Next Issue
Volume 3, September
Previous Issue
Volume 3, March
 
 

Liquids, Volume 3, Issue 2 (June 2023) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
32 pages, 4860 KiB  
Review
Effects of Dispersed Carbon Nanotubes and Emerging Supramolecular Structures on Phase Transitions in Liquid Crystals: Physico-Chemical Aspects
by Longin Lisetski, Leonid Bulavin and Nikolai Lebovka
Liquids 2023, 3(2), 246-277; https://doi.org/10.3390/liquids3020017 - 29 May 2023
Cited by 4 | Viewed by 1639
Abstract
The current state of the study of different liquid crystalline (LC) systems doped with carbon nanotubes (CNTs) is discussed. An attempt is endeavored to outline the state-of-the-art technology that has emerged after two past decades. Systematization and analysis are presented for the integration [...] Read more.
The current state of the study of different liquid crystalline (LC) systems doped with carbon nanotubes (CNTs) is discussed. An attempt is endeavored to outline the state-of-the-art technology that has emerged after two past decades. Systematization and analysis are presented for the integration of single- and multi-walled carbon nanotubes in thermotropic (nematic, smectic, cholesteric, ferroelectric, etc.) and lyotropic LCs. Special attention is paid to the effects of alignment and supramolecular organization resulting from orientational coupling between CNTs and the LC matrix. The effects of the specific inter-molecular and inter-particle interactions and intriguing microstructural, electromagnetic, percolation, optical, and electro-optical properties are also discussed. Full article
(This article belongs to the Special Issue Nanocarbon-Liquid Systems)
Show Figures

Figure 1

32 pages, 2789 KiB  
Article
Determination of the Dissociation Constants (pKa) of Eight Amines of Importance in Carbon Capture: Computational Chemistry Calculations, and Artificial Neural Network Models
by Venkata Sai Priyatham Varma Alluri, William (Hoang Chi Hieu) Nguyen and Amr Henni
Liquids 2023, 3(2), 214-245; https://doi.org/10.3390/liquids3020016 - 20 May 2023
Viewed by 1823
Abstract
This work focuses on determining the dissociation constants (pKa) of eight amines, namely, 3-(Diethylamino) propylamine, 1,3-Diaminopentane, 3-Butoxypropylamine, 2-(Methylamino) ethanol, Bis(2-methoxyethyl) amine, α-Methylbenzylamine, 2-Aminoheptane, and 3-Amino-1-phenylbutane, within temperatures ranging from 293.15 K to 323.15 K. The thermodynamic properties of the protonated [...] Read more.
This work focuses on determining the dissociation constants (pKa) of eight amines, namely, 3-(Diethylamino) propylamine, 1,3-Diaminopentane, 3-Butoxypropylamine, 2-(Methylamino) ethanol, Bis(2-methoxyethyl) amine, α-Methylbenzylamine, 2-Aminoheptane, and 3-Amino-1-phenylbutane, within temperatures ranging from 293.15 K to 323.15 K. The thermodynamic properties of the protonated reactions were regressed from the pKa work. In addition, the protonated order of both 3-(Diethylamino) propylamine and 1,3-Diaminopentane were determined using computational chemistry methods owing to their unsymmetrical structures. In addition to the experimental methods, the dissociation constants at the standard temperature (298.15 K) were also estimated using group functional models (paper–pencil) and computational methods. The computational methods include COSMO-RS and computational chemistry calculations. An artificial neural network (ANN) method was employed to model the data by collecting and combining the experimental properties to estimate the missing pKa values. Although the ANN models can provide acceptable results, they depend on the availability of the data. Instead of using the experimental properties, they were generated using software such as Aspen Plus or CosmothermX. The simulated ANN model can also provide very good fits to the experimental constant values. Full article
(This article belongs to the Section Chemical Physics of Liquids)
Show Figures

Figure 1

11 pages, 880 KiB  
Article
Translational Dynamics of Imidazolium-Based Ionic Liquids in Acetonitrile Solutions
by Franz Demmel and William S. Howells
Liquids 2023, 3(2), 203-213; https://doi.org/10.3390/liquids3020015 - 19 Apr 2023
Cited by 1 | Viewed by 1202
Abstract
The dynamics of pure ionic liquids and solutions with acetonitrile have been investigated through quasielastic neutron scattering (QENS). The translational diffusive motion of the 1-butyl-3-methyl-imidazolium cation was revealed as a function of concentration and temperature. The diffusion coefficients obtained are in reasonably good [...] Read more.
The dynamics of pure ionic liquids and solutions with acetonitrile have been investigated through quasielastic neutron scattering (QENS). The translational diffusive motion of the 1-butyl-3-methyl-imidazolium cation was revealed as a function of concentration and temperature. The diffusion coefficients obtained are in reasonably good agreement with molecular dynamics (MD) computer simulations based on a classical potential. The diffusive mobility of the cation dramatically increases when adding acetonitrile. This increase in diffusivity is directly related to a maximum in conductivity of these ionic liquid solutions and might pave the way for new design of electrolytes. The translational motions in pure ionic liquids are too slow to be resolved by our experiment. However, localized motion resembling rotation on a sphere of the measured proton signal could be identified in the pure ionic liquids. Full article
(This article belongs to the Section Molecular Liquids)
Show Figures

Figure 1

16 pages, 3273 KiB  
Article
Density, Excess Molar Volume and Vapor–Liquid Equilibrium Measurements at 101.3 kPa for Binary Mixtures Containing Ethyl Acetate and a Branched Alkane: Experimental Data and Modeling
by Vincent Caqueret, Kaoutar Berkalou, Jean-Louis Havet, Marie Debacq and Stéphane Vitu
Liquids 2023, 3(2), 187-202; https://doi.org/10.3390/liquids3020014 - 11 Apr 2023
Cited by 2 | Viewed by 2200
Abstract
Vapor–liquid equilibrium (VLE) and density data for binary systems of branched alkanes + ethyl acetate are scarce in the literature. In this study, the binary mixtures 3-methylpentane + ethyl acetate and 2,3-dimethylbutane + ethyl acetate were investigated. Density measurements at atmospheric pressure were [...] Read more.
Vapor–liquid equilibrium (VLE) and density data for binary systems of branched alkanes + ethyl acetate are scarce in the literature. In this study, the binary mixtures 3-methylpentane + ethyl acetate and 2,3-dimethylbutane + ethyl acetate were investigated. Density measurements at atmospheric pressure were performed using a vibrating tube density meter at 293.15, 298.15 and 303.15 K. Large and positive excess molar volumes were calculated and correlated using a Redlich–Kister-type equation. Isobaric VLE data at 101.3 kPa were obtained using a Gillespie-type recirculation ebulliometer. Equilibrium compositions were determined indirectly from density measurements. The experimental data were checked for consistency by means of the Fredenslund test and the Wisniak (L-W) test and were then successfully correlated using the NRTL model. The newly studied binary systems display high deviations from ideality and minimum boiling azeotropes, the coordinates of which are reported in this work. Full article
Show Figures

Graphical abstract

19 pages, 4297 KiB  
Article
Partial Denaturation of Double-Stranded DNA on Pristine Graphene under Physiological-like Conditions
by Fernando J. A. L. Cruz and José P. B. Mota
Liquids 2023, 3(2), 168-186; https://doi.org/10.3390/liquids3020013 - 30 Mar 2023
Viewed by 1840
Abstract
Interactions between DNA and graphene are paramount for a wide range of applications, such as biosensing and nanoelectronics; nonetheless, the molecular details of such interactions remain largely unexplored. We employ atomically detailed molecular dynamics simulations with an enhanced sampling technique to investigate the [...] Read more.
Interactions between DNA and graphene are paramount for a wide range of applications, such as biosensing and nanoelectronics; nonetheless, the molecular details of such interactions remain largely unexplored. We employ atomically detailed molecular dynamics simulations with an enhanced sampling technique to investigate the adsorption and mobility of double-stranded DNA along the basal plane of graphene, in an electrolytic aqueous medium. The study focuses on physiologically relevant conditions, using a buffer of [NaCl] = 134 mM. DNA physisorption is shown to be fast and irreversible, leading to deformation and partial melting of the double helix as a result of π–π stacking between the terminal nucleobases and graphene. Denaturation occurs primarily at the termini, with ensemble averaged H-bond ratios of 47.8–62%; these can, however, reach a minimum of 15%. Transition between free-energy minima occurs via a thermodynamical pathway driving the nucleic acid from a radius of gyration of 1.5 nm to 1.35 nm. Mobility along the basal plane of graphene is dominant, accounting for ~90% of all centre-of-mass translation and revealing that the DNA’s apparent diffusivity is similar to diffusion along the endohedral volume of carbon nanotubes, but one order of magnitude faster than in other 2D materials, such as BC3 and C3N. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop