Exclusive Collection: Papers from the Editorial Board Members (EBMs) of ChemEngineering

A special issue of ChemEngineering (ISSN 2305-7084).

Deadline for manuscript submissions: closed (25 December 2023) | Viewed by 9929

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
Interests: chemical engineering; supercritical fluids; antioxidants; thermodynamics; modelling; food technology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This is a Special Issue comprising high-quality papers in open-access format authored by the Editorial Board Members of ChemEngineering, or those recommended and invited by the Editorial Board Members and the Editor-in-Chief.

Papers on any area covered by the scope of the journal are welcome.

Dr. George Z. Papageorgiou
Dr. José P. Coelho
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. ChemEngineering is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • process engineering
  • transport phenomena 
  • artificial intelligence solutions
  • product engineering
  • materials engineering
  • molecular engineering
  • energy and environmental engineering
  • chemical and catalytic reaction engineering
  • advanced process control
  • process intensification

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 5702 KiB  
Article
Ketoprofen Photodegradation Kinetics Promoted by TiO2
by Rosanna Paparo, Alessia Viscovo, Marco Trifuoggi, Martino Di Serio and Vincenzo Russo
ChemEngineering 2024, 8(5), 90; https://doi.org/10.3390/chemengineering8050090 - 5 Sep 2024
Viewed by 900
Abstract
Ketoprofen is a non-biodegradable drug and is not removed by conventional treatments. The need to remove pharmaceutical compounds from water and wastewater has aroused considerable interest in advanced oxidation processes (AOP), whose effectiveness depends on the generation of reactive free radicals capable of [...] Read more.
Ketoprofen is a non-biodegradable drug and is not removed by conventional treatments. The need to remove pharmaceutical compounds from water and wastewater has aroused considerable interest in advanced oxidation processes (AOP), whose effectiveness depends on the generation of reactive free radicals capable of oxidizing and decomposing numerous compounds. Heterogeneous photocatalysis is an efficient method if an active semiconductor is used. In this work, the photodegradation reaction of ketoprofen promoted by TiO2 was studied, analyzing the kinetics obtained by changing variables such as temperature, initial concentration, and quantity of photocatalyst. It was determined that the mechanism is of the Langmuir–Hinshelwood type and that the system is operating in the kinetic regime, while tests at different temperatures have shown that the adsorption of ketoprofen and byproducts are both exothermic. Experimental data were interpreted with reliable models that allow to retrieve quantitatively the kinetic and thermodynamic parameters. Full article
Show Figures

Figure 1

30 pages, 12189 KiB  
Article
Recent Progress in the Viscosity Modeling of Concentrated Suspensions of Unimodal Hard Spheres
by Rajinder Pal
ChemEngineering 2023, 7(4), 70; https://doi.org/10.3390/chemengineering7040070 - 27 Jul 2023
Cited by 9 | Viewed by 3187
Abstract
The viscosity models for concentrated suspensions of unimodal hard spheres published in the twenty-first century are reviewed, compared, and evaluated using a large pool of available experimental data. The Pal viscosity model for unimodal suspensions is the best available model in that the [...] Read more.
The viscosity models for concentrated suspensions of unimodal hard spheres published in the twenty-first century are reviewed, compared, and evaluated using a large pool of available experimental data. The Pal viscosity model for unimodal suspensions is the best available model in that the predictions of this model agree very well with the low (zero)-shear experimental relative viscosity data for coarse suspensions, nanosuspensions, and coarse suspensions thickened by starch nanoparticles. The average percentage error in model predictions is less than 6.5%. Finally, the viscous behavior of concentrated multimodal suspensions is simulated using the Pal model for unimodal suspensions. Full article
Show Figures

Figure 1

10 pages, 3321 KiB  
Article
Prediction of Particle Size Distribution of Mill Products Using Artificial Neural Networks
by Akira Otsuki and Hyongdoo Jang
ChemEngineering 2022, 6(6), 92; https://doi.org/10.3390/chemengineering6060092 - 25 Nov 2022
Cited by 1 | Viewed by 2189
Abstract
High energy consumption in size reduction operations is one of the most significant issues concerning the sustainability of raw material beneficiation. Thus, process optimization should be done to reduce energy consumption. This study aimed to investigate the applicability of artificial neural networks (ANNs) [...] Read more.
High energy consumption in size reduction operations is one of the most significant issues concerning the sustainability of raw material beneficiation. Thus, process optimization should be done to reduce energy consumption. This study aimed to investigate the applicability of artificial neural networks (ANNs) to predict the particle size distributions (PSDs) of mill products. PSD is one of the key sources of information after milling since it significantly affects the subsequent beneficiation processes. Thus, precise PSD prediction can contribute to process optimization and energy consumption reduction by avoiding over-grinding. In this study, coal particles (−2 mm) were ground with a rod mill under different conditions, and their PSDs were measured. The variables studied included volume% (vol.%) of feed (coal particle), vol.% rod load, and grinding time. Our supervised ANN models were developed to predict PSDs and trained by experimental data sets. The trained models were verified with the other experimental data sets. The results showed that the PSDs predicted by ANN fitted very well with the experimental data after the training. Root mean squared error (RMSE) was calculated for each milling condition, with results between 0.165 and 0.965. Also, the developed ANN models can predict the PSDs of ground products under different milling conditions (i.e., vol.% feed, vol.% rod load, and grinding time). The results confirmed the applicability of ANNs to predict PSD and, thus the potential contribution to reducing energy consumption by optimizing the grinding conditions. Full article
Show Figures

Figure 1

16 pages, 2087 KiB  
Article
Optimization of Oil Recovery from Japonica Luna Rice Bran by Supercritical Carbon Dioxide Applying Design of Experiments: Characterization of the Oil and Mass Transfer Modeling
by José P. Coelho, Maria Paula Robalo, Inês S. Fernandes and Roumiana P. Stateva
ChemEngineering 2022, 6(4), 63; https://doi.org/10.3390/chemengineering6040063 - 10 Aug 2022
Cited by 2 | Viewed by 2361
Abstract
This study presents an optimization strategy for recovery of oil from Japonica Luna rice bran using supercritical carbon dioxide (scCO2), based on design of experiments (DoE). Initially, a 24−1 two level fractional factorial design (FFD) was used, and pressure, temperature, [...] Read more.
This study presents an optimization strategy for recovery of oil from Japonica Luna rice bran using supercritical carbon dioxide (scCO2), based on design of experiments (DoE). Initially, a 24−1 two level fractional factorial design (FFD) was used, and pressure, temperature, and scCO2 flow rate were determined as the significant variables; while the yield, total flavonoids content (TFC), and total polyphenols content (TPC) were the response functions used to analyze the quality of the extracts recovered. Subsequently, central composite design (CCD) was applied to examine the effects of the significant variables on the responses and create quadratic surfaces that optimize the latter. The following values of pressure = 34.35 MPa, temperature = 339.5 K, and scCO2 flow rate = 1.8 × 10−3 kg/min were found to simultaneously optimize the yield (6.83%), TPC (61.28 μmol GAE/g ext), and TFC (1696.8 μmol EC/g ext). The fatty acid profile of the oils was characterized by GC-FID. It was demonstrated that the acids in largest quantities are C16:0 (15–16%), C18:1 (41%), and C18:2 (38–39%). Finally, three mass transfer models were applied to determine the mass transfer coefficients and assess the cumulative extraction curves, with an AAD% of 4.16, for the best model. Full article
Show Figures

Figure 1

Back to TopTop