-
Recent Advances in Remote Sensing and Artificial Intelligence for River Water Quality Forecasting: A Review
-
Remediating Per- and Polyfluoroalkyl Substances (PFAS)-Contaminated Water by Foam Fractionation and Electrochemical Oxidation
-
Urban Source Apportionment of Potentially Toxic Elements in Thessaloniki Using Syntrichia Moss Biomonitoring and PMF Modeling
Journal Description
Environments
Environments
is an international, peer-reviewed, open access journal on environmental sciences published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), PubAg, AGRIS, GeoRef, and other databases.
- Journal Rank: JCR - Q2 (Environmental Sciences) / CiteScore - Q1 (Ecology, Evolution, Behavior and Systematics)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 19.2 days after submission; acceptance to publication is undertaken in 3.4 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Testimonials: See what our editors and authors say about Environments.
Impact Factor:
3.7 (2024);
5-Year Impact Factor:
3.7 (2024)
Latest Articles
Analysis of Urban-Level Greenhouse Gas and Aerosol Variability at a Southern Italian WMO/GAW Observation Site: New Insights from Air Mass Aging Indicators Applied to Nine Years of Continuous Measurements
Environments 2025, 12(8), 275; https://doi.org/10.3390/environments12080275 (registering DOI) - 10 Aug 2025
Abstract
Gaseous pollutants and aerosols resulting from anthropic activities and natural phenomena require adequate source apportionment methodologies to be fully assessed. Furthermore, it is crucial to differentiate between fresh anthropogenic emissions and the atmospheric background. The proximity method based on the O3/NO
[...] Read more.
Gaseous pollutants and aerosols resulting from anthropic activities and natural phenomena require adequate source apportionment methodologies to be fully assessed. Furthermore, it is crucial to differentiate between fresh anthropogenic emissions and the atmospheric background. The proximity method based on the O3/NOx (ozone to nitrogen oxides) ratio has been used at the Lamezia Terme (code: LMT) World Meteorological Organization—Global Atmosphere Watch (WMO/GAW) regional station in Italy to determine the variability of CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), SO2 (sulfur dioxide), and eBC (equivalent black carbon), thus allowing the differentiation between local and remote sources of emission. Prior to this work, all O3/NOx ratios lower than 10 were grouped under the LOC (local) proximity category, thus including very low ratios (≤1), which are generally attributed by the literature to “urban” air masses, particularly enriched in anthropogenic emissions. This study, aimed at nine continuous years of measurements (2015–2023), introduces the URB category in the assessment of CO, CO2, CH4, SO2, and eBC variability at the LMT site, highlighting patterns and peaks in concentrations that were previously neglected. The daily cycle, which is locally influenced by wind circulation and Planetary Boundary Layer (PBL) dynamics, is particularly susceptible to urban-scale emissions and its analysis has allowed the highlighting of notable peaks in concentrations that were previously neglected. Correlations with wind corridors and speeds indicate that most evaluated parameters are linked to northeastern winds at LMT and wind speeds under 5.5 m/s. Weekly cycle analyses, i.e., differences between weekdays (MON-FRI) and weekends (SAT-SUN), have also highlighted tendencies driven by seasonality and wind corridors. The results highlight the potential of the URB category as a tool necessary to access a given area’s anthropogenic output and its impact on air quality and the environment.
Full article
Open AccessArticle
Spatiotemporal Dynamics of Urban Air Pollution in Dhaka City (2020–2024) Using Time-Series Sentinel-5P Satellite Images and Google Earth Engine (GEE)
by
Md. Mostafizur Rahman, Md. Kamruzzaman, Mst Ilme Faridatul and György Szabó
Environments 2025, 12(8), 274; https://doi.org/10.3390/environments12080274 (registering DOI) - 10 Aug 2025
Abstract
This study investigated the spatiotemporal dynamics of four major air pollutants—carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and ozone (O3)—across Dhaka from 2020 to 2024 using Sentinel-5P TROPOMI satellite data. A 60-month time-series analysis was
[...] Read more.
This study investigated the spatiotemporal dynamics of four major air pollutants—carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and ozone (O3)—across Dhaka from 2020 to 2024 using Sentinel-5P TROPOMI satellite data. A 60-month time-series analysis was conducted, integrating spatial mapping, seasonal composites, and Mann–Kendall trend testing. Results indicated clear seasonal variations: CO and NO2 concentrations peaked during winter, with maximum monthly averages of 0.05287 mol/m2 and 0.00035 mol/m2, respectively, while SO2 reached a high of 0.00043 mol/m2 in pre-monsoon months. In contrast, O3 peaked in May (0.13023 mol/m2), following an inverse seasonal trend driven by photochemical activity. Spatial analysis revealed persistent pollution hotspots in central-western zones like Tejgaon and Mirpur for CO and NO2, while SO2 was concentrated in southern industrial zones such as Keraniganj and Jatrabari. The Mann–Kendall test identified moderate to strong increasing trends for CO (τ = 0.8, p = 0.086 in June and September) and SO2 (τ = 0.8, p = 0.086 in April and May), although most trends lacked statistical significance due to the limited temporal window. This study demonstrates the viability of combining satellite remote sensing and cloud-based processing for urban air quality monitoring and provides actionable insights for targeted seasonal interventions and evidence-based policymaking in Dhaka’s evolving urban context.
Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
►▼
Show Figures

Figure 1
Open AccessArticle
Analysis and Evaluation of Sulfur Dioxide and Equivalent Black Carbon at a Southern Italian WMO/GAW Station Using the Ozone to Nitrogen Oxides Ratio Methodology as Proximity Indicator
by
Francesco D’Amico, Luana Malacaria, Giorgia De Benedetto, Salvatore Sinopoli, Teresa Lo Feudo, Daniel Gullì, Ivano Ammoscato and Claudia Roberta Calidonna
Environments 2025, 12(8), 273; https://doi.org/10.3390/environments12080273 (registering DOI) - 9 Aug 2025
Abstract
The measurement and evaluation of the atmospheric background levels of greenhouse gases (GHGs) and aerosols are useful to determine long-term tendencies and variabilities, and pinpoint peaks attributable to anthropogenic emissions and exceptional natural emissions such as volcanoes. At the Lamezia Terme (code: LMT)
[...] Read more.
The measurement and evaluation of the atmospheric background levels of greenhouse gases (GHGs) and aerosols are useful to determine long-term tendencies and variabilities, and pinpoint peaks attributable to anthropogenic emissions and exceptional natural emissions such as volcanoes. At the Lamezia Terme (code: LMT) World Meteorological Organization–Global Atmosphere Watch (WMO/GAW) observation site located in the south Italian region of Calabria, the “Proximity” methodology based on photochemical processes, i.e., the ratio of tropospheric ozone (O3) to nitrogen oxides (NOx) has been used to discriminate the local and remote atmospheric concentrations of GHGs. Local air masses are heavily affected by anthropogenic emissions while remote air masses are more representative of atmospheric background conditions. This study applies, to eight continuous years of measurements (2016–2023), the Proximity methodology to sulfur dioxide (SO2) for the first time, and also extends it to equivalent black carbon (eBC) to assess whether the methodology can be applied to aerosols. The results indicate that SO2 follows a peculiar pattern, with LOC (local) and BKG (background) levels being generally lower than their N–SRC (near source) and R–SRC (remote source), thus corroborating previous hypotheses on SO2 variability at LMT by which the Aeolian Arc of volcanoes and maritime traffic could be responsible for these concentration levels. The anomalous behavior of SO2 was assessed using the Proximity Progression Factor (PPF) introduced in this study, which provides a value representative of changes from local to background concentrations. This finding, combined with an evaluation of known sources on a regional scale, has been used to provide an estimate on the spatial resolution of proximity categories, which is one of the known limitations of this methodology. Furthermore, the results confirm the potential of using the Proximity methodology for aerosols, as eBC shows a pattern consistent with local sources of emissions, such as wildfires and other forms of biomass burning, being responsible for the observed peaks.
Full article
Open AccessReview
Pesticide Degradation: Impacts on Soil Fertility and Nutrient Cycling
by
Muhammad Yasir, Abul Hossain and Anubhav Pratap-Singh
Environments 2025, 12(8), 272; https://doi.org/10.3390/environments12080272 - 7 Aug 2025
Abstract
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both
[...] Read more.
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both abiotic and biotic, and the soil factors influencing these processes. It critically examines how degradation products impact soil microbial communities, organic matter decomposition, and key nutrient cycles, including nitrogen, phosphorus, potassium, and micronutrients. This review highlights emerging evidence linking pesticide residues with altered enzymatic activity, disrupted microbial populations, and reduced nutrient bioavailability, potentially compromising soil structure, water retention, and long-term productivity. Additionally, it discusses the broader environmental and agricultural implications, including decreased crop yields, biodiversity loss, and groundwater contamination. Sustainable management strategies such as bioremediation, the use of biochar, eco-friendly pesticides, and integrated pest management (IPM) are evaluated for mitigating these adverse effects. Finally, this review outlines future research directions emphasizing long-term studies, biotechnology innovations, and predictive modeling to support resilient agroecosystems. Understanding the intricate relationship between pesticide degradation and soil health is crucial to ensuring sustainable agriculture and food security.
Full article
(This article belongs to the Special Issue Coping with Climate Change: Fate of Nutrients and Pollutants in Soil)
►▼
Show Figures

Figure 1
Open AccessArticle
Multi-Criteria Assessment of the Environmental Sustainability of Agroecosystems in the North Benin Agricultural Basin Using Satellite Data
by
Mikhaïl Jean De Dieu Dotou Padonou, Antoine Denis, Yvon-Carmen H. Hountondji, Bernard Tychon and Gérard Nounagnon Gouwakinnou
Environments 2025, 12(8), 271; https://doi.org/10.3390/environments12080271 - 6 Aug 2025
Abstract
►▼
Show Figures
The intensification of anthropogenic pressures, particularly those related to agriculture driven by increasing demands for food and cash crops, generates negative environmental externalities. Assessing these externalities is essential to better identify and implement measures that promote the environmental sustainability of rural landscapes. This
[...] Read more.
The intensification of anthropogenic pressures, particularly those related to agriculture driven by increasing demands for food and cash crops, generates negative environmental externalities. Assessing these externalities is essential to better identify and implement measures that promote the environmental sustainability of rural landscapes. This study aims to develop a multi-criteria assessment method of the negative environmental externalities of rural landscapes in the northern Benin agricultural basin, based on satellite-derived data. Starting from a 12-class land cover map produced through satellite image classification, the evaluation was conducted in three steps. First, the 12 land cover classes were reclassified into Human Disturbance Coefficients (HDCs) via a weighted sum model multi-criteria analysis based on nine criteria related to the negative environmental externalities of anthropogenic activities. Second, the HDC classes were spatially aggregated using a regular grid of 1 km2 landscape cells to produce the Landscape Environmental Sustainability Index (LESI). Finally, various discretization methods were applied to the LESI for cartographic representation, enhancing spatial interpretation. Results indicate that most areas exhibit moderate environmental externalities (HDC and LESI values between 2.5 and 3.5), covering 63–75% (HDC) and 83–94% (LESI) of the respective sites. Areas of low environmental externalities (values between 1.5 and 2.5) account for 20–24% (HDC) and 5–13% (LESI). The LESI, derived from accessible and cost-effective satellite data, offers a scalable, reproducible, and spatially explicit tool for monitoring landscape sustainability. It holds potential for guiding territorial governance and supporting transitions towards more sustainable land management practices. Future improvements may include, among others, refining the evaluation criteria and introducing variable criteria weighting schemes depending on land cover or region.
Full article

Figure 1
Open AccessReview
Computer Vision for Low-Level Nuclear Waste Sorting: A Review
by
Tianshuo Li, Danielle E. Winckler and Zhong Li
Environments 2025, 12(8), 270; https://doi.org/10.3390/environments12080270 - 5 Aug 2025
Abstract
►▼
Show Figures
Nuclear power is a low-emission and economically competitive energy source, yet the effective disposal and management of its associated radioactive waste can be challenging. Radioactive waste can be categorised as high-level waste (HLW), intermediate-level waste (ILW), and low-level waste (LLW). LLW primarily comprises
[...] Read more.
Nuclear power is a low-emission and economically competitive energy source, yet the effective disposal and management of its associated radioactive waste can be challenging. Radioactive waste can be categorised as high-level waste (HLW), intermediate-level waste (ILW), and low-level waste (LLW). LLW primarily comprises materials contaminated during routine clean-up, such as mop heads, paper towels, and floor sweepings. While LLW is less radioactive compared to HLW and ILW, the management of LLW poses significant challenges due to the large volume that requires processing and disposal. The volume of LLW can be significantly reduced through sorting, which is typically performed manually in a labour-intensive way. Smart management techniques, such as computer vision (CV) and machine learning (ML), have great potential to help reduce the workload and human errors during LLW sorting. This paper provides a comprehensive review of previous research related to LLW sorting and a summative review of existing applications of CV in solid waste management. It also discusses state-of-the-art CV and ML algorithms and their potential for automating LLW sorting. This review lays a foundation for and helps facilitate the applications of CV and ML techniques in LLW sorting, paving the way for automated LLW sorting and sustainable LLW management.
Full article

Figure 1
Open AccessArticle
Assessment of 137Cs and 40K Transfer Factors in Croatian Agricultural Systems and Implications for Food Safety
by
Tomislav Bituh, Branko Petrinec, Dragutin Hasenay and Sanja Stipičević
Environments 2025, 12(8), 269; https://doi.org/10.3390/environments12080269 - 2 Aug 2025
Abstract
►▼
Show Figures
Croatian agricultural legislation acknowledges the significance of radionuclides as pollutants in agricultural lands; however, it lacks specific thresholds or reference values for contamination levels, in contrast to other contaminants. This absence highlights the necessity for a comprehensive assessment of radionuclides across various agricultural
[...] Read more.
Croatian agricultural legislation acknowledges the significance of radionuclides as pollutants in agricultural lands; however, it lacks specific thresholds or reference values for contamination levels, in contrast to other contaminants. This absence highlights the necessity for a comprehensive assessment of radionuclides across various agricultural systems in Croatia. This study investigates the transfer of radionuclides 137Cs and 40K from soil to agricultural crops throughout Croatia and estimates the consequent annual ingestion dose for the population. The samples collected comprised food crops and animal feed, with corresponding soil samples analyzed to calculate transfer factors. Activity concentrations of 137Cs exhibited regional and crop-type variability, reflecting the uneven distribution of fallout and differing soil properties. Transfer factors were found to range from 0.003 to 0.06 for 137Cs and from 0.15 to 3.1 for 40K, with the highest uptake occurring in kidney beans. The total estimated annual effective ingestion dose was calculated to be a maximum of 0.748 mSv/year for children aged 2–7, predominantly attributable to 40K. Given the homeostatic regulation of potassium in the human body, the dose associated with 137Cs poses a more significant radiological concern. These findings underscore the need for radionuclide-specific agricultural legislation in Croatia and offer a baseline for recommending reference values and informing future regulations regarding agricultural soil contamination.
Full article

Figure 1
Open AccessEditorial
Sustainable Water Resource Management: Challenges and Opportunities
by
Pengxiao Zhou, Qianqian Zhang, Fei Zhang and Zoe Li
Environments 2025, 12(8), 268; https://doi.org/10.3390/environments12080268 - 1 Aug 2025
Abstract
Water is a basic human necessity, and the amount of water on Earth remains fairly constant [...]
Full article
(This article belongs to the Special Issue Hydrological Modeling and Sustainable Water Resources Management)
Open AccessArticle
Long-Term Performance of Passive Volatile Organic Compounds (VOCs) Samplers for Indoor Air
by
John H. Zimmerman, Brian Schumacher, Christopher C. Lutes, Brian Cosky and Heidi Hayes
Environments 2025, 12(8), 267; https://doi.org/10.3390/environments12080267 - 31 Jul 2025
Abstract
►▼
Show Figures
The reliability of passive samplers in measuring volatile organic compounds (VOCs) in indoor air depends on whether the uptake rate is constant given the environmental conditions and sampler exposure duration. The first phase of this study evaluated the performance of charcoal-based, solvent-extracted passive
[...] Read more.
The reliability of passive samplers in measuring volatile organic compounds (VOCs) in indoor air depends on whether the uptake rate is constant given the environmental conditions and sampler exposure duration. The first phase of this study evaluated the performance of charcoal-based, solvent-extracted passive samplers (e.g., Radiello® 130 passive samplers with white diffusive bodies) over exposure periods ranging from 1 week to 1 year in a test house with known vapor intrusion (VI). Chloroform %Bias values exceeded the ±30% acceptance criterion after 4 weeks exposure. Benzene, hexane, and trichloroethylene (TCE) concentrations were within the acceptance criterion for up to three months. Toluene and tetrachloroethylene (PCE), the two least volatile compounds, demonstrated uniform uptake rates over one year. In the second phase of this study, testing of the longer exposure times of 6 months and 1 year were evaluated with three additional passive samplers: Waterloo Membrane SamplerTM (WMSTM), SKC 575 with secondary diffusive cover, and Radiello® 130 passive samplers with yellow diffusive bodies. The SKC 575 and Radiello® 130 passive samplers produced acceptable results (%Bias ≤ 30%) over the 6-month exposure period, while the WMSTM sampler results favored petroleum hydrocarbon more than chlorinated solvent uptake. After the 1-year exposure period, the passive sampler performances were acceptable under specific conditions of this study. The results suggest that all three samplers can produce acceptable results over exposure time periods beyond 30 days and up to a year for some compounds.
Full article

Figure 1
Open AccessArticle
Infrasound-Altered Pollination in a Common Western North American Plant: Evidence from Wind Turbines and Railways
by
Lusha M. Tronstad, Madison Mazur, Lauren Thelen-Wade, Delina Dority, Alexis Lester, Michelle Weschler and Michael E. Dillon
Environments 2025, 12(8), 266; https://doi.org/10.3390/environments12080266 - 31 Jul 2025
Abstract
►▼
Show Figures
Anthropogenic noise can have diverse effects on natural ecosystems, but less is known about the degree to which noise can alter organisms in comparison to other disturbances. A variety of frequencies are produced by man-made objects, ranging from high to low frequencies, and
[...] Read more.
Anthropogenic noise can have diverse effects on natural ecosystems, but less is known about the degree to which noise can alter organisms in comparison to other disturbances. A variety of frequencies are produced by man-made objects, ranging from high to low frequencies, and we studied infrasound (<20 Hz) produced by wind turbines and trains. We estimated the number, mass and viability of seeds produced by flowers of Plains pricklypear (Opuntia polyacantha Haw.) that were left open to pollinators, hand-pollinated or bagged to exclude pollinators. Each pollination treatment was applied to plants at varying distances from wind turbines and railways (≤25 km). Self-pollinated Opuntia polyacantha and plants within the wind facility produced ≥1.6 times more seeds in the bagged treatments compared to more distant sites. Seed mass and the percent of viable seeds decreased with distance from infrasound. Viability of seeds was >70% for most treatments and sites. If wind facilities, railways and other man-made structures produce infrasound that increases self-pollination, crops and native plants near sources may produce heavier seeds with higher viability in the absence of pollinators, but genetic diversity of plants may decline due to decreased cross-pollination.
Full article

Figure 1
Open AccessArticle
Classification of Agricultural Soils in Manica and Sussundenga (Mozambique)
by
Mário J. S. L. Pereira, João M. M. Leitão and Joaquim Esteves da Silva
Environments 2025, 12(8), 265; https://doi.org/10.3390/environments12080265 - 31 Jul 2025
Abstract
Mozambique soils are known for having an unbalanced agronomic and environmental composition that results in poor agricultural production yields. However, agriculture is the main economic activity of Mozambique, and soils must be characterised for their elemental deficiencies and/or excesses. This paper sampled nine
[...] Read more.
Mozambique soils are known for having an unbalanced agronomic and environmental composition that results in poor agricultural production yields. However, agriculture is the main economic activity of Mozambique, and soils must be characterised for their elemental deficiencies and/or excesses. This paper sampled nine farms from the Manica and Sussundenga districts (Manica province) in three campaigns in 2021/2022, 2022/2023, and 2023/2024 (before and after the rainy seasons). They were subjected to a physical–chemical analysis to assess their quality from the fertility and environmental contamination point of view. Attending to the physical–chemical properties analysed, and for all the soils and sampling campaigns, a low concentration below the limit of detection for B of <0.2 mg/Kg for the majority of soils and a low concentration of Al < 0.025 mg/Kg for all the soils were obtained. Also, higher concentrations for the majority of soils for the Ca between 270 and 1634 mg/Kg, for the Mg between 41 and 601 mg/Kg, for the K between 17 and 406 mg/Kg, for the Mn between 13.6 and 522 mg/Kg, for the Fe between 66.3 and 243 mg/Kg, and for the P between <20 and 132 mg/Kg were estimated. In terms of texture and for the sand, a high percentage between 6.1 and 79% was found. In terms of metal concentrations and for all the soils of the Sussundenga district and sampling campaigns, a concentration above the reference value concentration for the Cr (76–1400 mg/Kg) and a concentration below the reference value concentration for the Pb (5–19 mg/Kg), Ba (13–120 mg/Kg) and for the Zn (10–61 mg/Kg) were evaluated. A multivariate data analysis methodology was used based on cluster and discriminant analysis. The analysis of twenty-three physical–chemical variables of the soils suggested four clusters of soils characterised by deficiencies and excess elements that must be corrected to improve the yield and quality of agricultural production. Moreover, the multivariate analysis of the metal composition of soil samples from the second and third campaigns, before and after the rainy season, suggested five clusters with a pristine composition and different metal pollutant compositions and concentrations. The information obtained in this study allows for the scientific comprehension of agricultural soil quality, which is crucial for designing agronomic and environmental corrective measures to improve food quality and quantity in the Manica and Sussundenga districts and ensure environmental, social, and economic sustainability.
Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Soil Contamination and Remediation)
►▼
Show Figures

Figure 1
Open AccessArticle
Environmental Behavior of Novel “Smart” Anti-Corrosion Nanomaterials in a Global Change Scenario
by
Mariana Bruni, Joana Figueiredo, Fernando C. Perina, Denis M. S. Abessa and Roberto Martins
Environments 2025, 12(8), 264; https://doi.org/10.3390/environments12080264 - 31 Jul 2025
Abstract
►▼
Show Figures
Maritime corrosion is a global problem often retarded through protective coatings containing corrosion inhibitors (CIs). ZnAl layered double hydroxides (LDH) have been used to immobilize CIs, which can reduce their early leaching and, thus, foster long-term corrosion protection. However, the environmental behavior of
[...] Read more.
Maritime corrosion is a global problem often retarded through protective coatings containing corrosion inhibitors (CIs). ZnAl layered double hydroxides (LDH) have been used to immobilize CIs, which can reduce their early leaching and, thus, foster long-term corrosion protection. However, the environmental behavior of these nanomaterials remains largely unknown, particularly in the context of global changes. The present study aims to assess the environmental behavior of four anti-corrosion nanomaterials in an ocean acidification scenario (IPCC SSP3-7.0). Three different concentrations of the nanostructured CIs (1.23, 11.11, and 100 mg L−1) were prepared and maintained at 20 °C and 30 °C in artificial salt water (ASW) at two pH values, with and without the presence of organic matter. The nanomaterials’ particle size and the release profiles of Al3+, Zn2+, and anions were monitored over time. In all conditions, the hydrodynamic size of the dispersed nanomaterials confirmed that the high ionic strength favors their aggregation/agglomeration. In the presence of organic matter, dissolved Al3+ increased, while Zn2+ decreased, and increased in the ocean acidification scenario at both temperatures. CIs were more released in the presence of humic acid. These findings demonstrate the influence of the tested parameters in the nanomaterials’ environmental behavior, leading to the release of metals and CIs.
Full article

Figure 1
Open AccessArticle
Dispersal Patterns of Euphydryas aurinia provincialis (Lepidoptera: Nymphalidae) in the Colfiorito Highlands, Central Italy
by
Andrea Brusaferro, Silvia Marinsalti, Federico Maria Tardella, Emilio Insom and Antonietta La Terza
Environments 2025, 12(8), 263; https://doi.org/10.3390/environments12080263 - 30 Jul 2025
Abstract
►▼
Show Figures
We investigated the dispersal ability of Euphydryas aurinia provincialis in a local-scale analysis within a single habitat patch of the Colfiorito highlands metapopulation. Our findings indicate that inside a single node, the organization of nesting patches can be conceptualized as a metapopulation itself,
[...] Read more.
We investigated the dispersal ability of Euphydryas aurinia provincialis in a local-scale analysis within a single habitat patch of the Colfiorito highlands metapopulation. Our findings indicate that inside a single node, the organization of nesting patches can be conceptualized as a metapopulation itself, where reproductive sites, despite their spatial proximity, can act as either source or sink habitats depending on environmental conditions. We conducted fieldwork in six nesting patches inside a single node, capturing, marking, and recapturing individuals to assess their spatial distribution and movement tendencies at a large landscape scale. We found a high degree of site fidelity among individuals, with many recaptures occurring within the original marking site, but also a sex-based difference in movement patterns; females dispersed farther than males, likely driven by reproductive strategies, while males remained more localized, prioritizing mate-searching. Our findings suggest a complex dynamic in habitat connectivity: pastures and abandoned fields, despite being open, seem to act like sink areas, while breeding sites with shrub and tree cover act as source habitats, offering optimal conditions for reproduction. Individuals, especially females, from these source areas were later compelled to disperse into open habitats, highlighting a nuanced interaction between landscape structure and population dynamics. These results highlight the importance of maintaining habitat corridors to support metapopulation dynamics and prevent genetic isolation; the abandonment of traditional grazing practices is leading to the rapid closure of these source habitats, posing a severe risk of local extinction. Conservation efforts should prioritize the preservation of these source habitats to ensure the long-term viability of E. a. provincialis populations in fragmented landscapes.
Full article

Figure 1
Open AccessArticle
Using Community-Based Social Marketing to Promote Pro-Environmental Behavior in Municipal Solid Waste Management: Evidence from Norte de Santander, Colombia
by
Myriam Carmenza Sierra Puentes, Elkin Manuel Puerto-Rojas, Sharon Naomi Correa-Galindo and Jose Alejandro Aristizábal Cuellar
Environments 2025, 12(8), 262; https://doi.org/10.3390/environments12080262 - 30 Jul 2025
Abstract
►▼
Show Figures
The sustainable management of Municipal Solid Waste (MSW) relies heavily on community participation in separating it at the source and delivering it to collection systems. These practices are crucial for reducing pollution, protecting ecosystems, and maximizing resource recovery. However, in the Global South
[...] Read more.
The sustainable management of Municipal Solid Waste (MSW) relies heavily on community participation in separating it at the source and delivering it to collection systems. These practices are crucial for reducing pollution, protecting ecosystems, and maximizing resource recovery. However, in the Global South context, with conditions of socioeconomic vulnerability, community participation in the sustainable management of MSW remains limited, highlighting the need to generate context-specific interventions. MSW includes items such as household appliances, batteries, and electronic devices, which require specialized handling due to their size, hazardous components, or material complexity. This study implemented a Community-Based Social Marketing approach during the research and design phases of an intervention focused on promoting source separation and management of hard-to-manage MSW in five municipalities within the administrative region of Norte de Santander (Colombia), which borders Venezuela. Using a mixed-methods approach, we collected data from 1775 individuals (63.83% women; M age = 33.48 years; SD = 17.25), employing social mapping, focus groups, semi-structured interviews, participant observation, and a survey questionnaire. The results show that the source separation and delivery of hard-to-manage MSW to collection systems are limited by a set of psychosocial, structural, and institutional barriers that interact with each other, affecting communities’ willingness and capacity for action. Furthermore, a prediction model of willingness to engage in separation and delivery behaviors showed a good fit (R2 = 0.83). The strongest predictors were awareness of the negative consequences of non-participation and perceived environmental benefits, with subjective norms contributing to a lesser extent. Based on these results, we designed a context-specific intervention focused on reducing these barriers and promoting community engagement in the sustainable management of hard-to-manage MSW.
Full article

Figure 1
Open AccessReview
Impact of Indoor Air Quality, Including Thermal Conditions, in Educational Buildings on Health, Wellbeing, and Performance: A Scoping Review
by
Duncan Grassie, Kaja Milczewska, Stijn Renneboog, Francesco Scuderi and Sani Dimitroulopoulou
Environments 2025, 12(8), 261; https://doi.org/10.3390/environments12080261 - 30 Jul 2025
Abstract
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences
[...] Read more.
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences of poor—and benefits of good—IAQ and thermal conditions are evaluated, focusing on source control, ventilation and air purification interventions. Economic impacts of interventions in educational buildings have been evaluated to enable the assessment of tangible building-related costs and savings, alongside less easily quantifiable improvements in educational attainment and reduced healthcare. Key recommendations are provided to assist decision makers in pathways to provide clean air, at an optimal temperature for students’ learning and health outcomes. Although the role of educational buildings can be challenging to isolate from other socio-economic confounders, secondary short- and long-term impacts on attainment and absenteeism have been demonstrated from the health effects associated with various pollutants. Sometimes overlooked, source control and repairing existing damage can be important cost-effective methods in minimising generation and preventing ingress of pollutants. Existing ventilation standards are often not met, even when mechanical and hybrid ventilation systems are already in place, but can often be achieved with a fraction of a typical school budget through operational and maintenance improvements, and small-scale air-cleaning and ventilation technologies, where necessary.
Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Allometric Equations for Aboveground Biomass Estimation in Wet Miombo Forests of the Democratic Republic of the Congo Using Terrestrial LiDAR
by
Jonathan Ilunga Muledi, Stéphane Takoudjou Momo, Pierre Ploton, Augustin Lamulamu Kamukenge, Wilfred Kombe Ibey, Blaise Mupari Pamavesi, Benoît Amisi Mushabaa, Mylor Ngoy Shutcha, David Nkulu Mwenze, Bonaventure Sonké, Urbain Mumba Tshanika, Benjamin Toirambe Bamuninga, Cléto Ndikumagenge and Nicolas Barbier
Environments 2025, 12(8), 260; https://doi.org/10.3390/environments12080260 - 29 Jul 2025
Abstract
►▼
Show Figures
Accurate assessments of aboveground biomass (AGB) stocks and their changes in extensive Miombo forests are challenging due to the lack of site-specific allometric equations (AEs). Terrestrial Laser Scanning (TLS) is a non-destructive method that enables the calibration of AEs and has recently been
[...] Read more.
Accurate assessments of aboveground biomass (AGB) stocks and their changes in extensive Miombo forests are challenging due to the lack of site-specific allometric equations (AEs). Terrestrial Laser Scanning (TLS) is a non-destructive method that enables the calibration of AEs and has recently been validated by the IPCC guidelines for carbon accounting within the REDD+ framework. TLS surveys were carried out in five non-contiguous 1-ha plots in two study sites in the wet Miombo forest of Katanga, in the Democratic Republic Congo. Local wood densities (WD) were determined from wood cores taken from 619 trees on the sites. After a careful checking of Quantitative Structure Models (QSMs) output, the individual volumes of 213 trees derived from TLS data processing were converted to AGB using WD. Four AEs were calibrated using different predictors, and all presented strong performance metrics (e.g., R2 ranging from 90 to 93%), low relative bias and relative individual mean error (11.73 to 16.34%). Multivariate analyses performed on plot floristic and structural data showed a strong contrast in terms of composition and structure between sites and between plots within sites. Even though the whole variability of the biome has not been sampled, we were thus able to confirm the transposability of results within the wet Miombo forests through two cross-validation approaches. The AGB predictions obtained with our best AE were also compared with AEs found in the literature. Overall, an underestimation of tree AGB varying from −35.04 to −19.97% was observed when AEs from the literature were used for predicting AGB in the Miombo of Katanga.
Full article

Figure 1
Open AccessReview
Machine Learning for Flood Resiliency—Current Status and Unexplored Directions
by
Venkatesh Uddameri and E. Annette Hernandez
Environments 2025, 12(8), 259; https://doi.org/10.3390/environments12080259 - 28 Jul 2025
Abstract
A systems-oriented review of machine learning (ML) over the entire flood management spectrum, encompassing fluvial flood control, pluvial flood management, and resiliency-risk characterization was undertaken. Deep learners like long short-term memory (LSTM) networks perform well in predicting reservoir inflows and outflows. Convolution neural
[...] Read more.
A systems-oriented review of machine learning (ML) over the entire flood management spectrum, encompassing fluvial flood control, pluvial flood management, and resiliency-risk characterization was undertaken. Deep learners like long short-term memory (LSTM) networks perform well in predicting reservoir inflows and outflows. Convolution neural networks (CNNs) and other object identification algorithms are being explored in assessing levee and flood wall failures. The use of ML methods in pump station operations is limited due to lack of public-domain datasets. Reinforcement learning (RL) has shown promise in controlling low-impact development (LID) systems for pluvial flood management. Resiliency is defined in terms of the vulnerability of a community to floods. Multi-criteria decision making (MCDM) and unsupervised ML methods are used to capture vulnerability. Supervised learning is used to model flooding hazards. Conventional approaches perform better than deep learners and ensemble methods for modeling flood hazards due to paucity of data and large inter-model predictive variability. Advances in satellite-based, drone-facilitated data collection and Internet of Things (IoT)-based low-cost sensors offer new research avenues to explore. Transfer learning at ungauged basins holds promise but is largely unexplored. Explainable artificial intelligence (XAI) is seeing increased use and helps the transition of ML models from black-box forecasters to knowledge-enhancing predictors.
Full article
(This article belongs to the Special Issue Hydrological Modeling and Sustainable Water Resources Management)
►▼
Show Figures

Figure 1
Open AccessReview
Environmental Detection of Coccidioides: Challenges and Opportunities
by
Tanzir Hossain, Gabriel Ibarra-Mejia, Adriana L. Romero-Olivares and Thomas E. Gill
Environments 2025, 12(8), 258; https://doi.org/10.3390/environments12080258 - 28 Jul 2025
Abstract
Valley fever (coccidioidomycosis) is an infection posing a significant human health risk, resulting from the soil-dwelling fungi Coccidioides. Although incidence and mortality from coccidioidomycosis are underreported in the United States, and this underreporting may impact public health policy in numerous jurisdictions, its
[...] Read more.
Valley fever (coccidioidomycosis) is an infection posing a significant human health risk, resulting from the soil-dwelling fungi Coccidioides. Although incidence and mortality from coccidioidomycosis are underreported in the United States, and this underreporting may impact public health policy in numerous jurisdictions, its incidence is rising. Underreporting may stem from diagnostic and testing difficulties, insufficient environmental sampling for pathogen detection to determine endemicity, and a shortage of data on Coccidioides dispersion. As climate change creates increasingly arid locations in the US favorable for Coccidioides proliferation, determining its total endemicity becomes more difficult. This literature review examining published research from 2000 to 2025 revealed a paucity of publications examining the endemicity of Coccidioides and research gaps in detection methods, including limited studies on the reliability of sampling for geographical and temporal variations, challenges in assessing various sample materials, poorly defined storage conditions, and the lack of precise, less restrictive, cost-effective laboratory procedures. Addressing these challenges requires interdisciplinary collaboration among Coccidioides researchers, wildlife experts, atmospheric and climate scientists, and policymakers. If these obstacles are solved, standardized approaches for identifying Coccidioides, classified by climate zones and ecoregions, could be developed, saving financial resources, labor, and time for future researchers studying the environmental drivers of coccidioidomycosis.
Full article
(This article belongs to the Special Issue Environmental Challenges and Sustainable Contributions to the One Health Approach)
Open AccessArticle
Assessing Pharmaceuticals in Bivalves and Microbial Sewage Contamination in Hout Bay, Cape Town: Identifying Impact Zones in Coastal and Riverine Environments
by
Cecilia Y. Ojemaye, Amy Beukes, Justin Moser, Faith Gara, Jo Barnes, Lesley Petrik and Lesley Green
Environments 2025, 12(8), 257; https://doi.org/10.3390/environments12080257 - 28 Jul 2025
Abstract
►▼
Show Figures
This study investigates the implications of sewage contamination in the coastal and riverine environments of Hout Bay, Cape Town, South Africa. Chemical analyses were applied to quantify the presence of pollutants such as pharmaceutical and personal care products (PPCPs) in sentinel marine organisms
[...] Read more.
This study investigates the implications of sewage contamination in the coastal and riverine environments of Hout Bay, Cape Town, South Africa. Chemical analyses were applied to quantify the presence of pollutants such as pharmaceutical and personal care products (PPCPs) in sentinel marine organisms such as mussels, as well as microbial indicators of faecal contamination in river water and seawater, for estimating the extent of impact zones in the coastal environment of Hout Bay. This research investigated the persistent pharmaceuticals found in marine outfall wastewater effluent samples in Hout Bay, examining whether these substances were also detectable in marine biota, specifically focusing on Mytilus galloprovincialis mussels. The findings reveal significant levels of sewage-related pollutants in the sampled environments, with concentrations ranging from 32.74 to 43.02 ng/g dry weight (dw) for acetaminophen, up to 384.96 ng/g for bezafibrate, and as high as 338.56 ng/g for triclosan. These results highlight persistent PPCP contamination in marine organisms, with increasing concentrations observed over time, suggesting a rise in population and pharmaceutical use. Additionally, microbial analysis revealed high levels of E. coli in the Hout Bay River, particularly near stormwater from the Imizamo Yethu settlement, with counts exceeding 8.3 million cfu/100 mL. These findings underscore the significant impact of untreated sewage on the environment. This study concludes that current sewage treatment is insufficient to mitigate pollution, urging the implementation of more effective wastewater management practices and long-term monitoring of pharmaceutical levels in marine biota to protect both the environment and public health.
Full article

Figure 1
Open AccessArticle
Chemometric Evaluation of 16 Priority PAHs in Soil and Roots of Syringa vulgaris and Ficus carica from the Bor Region (Serbia): An Insight into the Natural Plant Potential for Soil Phytomonitoring and Phytoremediation
by
Aleksandra D. Papludis, Slađana Č. Alagić, Snežana M. Milić, Jelena S. Nikolić, Snežana Č. Jevtović, Vesna P. Stankov Jovanović and Gordana S. Stojanović
Environments 2025, 12(8), 256; https://doi.org/10.3390/environments12080256 - 28 Jul 2025
Abstract
►▼
Show Figures
The soil phytomonitoring and phytostabilization potential of Syringa vulgaris and Ficus carica was evaluated regarding 16 priority polycyclic aromatic hydrocarbons (PAHs) using a chemometric approach and the calculation of bioconcentration factors (BCFs) for each individual PAH in plants’ roots from each selected location
[...] Read more.
The soil phytomonitoring and phytostabilization potential of Syringa vulgaris and Ficus carica was evaluated regarding 16 priority polycyclic aromatic hydrocarbons (PAHs) using a chemometric approach and the calculation of bioconcentration factors (BCFs) for each individual PAH in plants’ roots from each selected location in the Bor region. PAHs in roots and the corresponding soils were analyzed using the QuEChERS (Quick, Effective, Cheap, Easy, Rugged, Safe) method with some new modifications, gas chromatography/mass spectrometry, Pearson’s correlation study, hierarchical cluster analysis, and BCFs. Several central conclusions are as follows: Each plant species developed its own specific capability for PAH management, and root concentrations ranged from not detected (for several compounds) to 5592 μg/kg (for fluorene in S. vulgaris). In some cases, especially regarding benzo(a)pyrene and chrysene, both plants had a similar tactic—the total avoidance of assimilation (probably due to their high toxicity). Both plants retained significant quantities of different PAHs in their roots (many calculated BCFs were higher than 1 or were even extremely high), which recommends them for PAH phytostabilization (especially fluorene, benzo(b)fluoranthene, and benzo(k)fluoranthene). In soil monitoring, neither of the plants are helpful because their roots do not reflect the actual situation found in soil. Finally, the analysis of the corresponding soils provided useful monitoring information.
Full article

Graphical abstract

Journal Menu
► ▼ Journal Menu-
- Environments Home
- Aims & Scope
- Editorial Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Topical Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Agriculture, Atmosphere, Sustainability, Land, Environments, Agronomy, Energies
Greenhouse Gas Emission Reductions and Carbon Sequestration in Agriculture
Topic Editors: Dimitrios Aidonis, Dionysis Bochtis, Charisios AchillasDeadline: 31 August 2025
Topic in
Agriculture, Analytica, Chemistry, Environments, JoX
Exploring the Interplay of Agriculture, Analytical Chemistry, Environments and Toxics
Topic Editors: Bruno Lemos Batista, Tatiana Pedron, Camila Neves LangeDeadline: 20 September 2025
Topic in
Clean Technol., Environments, Pollutants, Sustainability, Toxics
New Advances in Adsorptive and Extractive Methods for Pollutant Removal
Topic Editors: Rui Wang, Xinpeng Liu, Yunqian Ma, Kai ZhangDeadline: 29 September 2025
Topic in
Processes, Separations, Water, Environments
Advanced Processes and Technologies for Wastewater: Collection, Treatment, and Resource
Topic Editors: Zhiqiang Zhang, Heliang PangDeadline: 31 October 2025

Conferences
Special Issues
Special Issue in
Environments
Environmental Risk Assessment of Aquatic Ecosystem, 2nd Edition
Guest Editors: Qi Wang, Huiju Lin, Mengyang LiuDeadline: 25 August 2025
Special Issue in
Environments
Environmental Pollution Risk Assessment
Guest Editors: Tilemachos K. Koliopoulos, Gregorio GarcíaDeadline: 25 August 2025
Special Issue in
Environments
Air Pollution in Urban and Industrial Areas III
Guest Editors: Valerio Paolini, Francesco PetracchiniDeadline: 25 August 2025
Special Issue in
Environments
Monitoring and Assessment of Environmental Quality in Coastal Ecosystems, 4th Edition
Guest Editor: Sílvia C. GonçalvesDeadline: 15 September 2025
Topical Collections
Topical Collection in
Environments
Trends and Innovations in Environmental Impact Assessment
Collection Editor: Manuel Duarte Pinheiro