeler, T.L. Hypertrophic cardiomyopathy. Int. J. Cardiol. Heart Vasc. 2020, 27, 100503. [Google Scholar] [CrossRef]
- Glavaski, M.; Velicki, L.; Vucinic, N. Hypertrophic Cardiomyopathy: Genetic Foundations, Outcomes, Interconnections, and Their Modifiers. Medicina 2023, 59. [Google Scholar] [CrossRef]
- Nishimura, R.A.; Seggewiss, H.; Schaff, H.V. Hypertrophic Obstructive Cardiomyopathy: Surgical Myectomy and Septal Ablation. Circ. Res. 2017, 121, 771–783. [Google Scholar] [CrossRef]
- Rajan, D.; Zorner, C.R.; Hansen, M.L.; Tfelt-Hansen, J. Arrhythmias and Sudden Death: What is New in Hypertrophic Cardiomyopathy? Card. Fail. Rev. 2025, 11, e08. [Google Scholar] [CrossRef] [PubMed]
- Lillo, R.; Graziani, F.; Franceschi, F.; Iannaccone, G.; Massetti, M.; Olivotto, I.; Crea, F.; Liuzzo, G. Inflammation across the spectrum of hypertrophic cardiac phenotypes. Heart Fail. Rev. 2023, 28, 1065–1075. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Maron, M.S.; Sherrid, M.V.; Rowin, E.J. Future Role of New Negative Inotropic Agents in the Era of Established Surgical Myectomy for Symptomatic Obstructive Hypertrophic Cardiomyopathy. J. Am. Heart Assoc. 2022, 11, e024566. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, E.; Bairey Merz, C.N.; Mehta, P.K. Takotsubo Cardiomyopathy. Eur. Cardiol. 2015, 10, 25–30. [Google Scholar] [CrossRef]
- Komamura, K.; Fukui, M.; Iwasaku, T.; Hirotani, S.; Masuyama, T. Takotsubo cardiomyopathy: Pathophysiology, diagnosis and treatment. World J. Cardiol. 2014, 6, 602–609. [Google Scholar] [CrossRef]
- Buchmann, S.J.; Lehmann, D.; Stevens, C.E. Takotsubo Cardiomyopathy-Acute Cardiac Dysfunction Associated with Neurological and Psychiatric Disorders. Front. Neurol. 2019, 10, 917. [Google Scholar] [CrossRef]
- Barmore, W.; Patel, H.; Harrell, S.; Garcia, D.; Calkins, J.B., Jr. Takotsubo cardiomyopathy: A comprehensive review. World J. Cardiol. 2022, 14, 355–362. [Google Scholar] [CrossRef]
- Kuo, B.T.; Choubey, R.; Novaro, G.M. Reduced estrogen in menopause may predispose women to takotsubo cardiomyopathy. Gend. Med. 2010, 7, 71–77. [Google Scholar] [CrossRef]
- Richter, T.; Nestler-Parr, S.; Babela, R.; Khan, Z.M.; Tesoro, T.; Molsen, E.; Hughes, D.A. Rare Disease Terminology and Definitions—A Systematic Global Review: Report of the ISPOR Rare Disease Special Interest Group. Value. Health 2015, 18, 906–914. [Google Scholar] [CrossRef]
- Kyriakopoulou, E.; Versteeg, D.; de Ruiter, H.; Perini, I.; Seibertz, F.; Doring, Y.; Zentilin, L.; Tsui, H.; van Kampen, S.J.; Tiburcy, M.; et al. Therapeutic efficacy of AAV-mediated restoration of PKP2 in arrhythmogenic cardiomyopathy. Nat. Cardiovasc. Res. 2023, 2, 1262–1276. [Google Scholar] [CrossRef]
- Basso, C.; Bauce, B.; Corrado, D.; Thiene, G. Pathophysiology of arrhythmogenic cardiomyopathy. Nat. Rev. Cardiol. 2011, 9, 223–233. [Google Scholar] [CrossRef]
- Migliore, F.; Mattesi, G.; Zorzi, A.; Bauce, B.; Rigato, I.; Corrado, D.; Cipriani, A. Arrhythmogenic Cardiomyopathy-Current Treatment and Future Options. J. Clin. Med. 2021, 10. [Google Scholar] [CrossRef]
- Fan, X.; Yang, G.; Duru, F.; Grilli, M.; Akin, I.; Zhou, X.; Saguner, A.M.; Ei-Battrawy, I. Arrhythmogenic Cardiomyopathy: From Preclinical Models to Genotype-phenotype Correlation and Pathophysiology. Stem. Cell Rev. Rep. 2023, 19, 2683–2708. [Google Scholar] [CrossRef]
- Maione, A.S.; Pilato, C.A.; Casella, M.; Gasperetti, A.; Stadiotti, I.; Pompilio, G.; Sommariva, E. Fibrosis in Arrhythmogenic Cardiomyopathy: The Phantom Thread in the Fibro-Adipose Tissue. Front. Physiol. 2020, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Chavan, S.S.; Pavlov, V.A.; Tracey, K.J. Mechanisms and Therapeutic Relevance of Neuro-immune Communication. Immunity 2017, 46, 927–942. [Google Scholar] [CrossRef] [PubMed]
- Kohela, A.; van Rooij, E. Fibro-fatty remodelling in arrhythmogenic cardiomyopathy. Basic Res. Cardiol. 2022, 117, 22. [Google Scholar] [CrossRef] [PubMed]
- Meraviglia, V.; Alcalde, M.; Campuzano, O.; Bellin, M. Inflammation in the Pathogenesis of Arrhythmogenic Cardiomyopathy: Secondary Event or Active Driver? Front. Cardiovasc. Med. 2021, 8, 784715. [Google Scholar] [CrossRef]
- Malinow, I.; Fong, D.C.; Miyamoto, M.; Badran, S.; Hong, C.C. Pediatric dilated cardiomyopathy: A review of current clinical approaches and pathogenesis. Front. Pediatr. 2024, 12, 1404942. [Google Scholar] [CrossRef]
- Gerull, B.; Brodehl, A. Insights Into Genetics and Pathophysiology of Arrhythmogenic Cardiomyopathy. Curr. Heart Fail. Rep. 2021, 18, 378–390. [Google Scholar] [CrossRef]
- Lodato, V.; Parlapiano, G.; Cali, F.; Silvetti, M.S.; Adorisio, R.; Armando, M.; El Hachem, M.; Romanzo, A.; Dionisi-Vici, C.; Digilio, M.C.; et al. Cardiomyopathies in Children and Systemic Disorders When Is It Useful to Look beyond the Heart? J. Cardiovasc. Dev. Dis. 2022, 9. [Google Scholar] [CrossRef]
- Iezzi, L.; Sorella, A.; Galanti, K.; Gallina, S.; Chahal, A.A.; Bauce, B.; Cipriani, A.; Providencia, R.; Lopes, L.R.; Ricci, F.; et al. Arrhythmogenic cardiomyopathy diagnosis and management: A systematic review of clinical practice guidelines and recommendations with insights for future research. Eur. Heart J. Qual. Care. Clin. Outcomes 2025. [Google Scholar] [CrossRef]
- Krych, S.; Jeczmyk, A.; Jurkiewicz, M.; Zurek, M.; Jekielek, M.; Kowalczyk, P.; Kramkowski, K.; Hrapkowicz, T. Viral Myocarditis as a Factor Leading to the Development of Heart Failure Symptoms, Including the Role of Parvovirus B19 Infection-Systematic Review. Int. J. Mol. Sci. 2024, 25, 8127. [Google Scholar] [CrossRef]
- Cantarutti, N.; Battista, V.; Adorisio, R.; Cicenia, M.; Campanello, C.; Listo, E.; Campana, A.; Trocchio, G.; Drago, F. Cardiac Manifestations in Children with SARS-CoV-2 Infection: 1-Year Pediatric Multicenter Experience. Children 2021, 8, 717. [Google Scholar] [CrossRef]
- Akansel, S.; Kofler, M.; Van Praet, K.M.; Unbehaun, A.; Sundermann, S.H.; Jacobs, S.; Falk, V.; Kempfert, J. Minimally invasive mitral valve surgery after failed transcatheter mitral valve repair in an intermediate-risk cohort. Interact. Cardiovasc. Thorac. Surg. 2022, 35, ivac163. [Google Scholar] [CrossRef] [PubMed]
- Beaudry, J.T.; Dietrick, B.; Lammert, D.B.; Constas, A.; McCaw, J.; Hammond, J.; Buendia, M.; Stein, J.E.; Pekosz, A.; Schuette, J.; et al. Fatal SARS-CoV-2 Inflammatory Syndrome and Myocarditis in an Adolescent: A Case Report. Pediatr. Infect. Dis. J. 2021, 40, e72–e76. [Google Scholar] [CrossRef] [PubMed]
- Thom, K.; Kahl, B.; Wagner, T.; van Egmond-Frohlich, A.; Krainz, M.; Frischer, T.; Leeb, I.; Schuster, C.; Ehringer-Schetitska, D.; Minkov, M.; et al. SARS-CoV-2 Associated Pediatric Inflammatory Multisystem Syndrome With a High Prevalence of Myocarditis–A Multicenter Evaluation of Clinical and Laboratory Characteristics, Treatment and Outcome. Front. Pediatr. 2022, 10, 896252. [Google Scholar] [CrossRef] [PubMed]
- Gargus, M.; Ben-Azu, B.; Landwehr, A.; Dunn, J.; Errico, J.P.; Tremblay, M.E. Mechanisms of vagus nerve stimulation for the treatment of neurodevelopmental disorders: A focus on microglia and neuroinflammation. Front. Neurosci. 2024, 18, 1527842. [Google Scholar] [CrossRef]
- Sattar, Y.; Sandhyavenu, H.; Patel, N.; Victor, V.; Patel, D.; Hussain, B.; Titus, A.; Thyagaturu, H.; Alraiyes, M.; Atti, L.; et al. In-Hospital Outcomes of COVID-19 Associated Myocarditis (from a Nationwide Inpatient Sample Database Study). Am. J. Cardiol. 2023, 192, 39–44. [Google Scholar] [CrossRef]
- Boehmer, T.K.; Kompaniyets, L.; Lavery, A.M.; Hsu, J.; Ko, J.Y.; Yusuf, H.; Romano, S.D.; Gundlapalli, A.V.; Oster, M.E.; Harris, A.M. Association Between COVID-19 and Myocarditis Using Hospital-Based Administrative Data–United States, March 2020-January 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1228–1232. [Google Scholar] [CrossRef]
- Saha, D.; Dutta, P.; Rebello, K.R.; Shankar, A.; Chakraborty, A. Exploring the potential link between human papillomavirus infection and coronary artery disease: A review of shared pathways and mechanisms. Mol. Cell. Biochem. 2025, 480, 3971–3994. [Google Scholar] [CrossRef]
- Dutta, P.; Saha, D.; Earle, M.; Prasad, C.P.; Singh, M.; Darswal, M.; Aggarwal, V.; Naik, N.; Yadav, R.; Shankar, A.; et al. Unveiling HPV’s hidden link: Cardiovascular diseases and the viral intrigue. Indian Heart J. 2024, 76, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Pannucci, P.; Jefferson, S.R.; Hampshire, J.; Cooper, S.L.; Hill, S.J.; Woolard, J. COVID-19-Induced Myocarditis: Pathophysiological Roles of ACE2 and Toll-like Receptors. Int. J. Mol. Sci. 2023, 24, 5374. [Google Scholar] [CrossRef] [PubMed]
- Kusumawardhani, N.Y.; Putra, I.C.S.; Kamarullah, W.; Afrianti, R.; Pramudyo, M.; Iqbal, M.; Prameswari, H.S.; Achmad, C.; Tiksnadi, B.B.; Akbar, M.R. Cardiovascular Disease in Post-Acute COVID-19 Syndrome: A Comprehensive Review of Pathophysiology and Diagnosis Approach. Rev. Cardiovasc. Med. 2023, 24, 28. [Google Scholar] [CrossRef] [PubMed]
- Castiello, T.; Georgiopoulos, G.; Finocchiaro, G.; Claudia, M.; Gianatti, A.; Delialis, D.; Aimo, A.; Prasad, S. COVID-19 and myocarditis: A systematic review and overview of current challenges. Heart Fail. Rev. 2022, 27, 251–261. [Google Scholar] [CrossRef]
- Turpeinen, A.K.; Vanninen, E.; Magga, J.; Tuomainen, P.; Kuusisto, J.; Sipola, P.; Punnonen, K.; Vuolteenaho, O.; Peuhkurinen, K. Cardiac sympathetic activity is associated with inflammation and neurohumoral activation in patients with idiopathic dilated cardiomyopathy. Clin. Physiol. Funct. Imaging 2009, 29, 414–419. [Google Scholar] [CrossRef]
- Kawai, C.; Yui, Y.; Hoshino, T.; Sasayama, S.; Matsumori, A. Myocardial catecholamines in hypertrophic and dilated (congestive) cardiomyopathy: A biopsy study. J. Am. Coll. Cardiol. 1983, 2, 834–840. [Google Scholar] [CrossRef]
- Paur, H.; Wright, P.T.; Sikkel, M.B.; Tranter, M.H.; Mansfield, C.; O’Gara, P.; Stuckey, D.J.; Nikolaev, V.O.; Diakonov, I.; Pannell, L.; et al. High levels of circulating epinephrine trigger apical cardiodepression in a beta2-adrenergic receptor/Gi-dependent manner: A new model of Takotsubo cardiomyopathy. Circulation 2012, 126, 697–706. [Google Scholar] [CrossRef]
- Shah, R.M.; Shah, M.; Shah, S.; Li, A.; Jauhar, S. Takotsubo Syndrome and COVID-19: Associations and Implications. Curr. Probl. Cardiol. 2021, 46, 100763. [Google Scholar] [CrossRef]
- Gold, M.R.; Van Veldhuisen, D.J.; Hauptman, P.J.; Borggrefe, M.; Kubo, S.H.; Lieberman, R.A.; Milasinovic, G.; Berman, B.J.; Djordjevic, S.; Neelagaru, S.; et al. Vagus Nerve Stimulation for the Treatment of Heart Failure: The INOVATE-HF Trial. J. Am. Coll. Cardiol. 2016, 68, 149–158. [Google Scholar] [CrossRef]
- Wu, S.J.; Li, Y.C.; Shi, Z.W.; Lin, Z.H.; Rao, Z.H.; Tai, S.C.; Chu, M.P.; Li, L.; Lin, J.F. Alteration of Cholinergic Anti-Inflammatory Pathway in Rat with Ischemic Cardiomyopathy-Modified Electrophysiological Function of Heart. J. Am. Heart Assoc. 2017, 6, e006510. [Google Scholar] [CrossRef]
- Ruiz, P.; Gabarre, P.; Chenevier-Gobeaux, C.; Francois, H.; Kerneis, M.; Cidlowski, J.A.; Oakley, R.H.; Lefevre, G.; Boissan, M. Case report: Changes in the levels of stress hormones during Takotsubo syndrome. Front. Cardiovasc. Med. 2022, 9, 931054. [Google Scholar] [CrossRef]
- Wang, E.; Zhou, R.; Li, T.; Hua, Y.; Zhou, K.; Li, Y.; Luo, S.; An, Q. The Molecular Role of Immune Cells in Dilated Cardiomyopathy. Medicina 2023, 59, 1246. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Qin, L.; Xu, X.; Chen, R.; Zhang, G.; Wang, B.; Li, B.; Chu, X.M. Immune modulation: The key to combat SARS-CoV-2 induced myocardial injury. Front. Immunol. 2025, 16, 1561946. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Duan, F.; Hu, J.; Luo, B.; Huang, B.; Lou, X.; Sun, X.; Li, H.; Zhang, X.; Yin, S.; et al. NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy. Redox. Biol. 2020, 34, 101523. [Google Scholar] [CrossRef]
- Higashikuni, Y.; Liu, W.; Numata, G.; Tanaka, K.; Fukuda, D.; Tanaka, Y.; Hirata, Y.; Imamura, T.; Takimoto, E.; Komuro, I.; et al. NLRP3 Inflammasome Activation Through Heart-Brain Interaction Initiates Cardiac Inflammation and Hypertrophy During Pressure Overload. Circulation 2023, 147, 338–355. [Google Scholar] [CrossRef]
- Swirski, F.K.; Nahrendorf, M. Cardioimmunology: The immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 2018, 18, 733–744. [Google Scholar] [CrossRef]
- Zwaka, T.P.; Manolov, D.; Ozdemir, C.; Marx, N.; Kaya, Z.; Kochs, M.; Hoher, M.; Hombach, V.; Torzewski, J. Complement and dilated cardiomyopathy: A role of sublytic terminal complement complex-induced tumor necrosis factor-alpha synthesis in cardiac myocytes. Am. J. Pathol. 2002, 161, 449–457. [Google Scholar] [CrossRef]
- Mavroidis, M.; Davos, C.H.; Psarras, S.; Varela, A.; Athanasiadis, N.C.; Katsimpoulas, M.; Kostavasili, I.; Maasch, C.; Vater, A.; van Tintelen, J.P.; et al. Complement system modulation as a target for treatment of arrhythmogenic cardiomyopathy. Basic Res. Cardiol. 2015, 110, 27. [Google Scholar] [CrossRef]
- Anderson, F.L.; Port, J.D.; Reid, B.B.; Hanson, G.; Kralios, A.C.; Hershberger, R.E.; Bristow, M.R. Effect of therapeutic dopamine administration on myocardial catecholamine and neuropeptide Y concentrations in the failing ventricles of patients with idiopathic dilated cardiomyopathy. J. Cardiovasc. Pharmacol. 1992, 20, 800–806. [Google Scholar]
- Enzan, N.; Matsushima, S.; Ide, T.; Tohyama, T.; Funakoshi, K.; Higo, T.; Tsutsui, H. The use of angiotensin II receptor blocker is associated with greater recovery of cardiac function than angiotensin-converting enzyme inhibitor in dilated cardiomyopathy. ESC Heart Fail. 2022, 9, 1175–1185. [Google Scholar] [CrossRef]
- Mo, X.; Lu, P.; Yang, X. Efficacy of sacubitril-valsartan and SGLT2 inhibitors in heart failure with reduced ejection fraction: A systematic review and meta-analysis. Clin. Cardiol. 2023, 46, 1137–1145. [Google Scholar] [CrossRef]
- Kumar, P.; Schwartz, J.D. Device therapies: New indications and future directions. Curr. Cardiol. Rev. 2015, 11, 33–41. [Google Scholar] [CrossRef]
- Baris, R.O.; Tabit, C.E. Heart Failure Readmission Prevention Strategies-A Comparative Review of Medications, Devices, and Other Interventions. J. Clin. Med. 2025, 14, 5894. [Google Scholar] [CrossRef] [PubMed]
- Kehat, I. Novel strategies for the treatment of heart failure. Rambam Maimonides Med. J. 2012, 3, e0011. [Google Scholar] [CrossRef] [PubMed]
- Dicorato, M.M.; Citarelli, G.; Mangini, F.; Alemanni, R.; Albanese, M.; Cicco, S.; Greco, C.A.; Forleo, C.; Basile, P.; Carella, M.C.; et al. Integrative Approaches in the Management of Hypertrophic Cardiomyopathy: A Comprehensive Review of Current Therapeutic Modalities. Biomedicines 2025, 13, 1256. [Google Scholar] [CrossRef]
- Savsin, H.; Tokarek, T. Comprehensive Review: Mavacamten and Aficamten in Hypertrophic Cardiomyopathy. Biomedicines 2025, 13, 1619. [Google Scholar] [CrossRef]
- Alnour, F.; Beuthner, B.E.; Hakroush, S.; Topci, R.; Vogelgesang, A.; Lange, T.; Seidler, T.; Kutschka, I.; Toischer, K.; Schuster, A.; et al. Cardiac fibrosis as a predictor for sudden cardiac death after transcatheter aortic valve implantation. EuroIntervention 2024, 20, e760–e769. [Google Scholar] [CrossRef]
- Adabag, A.S.; Luepker, R.V.; Roger, V.L.; Gersh, B.J. Sudden cardiac death: Epidemiology and risk factors. Nat. Rev. Cardiol. 2010, 7, 216–225. [Google Scholar] [CrossRef]
- Wolowiec, L.; Grzesk, G.; Osiak, J.; Wijata, A.; Medlewska, M.; Gaborek, P.; Banach, J.; Wolowiec, A.; Glowacka, M. Beta-blockers in cardiac arrhythmias-Clinical pharmacologist’s point of view. Front. Pharmacol. 2022, 13, 1043714. [Google Scholar] [CrossRef]
- Coscarella, I.L.; Landim-Vieira, M.; Pinto, J.R.; Chelko, S.P. Arrhythmogenic Cardiomyopathy: Exercise Pitfalls, Role of Connexin-43, and Moving beyond Antiarrhythmics. Int. J. Mol. Sci. 2022, 23, 8753. [Google Scholar] [CrossRef]
- Rodriguez Mejia, R.A.; Singh, A.; Bahekar, A.; Gupta, A. Efficacy of beta-blocker therapy in Takotsubo cardiomyopathy: A systematic review and meta-analysis. Int. J. Cardiol. 2025, 437, 133483. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Khan, H.; Gamble, D.T.; Scally, C.; Newby, D.E.; Dawson, D. Takotsubo Syndrome: Pathophysiology, Emerging Concepts, and Clinical Implications. Circulation 2022, 145, 1002–1019. [Google Scholar] [CrossRef] [PubMed]
- Zarate, S.M.; Kirabo, A.; Hinton, A.O., Jr.; Santisteban, M.M. Neuroimmunology of Cardiovascular Disease. Curr. Hypertens Rep. 2024, 26, 339–347. [Google Scholar] [CrossRef]
- Bogle, C.; Colan, S.D.; Miyamoto, S.D.; Choudhry, S.; Baez-Hernandez, N.; Brickler, M.M.; Feingold, B.; Lal, A.K.; Lee, T.M.; Canter, C.E.; et al. Treatment Strategies for Cardiomyopathy in Children: A Scientific Statement From the American Heart Association. Circulation 2023, 148, 174–195. [Google Scholar] [CrossRef]
- Velleca, A.; Shullo, M.A.; Dhital, K.; Azeka, E.; Colvin, M.; DePasquale, E.; Farrero, M.; Garcia-Guereta, L.; Jamero, G.; Khush, K.; et al. The International Society for Heart and Lung Transplantation (ISHLT) guidelines for the care of heart transplant recipients. J. Heart Lung Transplant 2023, 42, e1–e141. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Cochran, T.R.; Briston, D.A.; Brown, S.R.; Sambatakos, P.J.; Miller, T.L.; Carrillo, A.A.; Corcia, L.; Sanchez, J.E.; Diamond, M.B.; et al. Pediatric cardiomyopathies: Causes, epidemiology, clinical course, preventive strategies and therapies. Future Cardiol. 2013, 9, 817–848. [Google Scholar] [CrossRef]
- Kamarullah, W.; Nurcahyani; Mary Josephine, C.; Bill Multazam, R.; Ghaezany Nawing, A.; Dharma, S. Corticosteroid Therapy in Management of Myocarditis Associated with COVID-19; a Systematic Review of Current Evidence. Arch. Acad. Emerg. Med. 2021, 9, e32. [Google Scholar] [CrossRef]
- Mukkawar, R.V.; Reddy, H.; Rathod, N.; Kumar, S.; Acharya, S. The Long-Term Cardiovascular Impact of COVID-19: Pathophysiology, Clinical Manifestations, and Management. Cureus. 2024, 16, e66554. [Google Scholar] [CrossRef]
- Ticinovic Kurir, T.; Milicevic, T.; Novak, A.; Vilovic, M.; Bozic, J. Adropin–Potential Link in Cardiovascular Protection for Obese Male Type 2 Diabetes Mellitus Patients Treated with Liraglutide. Acta. Clin. Croat. 2020, 59, 344–350. [Google Scholar] [CrossRef]
- Li, J.; Zhou, L.; Gong, H. New insights and advances of sodium-glucose cotransporter 2 inhibitors in heart failure. Front. Cardiovasc. Med. 2022, 9, 903902. [Google Scholar] [CrossRef]
- Huang, S.; Zhao, Q. The Trend of Immunotherapy Combined with Nanomedicine. Curr. Med. Chem. 2022, 29, 3817–3818. [Google Scholar] [CrossRef]
- Berezutsky, V. Clinical reasoning: Sherlock Holmes or Dr. Joseph Bell. Med. Teach. 2023, 45, 114. [Google Scholar] [CrossRef]
- Papaioannou, V.; Pneumatikos, I.; Maglaveras, N. Association of heart rate variability and inflammatory response in patients with cardiovascular diseases: Current strengths and limitations. Front. Physiol. 2013, 4, 174. [Google Scholar] [CrossRef]
- Chakraborty, A.; Dutta, P.; Saha, D.; Singh, M.; Prasad, C.P.; Pushpam, D.; Shankar, A.; Saini, D. Chimeric antigen receptor CAR-T therapy on the move: Current applications and future possibilities. Curr. Tissue Microenviron. Rep. 2023, 4, 29–40. [Google Scholar] [CrossRef]
- Ridker, P.M.; MacFadyen, J.G.; Glynn, R.J.; Koenig, W.; Libby, P.; Everett, B.M.; Lefkowitz, M.; Thuren, T.; Cornel, J.H. Inhibition of Interleukin-1beta by Canakinumab and Cardiovascular Outcomes in Patients With Chronic Kidney Disease. J. Am. Coll. Cardiol. 2018, 71, 2405–2414. [Google Scholar] [CrossRef] [PubMed]
- Carter, K.T.; Palei, A.C.; Spradley, F.T.; Witcher, B.M.; Martin, L.; Hester, R.L.; Kutcher, M.E. A rat model of orthopedic injury-induced hypercoagulability and fibrinolytic shutdown. J. Trauma Acute Care Surg. 2020, 89, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.M.; Cooper, L.T.; Kem, D.C.; Stavrakis, S.; Kosanke, S.D.; Shevach, E.M.; Fairweather, D.; Stoner, J.A.; Cox, C.J.; Cunningham, M.W. Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI insight 2016, 1, e85851. [Google Scholar] [CrossRef]
- Jang, D.I.; Lee, A.H.; Shin, H.Y.; Song, H.R.; Park, J.H.; Kang, T.B.; Lee, S.R.; Yang, S.H. The Role of Tumor Necrosis Factor Alpha (TNF-alpha) in Autoimmune Disease and Current TNF-alpha Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Del Cornò, M.; Donninelli, G.; Varano, B.; Da Sacco, L.; Masotti, A.; Gessani, S. HIV-1 gp120 activates the STAT3/interleukin-6 axis in primary human monocyte-derived dendritic cells. J. Virol. 2014, 88, 11045–11055. [Google Scholar] [CrossRef]
- Panagiotou, A.; Trendelenburg, M.; Osthoff, M. The lectin pathway of complement in myocardial ischemia/reperfusion injury—Review of its significance and the potential impact of therapeutic interference by C1 esterase inhibitor. Front. Immunol. 2018, 9, 1151. [Google Scholar] [CrossRef] [PubMed]
- Vogel, C.-W. The role of complement in myocardial infarction reperfusion injury: An underappreciated therapeutic target. Front. Cell Dev. Biol. 2020, 8, 606407. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, L.; Wang, S.; Cheng, H.; Xu, L.; Pei, G.; Wang, Y.; Fu, C.; Jiang, Y.; He, C.; et al. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct. Target. Ther. 2022, 7, 78. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Fernandes, S.M.; Davis, A.E., 3rd. The effect of C1 inhibitor on myocardial ischemia and reperfusion injury. Cardiovasc. Pathol. 2013, 22, 75–80. [Google Scholar] [CrossRef]
- Torp, M.-K.; Ranheim, T.; Schjalm, C.; Hjorth, M.; Heiestad, C.M.; Dalen, K.T.; Nilsson, P.H.; Mollnes, T.E.; Pischke, S.; Lien, E. Intracellular complement component 3 attenuated ischemia-reperfusion injury in the isolated buffer-perfused mouse heart and is associated with improved metabolic homeostasis. Front. Immunol. 2022, 13, 870811. [Google Scholar] [CrossRef]
- Cheng, X.-F.; He, S.-T.; Zhong, G.-Q.; Meng, J.-J.; Wang, M.; Bi, Q.; Tu, R.-H. Exosomal HSP90 induced by remote ischemic preconditioning alleviates myocardial ischemia/reperfusion injury by inhibiting complement activation and inflammation. BMC Cardiovasc. Disord. 2023, 23, 58. [Google Scholar] [CrossRef]
- Ivanova, M.M.; Dao, J.; Friedman, A.; Kasaci, N.; Goker-Alpan, O. Sex Differences in Circulating Inflammatory, Immune, and Tissue Growth Markers Associated with Fabry Disease-Related Cardiomyopathy. Cells 2025, 14, 322. [Google Scholar] [CrossRef]
- Velikkakam, T.; Gollob, K.J.; Dutra, W.O. Double-negative T cells: Setting the stage for disease control or progression. Immunology 2022, 165, 371–385. [Google Scholar] [CrossRef]
- Kolman, B.S.; Verrier, R.L.; Lown, B. The effect of vagus nerve stimulation upon vulnerability of the canine ventricle: Role of sympathetic-parasympathetic interactions. Circulation 1975, 52, 578–585. [Google Scholar] [CrossRef]
- Gronda, E.; Seravalle, G.; Trevano, F.Q.; Costantino, G.; Casini, A.; Alsheraei, A.; Lovett, E.G.; Vanoli, E.; Mancia, G.; Grassi, G. Long-term chronic baroreflex activation: Persistent efficacy in patients with heart failure and reduced ejection fraction. J. Hypertens. 2015, 33, 1704–1708. [Google Scholar] [CrossRef]
- Rees, K.; Taylor, R.S.; Singh, S.; Coats, A.J.; Ebrahim, S. Exercise based rehabilitation for heart failure. Cochrane Database Syst. Rev. 2004, 3, CD003331. [Google Scholar] [CrossRef]
- Daniela, M.; Catalina, L.; Ilie, O.; Paula, M.; Daniel-Andrei, I.; Ioana, B. Effects of Exercise Training on the Autonomic Nervous System with a Focus on Anti-Inflammatory and Antioxidants Effects. Antioxidants 2022, 11, 350. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Dou, X.; Chen, L.; Hu, F.; Li, Z.; Gao, H.; Li, X.; Zhang, M.; Hu, Z. The Utilization and Potential of Mindfulness-Based Stress Reduction Therapy in Individuals Diagnosed with Acute Coronary Syndrome. Rev. Cardiovasc. Med. 2024, 25, 277. [Google Scholar] [CrossRef] [PubMed]
- Catalina, G.R.; Gheorman, V.; Gheorman, V.; Fortofoiu, M.C. The Role of Neuroinflammation in the Comorbidity of Psychiatric Disorders and Internal Diseases. Healthcare 2025, 13, 837. [Google Scholar] [CrossRef]
- Nascimentoa, P.M.; Vieiraa, M.C.; Sperandeib, S.; Serraa, S.M. Supervised exercise improves autonomic modulation in participants in cardiac rehabilitation programs. Rev. Port. Cardiol. 2016, 35, 19–24. [Google Scholar] [CrossRef]
- Lee, S.C.; Tsai, P.H.; Yu, K.H.; Chan, T.M. Effects of Mind–Body Interventions on Immune and Neuroendocrine Functions: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Healthcare 2025, 13, 952. [Google Scholar] [CrossRef]
- Merino Del Portillo, M.; Clemente-Suarez, V.J.; Ruisoto, P.; Jimenez, M.; Ramos-Campo, D.J.; Beltran-Velasco, A.I.; Martinez-Guardado, I.; Rubio-Zarapuz, A.; Navarro-Jimenez, E.; Tornero-Aguilera, J.F. Nutritional Modulation of the Gut–Brain Axis: A Comprehensive Review of Dietary Interventions in Depression and Anxiety Management. Metabolites 2024, 14, 549. [Google Scholar] [CrossRef]
- Jordan, J.; Tank, J.; Heusser, K.; Reuter, H. Baroreflex activation therapy through electrical carotid sinus stimulation. Auton. Neurosci. 2024, 256, 103219. [Google Scholar] [CrossRef]
- Liao, S.Y.; Liu, Y.; Zuo, M.; Zhang, Y.; Yue, W.; Au, K.W.; Lai, W.H.; Wu, Y.; Shuto, C.; Chen, P.; et al. Remodelling of cardiac sympathetic re-innervation with thoracic spinal cord stimulation improves left ventricular function in a porcine model of heart failure. Europace 2015, 17, 1875–1883. [Google Scholar] [CrossRef]
- Vargas-Uricoechea, H.; Castellanos-Pinedo, A.; Urrego-Noguera, K.; Vargas-Sierra, H.D.; Pinzon-Fernandez, M.V.; Barcelo-Martinez, E.; Ramirez-Giraldo, A.F. Mindfulness-Based Interventions and the Hypothalamic-Pituitary-Adrenal Axis: A Systematic Review. Neurol. Int. 2024, 16, 1552–1584. [Google Scholar] [CrossRef]
- Gitler, A.; Bar Yosef, Y.; Kotzer, U.; Levine, A.D. Harnessing non-invasive vagal neuromodulation: HRV biofeedback and SSP for cardiovascular and autonomic regulation (Review). Med. Int. 2025, 5, 37. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Knudsen, B.; Gholston, A.; Skubal, A.; Blanz, S.; Settell, M.; Frank, J.; Trevathan, J.; Ludwig, K. Microneurography as a minimally invasive method to assess target engagement during neuromodulation. J. Neural. Eng. 2023, 20. [Google Scholar] [CrossRef] [PubMed]
- Gerbino, A.; Forleo, C.; Milano, S.; Piccapane, F.; Procino, G.; Pepe, M.; Piccolo, M.; Guida, P.; Resta, N.; Favale, S.; et al. Pro-inflammatory cytokines as emerging molecular determinants in cardiolaminopathies. J. Cell Mol. Med. 2021, 25, 10902–10915. [Google Scholar] [CrossRef]
- Oduro, P.K.; Zheng, X.; Wei, J.; Yang, Y.; Wang, Y.; Zhang, H.; Liu, E.; Gao, X.; Du, M.; Wang, Q. The cGAS-STING signaling in cardiovascular and metabolic diseases: Future novel target option for pharmacotherapy. Acta Pharm. Sin. B 2022, 12, 50–75. [Google Scholar] [CrossRef]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef]
- Matuskova, L.; Czippelova, B.; Turianikova, Z.; Svec, D.; Kolkova, Z.; Lasabova, Z.; Javorka, M. Beta-adrenergic receptors gene polymorphisms are associated with cardiac contractility and blood pressure variability. Physiol. Res. 2021, 70, S327–S337. [Google Scholar] [CrossRef]
- Sprenkle, N.T.; Serezani, C.H.; Pua, H.H. MicroRNAs in Macrophages: Regulators of Activation and Function. J. Immunol. 2023, 210, 359–368. [Google Scholar] [CrossRef]
- Yang, Y.L.; Li, X.W.; Chen, H.B.; Tang, Q.D.; Li, Y.H.; Xu, J.Y.; Xie, J.J. Single-cell transcriptomics reveals writers of RNA modification-mediated immune microenvironment and cardiac resident Macro-MYL2 macrophages in heart failure. BMC Cardiovasc. Disord. 2024, 24, 432. [Google Scholar] [CrossRef]
- Fairweather, D.; Frisancho-Kiss, S.; Rose, N.R. Sex differences in autoimmune disease from a pathological perspective. Am. J. Pathol. 2008, 173, 600–609. [Google Scholar] [CrossRef]
- Geske, J.B.; Ong, K.C.; Siontis, K.C.; Hebl, V.B.; Ackerman, M.J.; Hodge, D.O.; Miller, V.M.; Nishimura, R.A.; Oh, J.K.; Schaff, H.V.; et al. Women with hypertrophic cardiomyopathy have worse survival. Eur. Heart. J. 2017, 38, 3434–3440. [Google Scholar] [CrossRef]
- Sethi, Y.; Murli, H.; Kaiwan, O.; Vora, V.; Agarwal, P.; Chopra, H.; Padda, I.; Kanithi, M.; Popoviciu, M.S.; Cavalu, S. Broken Heart Syndrome: Evolving Molecular Mechanisms and Principles of Management. J. Clin. Med. 2022, 12, 125. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Luo, Y.; Tai, R.; Zhang, N. Estrogen receptor beta suppresses inflammation and the progression of prostate cancer. Mol. Med. Rep. 2019, 19, 3555–3563. [Google Scholar] [CrossRef]
- Tostes, R.C.; Carneiro, F.S.; Carvalho, M.H.; Reckelhoff, J.F. Reactive oxygen species: Players in the cardiovascular effects of testosterone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R1–R14. [Google Scholar] [CrossRef]
- Fairweather, D.; Frisancho-Kiss, S.; Yusung, S.A.; Barrett, M.A.; Davis, S.E.; Gatewood, S.J.; Njoku, D.B.; Rose, N.R. Interferon-gamma protects against chronic viral myocarditis by reducing mast cell degranulation, fibrosis, and the profibrotic cytokines transforming growth factor-beta 1, interleukin-1 beta, and interleukin-4 in the heart. Am. J. Pathol. 2004, 165, 1883–1894. [Google Scholar] [CrossRef]
- Vereckei, A.; Besenyi, Z.; Nagy, V.; Radics, B.; Vago, H.; Jenei, Z.; Katona, G.; Sepp, R. Cardiac Sarcoidosis: A Comprehensive Clinical Review. Rev. Cardiovasc. Med. 2024, 25, 37. [Google Scholar] [CrossRef]
- Bollen, I.A.; Van Deel, E.D.; Kuster, D.W.; Van Der Velden, J. Peripartum cardiomyopathy and dilated cardiomyopathy: Different at heart. Front. Physiol. 2014, 5, 531. [Google Scholar] [CrossRef]
Axis Component | Key Mediators | Cardiomyopathy Role | Mechanistic Notes | Primary CM Associations |
---|---|---|---|---|
Sympathetic Nervous System [5,8] | Norepinephrine, Epinephrine, NPY | Promotes inflammation, oxidative stress, and arrhythmogenesis | β2-AR activation on immune cells *→ #↑TNF-α, IL-1β, IL-6 | DCM [76], HCM [77], TTC [78], COVID-19 CM [79] |
Parasympathetic System [25,80] | Acetylcholine, VIP | Anti-inflammatory, cardioprotective | α7-nAChR activation *→ ^↓TNF-α, IL-1β via cholinergic anti-inflammatory pathway | DCM [81] |
Central Neural Integration [5] | Cortisol, CRH, AVP | Coordinates neuro-immune responses | HPA axis activation, microglial activation, and neuroinflammation | TTC [82] |
Inflammatory Cytokines [8] | TNF-α, IL-1β, IL-6, IL-10 | Impair contractility, promote fibrosis | Cross blood–brain barrier, affect autonomic centers | DCM [83], ACM [58], COVID-19 CM [84] |
Damage Signals (DAMPs) [8] | HMGB1, | Trigger sterile inflammation | Activate TLRs, modulated by vagal tone | ACM [58] |
Inflammasome Pathway [8] | NLRP3, Caspase-1, IL-1β | Mediates | Primed by β-adrenergic signaling, suppressed by cholinergic activity | DCM [85], HCM [86] |
Complement System [87] | C3a, C5a, MAC | Amplifies inflammatory responses | Activated by DAMPs, modulated by neural signals | DCM [88], ACM [89] |
Neurotransmitter [5] | Dopamine, Substance P, GABA | Modulates immune cell function | Receptor-mediated effects on T-cells, macrophages | DCM [90] |
Study/Therapy | Modality | Targeted Axis | Key Findings |
---|---|---|---|
INOVATE-HF [80] | Implantable VNS | Vagal anti-inflammatory | Improved QoL, 6MWD; no mortality benefit |
CardioFit [80] | Vagal stimulation | Parasympathetic enhancement | Improved functional capacity, mixed outcomes |
Transcutaneous VNS [25] | Non-invasive VNS | Cholinergic anti-inflammatory | *↑ HRV, #↓ IL-6 (~10–20%), improved exercise tolerance |
Baroreflex Activation [139] | Carotid sinus stimulation | Sympathetic suppression | Reduced sympathetic activity, improved HF symptoms |
Anti-IL-1β Therapy [8] | Canakinumab | Inflammatory cytokine blockade | Reduced cardiovascular events in inflammatory conditions |
Anti-TNF-α Therapy [87] | Etanercept, Infliximab | TNF-α neutralization | Mixed results in HF; potential in specific subtypes |
Beta-blocker Therapy [5] | Metoprolol, Carvedilol | Sympathetic + inflammatory blockade | Mortality benefit, #↓ inflammatory markers |
Spinal Cord Stimulation [140] | Thoracic SCS | Sympathetic modulation | Improved cardiac function in animal models |
Microbiome Modulation [138] | Probiotics, Dietary fiber | Gut–brain-heart axis | *↑ HRV, #↓ inflammatory markers |
Cardiac Rehabilitation [5] | Exercise + education | Multi-modal neuro-immune | Improved autonomic balance, *↓ inflammation |
Meditation/Mindfulness [141] | Stress reduction | HPA axis modulation | *↓ cortisol, improved HRV |
Selective VNS [25] | Targeted vagal stimulation | Efferent vagal fibers | Improved selectivity, reduced side effects |
Feature | Dilated CM | Hypertrophic CM | Takotsubo CM | Arrhythmogenic CM |
---|---|---|---|---|
Sympathetic Activity [5] | Chronic elevation | Enhanced responsiveness | Acute catecholamine storm | Exercise-induced elevation |
Vagal Function [25] | Severely impaired | Moderately reduced | Acutely suppressed | Progressive decline |
Primary Inflammatory Cytokines [8,87] | TNF-α, IL-6, IL-1β | IL-6, TGF-β | IL-1β, IL-6, TNF-α | TNF-α, IL-1β, IFN-γ |
Inflammatory Cell Types [8,87] | Macrophages, T-cells | Macrophages, Fibroblasts | Neutrophils, Macrophages | T-lymphocytes, Macrophages |
HRV Pattern [5,25] | Globally reduced | Selectively impaired | Acutely suppressed | Progressively reduced |
Baroreflex Sensitivity [5] | Markedly impaired | Moderately impaired | Acutely impaired | Variable impairment |
Neuroinflammation [5,8] | Chronic activation | Metabolic inflammation | Acute activation | Exercise-induced |
DAMP Release [8] | Chronic, progressive | Moderate, steady | Acute, massive | Episodic, exercise-related |
Complement Activation [87] | Moderate to high | Low to moderate | High, acute | Moderate, chronic |
Therapeutic Targets [8,80] | VNS, anti-IL-6, β-blockers | Anti-fibrotic, metabolic | Stress management, acute anti-inflammatory | Exercise restriction, anti-inflammatory |
Biomarker Profile [5,8] | *↑ TNF-α, *↑ IL-6, #↓ HRV | *↑ Galectin-3, *↑ TGF-β | *↑ Catecholamines, *↑ Troponin | *↑ Inflammatory markers with exercise |
Prognosis Modifiers [5,25] | Vagal function, inflammation | Metabolic status, fibrosis | Stress management, recurrence risk | Exercise patterns, inflammation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, D.; Dutta, P.; Chakraborty, A. The Neuro-Immune Axis in Cardiomyopathy: Molecular Mechanisms, Clinical Phenotypes, and Therapeutic Frontiers. Immuno 2025, 5, 45. https://doi.org/10.3390/immuno5040045
Saha D, Dutta P, Chakraborty A. The Neuro-Immune Axis in Cardiomyopathy: Molecular Mechanisms, Clinical Phenotypes, and Therapeutic Frontiers. Immuno. 2025; 5(4):45. https://doi.org/10.3390/immuno5040045
Chicago/Turabian StyleSaha, Dwaipayan, Preyangsee Dutta, and Abhijit Chakraborty. 2025. "The Neuro-Immune Axis in Cardiomyopathy: Molecular Mechanisms, Clinical Phenotypes, and Therapeutic Frontiers" Immuno 5, no. 4: 45. https://doi.org/10.3390/immuno5040045
APA StyleSaha, D., Dutta, P., & Chakraborty, A. (2025). The Neuro-Immune Axis in Cardiomyopathy: Molecular Mechanisms, Clinical Phenotypes, and Therapeutic Frontiers. Immuno, 5(4), 45. https://doi.org/10.3390/immuno5040045