Effects of Dispersed Carbon Nanotubes and Emerging Supramolecular Structures on Phase Transitions in Liquid Crystals: Physico-Chemical Aspects
Abstract
:1. Introduction
2. Types of Liquid Crystals
2.1. Thermotropic Liquid Crystals
2.2. Lyotropic Liquid Crystals
3. Carbon Nanotubes
4. Liquid Crystalline Composites with CNT Dopants
4.1. Thermotropic Liquid Crystals
4.1.1. Nematic Liquid Crystals
4.1.2. Smectic Liquid Crystals
4.1.3. Cholesteric Liquid Crystals
4.1.4. Ferro- and Antiferroelectric Liquid Crystals
4.1.5. Discotic Liquid Crystals
4.2. Lyotropic Liquid Crystals
4.3. Polymer-Dispersed Liquid Crystals
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CNTs | Carbon nanotubes |
SWCNTs | Single-walled carbon nanotubes |
MWCNTs | Multi-walled carbon nanotubes |
DSC | Differential scanning calorimetry |
FTIR | Fourier-transform infrared spectroscopy |
LCs | Liquid crystals |
References
- Stark, H. Physics of Colloidal Dispersions in Nematic Liquid Crystals. Phys. Rep. 2001, 351, 387–474. [Google Scholar] [CrossRef]
- Prakash, J.; Khan, S.; Chauhan, S.; Biradar, A.M. Metal Oxide-Nanoparticles and Liquid Crystal Composites: A Review of Recent Progress. J. Mol. Liq. 2020, 297, 112052. [Google Scholar] [CrossRef]
- Singh, G.; Fisch, M.; Kumar, S. Emissivity and Electrooptical Properties of Semiconducting Quantum Dots/Rods and Liquid Crystal Composites: A Review. Rep. Prog. Phys. 2016, 79, 56502. [Google Scholar] [CrossRef]
- Choudhary, A.; Singh, G.; Biradar, A.M. Advances in Gold Nanoparticle—Liquid Crystal Composites. Nanoscale 2014, 6, 7743–7756. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Luqman, M.; Jamil, M. Advances in the Metal Nanoparticles (MNPs) Doped Liquid Crystals and Polymer Dispersed Liquid Crystal (PDLC) Composites and Their Applications—A Review. Mol. Cryst. Liq. Cryst. 2021, 731, 1–33. [Google Scholar] [CrossRef]
- Prakash, J.; Kumar, A.; Chauhan, S. Aligning Liquid Crystal Materials through Nanoparticles: A Review of Recent Progress. Liquids 2022, 2, 50–71. [Google Scholar] [CrossRef]
- Zuhail, K.P.; Humar, M.; Dhara, S. Effect of Phase Transitions on Liquid Crystal Colloids: A Short Review. Liq. Cryst. Rev. 2020, 8, 44–57. [Google Scholar] [CrossRef]
- Chattopadhyay, J.; Srivastava, R. Liquid Crystals with Nano/Micro Particles and Their Applications; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Xia, Y.; Chen, Q.; Banin, U. Introduction: Anisotropic Nanomaterials. Chem. Rev. 2023, 123, 3325–3328. [Google Scholar] [CrossRef]
- Kato, T.; Uchida, J.; Ichikawa, T.; Sakamoto, T. Functional Liquid Crystals towards the next Generation of Materials. Angew. Chemie Int. Ed. 2018, 57, 4355–4371. [Google Scholar] [CrossRef]
- Gudimalla, A.; Lavrič, M.; Trček, M.; Harkai, S.; Rožič, B.; Cordoyiannis, G.; Thomas, S.; Pal, K.; Kutnjak, Z.; Kralj, S. Nanoparticle-Stabilized Lattices of Topological Defects in Liquid Crystals. Int. J. Thermophys. 2020, 41, 51. [Google Scholar] [CrossRef]
- Tschierske, C. Amphotropic Liquid Crystals. Curr. Opin. Colloid Interface Sci. 2002, 7, 355–370. [Google Scholar] [CrossRef]
- Awasthi, L.S.; Awasthi, K.S. General Observation about Liquid Crystals: A Review. Int. J. Eng. Res. Manag. Technol. 2015, 2, 1–20. [Google Scholar]
- Shanker, G.; Paul, B.; Ganjiwale, A. Amino Acid and Peptide-Based Liquid Crystals: An Overview. Curr. Org. Synth. 2021, 18, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Lisetski, L.N.; Vashchenko, O.V.; Kasian, N.A.; Sviechnikova, L.V. Lyotropic Liquid Crystal Phases of Phospholipids as Model Tools in Molecular Biophysics and Pharmacology. In Soft Matter Systems for Biomedical Applications; Bulavin, L., Lebovka, N., Eds.; Springer: Cham, Switzerland, 2022; pp. 85–111. [Google Scholar]
- Shimizu, Y.; Takeuchi, H.; Takeuchi, R.; Ichikawa, T. Amphotropic Liquid-Crystalline Behaviour of Glycolipids in Amino Acid Ionic Liquids. Liq. Cryst. 2019, 46, 1298–1306. [Google Scholar] [CrossRef]
- Shahinpoor, M. Review of Liquid Crystal Elastomers. In Fundamentals of Smart Materials; Shahinpoor, M., Ed.; Royal Society of Chemistry: London, UK, 2020; pp. 243–253. [Google Scholar]
- Ula, S.W.; Traugutt, N.A.; Volpe, R.H.; Patel, R.R.; Yu, K.; Yakacki, C.M. Liquid Crystal Elastomers: An Introduction and Review of Emerging Technologies. Liq. Cryst. Rev. 2018, 6, 78–107. [Google Scholar] [CrossRef]
- Rastogi, P.; Njuguna, J.; Kandasubramanian, B. Exploration of Elastomeric and Polymeric Liquid Crystals with Photothermal Actuation: A Review. Eur. Polym. J. 2019, 121, 109287. [Google Scholar] [CrossRef]
- Ruan, K.; Zhong, X.; Shi, X.; Dang, J.; Gu, J. Liquid Crystal Epoxy Resins with High Intrinsic Thermal Conductivities and Their Composites: A Mini-Review. Mater. Today Phys. 2021, 20, 100456. [Google Scholar] [CrossRef]
- Wen, Z.; Yang, K.; Raquez, J.-M. A Review on Liquid Crystal Polymers in Free-Standing Reversible Shape Memory Materials. Molecules 2020, 25, 1241. [Google Scholar] [CrossRef] [PubMed]
- Dierking, I. Polymer—Modified Liquid Crystals; Royal Society of Chemistry: London, UK, 2019. [Google Scholar]
- Yuvaraj, A.R.; Lee, W.; Kumar, S. Unconventional Liquid Crystals: Chemical Aspects. In Unconventional Liquid Crystals and Their Applications; Lee, W., Kumar, S., Eds.; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2021; pp. 109–151. [Google Scholar]
- Bisoyi, H.K.; Li, Q. Liquid Crystals: Versatile Self-Organized Smart Soft Materials. Chem. Rev. 2021, 122, 4887–4926. [Google Scholar] [CrossRef] [PubMed]
- Goossens, K.; Lava, K.; Bielawski, C.W.; Binnemans, K. Ionic Liquid Crystals: Versatile Materials. Chem. Rev. 2016, 116, 4643–4807. [Google Scholar] [CrossRef]
- Vill, V.; Sajus, H.; Thiemann, T. LiqCryst 2.1: Database and Scientific Tool. In Liquid Crystals: Physics, Technology, and Applications; Rutkowska, J., Klosowicz, S.J., Zielinski, J., Zmija, J., Eds.; SPIE: Bellingham, WA, USA, 1998; Volume 3318, pp. 160–162. [Google Scholar]
- Goodby, J.W.; Collings, P.J.; Kato, T.; Tschierske, C.; Gleeson, H.; Raynes, P.; Vill, V. Handbook of Liquid Crystals, 8 Volume Set; John Wiley & Sons: Hoboken, NJ, USA, 2014; Volume 1. [Google Scholar]
- Khoo, I.-C. Liquid Crystals; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- DiLisi, G.A.; DeLuca, J.J. An Introduction to Liquid Crystals; Morgan & Claypool Publishers: San Rafael, CA, USA, 2019. [Google Scholar]
- Oswald, P.; Pieranski, P. Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Hoboken, NJ, USA, 2018. [Google Scholar]
- Kasian, N.A.; Lisetski, L.N.; Gvozdovskyy, I.A. Twist-Bend Nematics and Heliconical Cholesterics: A Physico-Chemical Analysis of Phase Transitions and Related Specific Properties. Liq. Cryst. 2022, 49, 142–152. [Google Scholar] [CrossRef]
- Nazarenko, K.G.; Kasian, N.A.; Minenko, S.S.; Samoilov, O.M.; Nazarenko, V.G.; Lisetski, L.N.; Gvozdovskyy, I.A. Chiral Ferronematic Liquid Crystals: A Physico-Chemical Analysis of Phase Transitions and Induced Helical Twisting. Liq. Cryst. 2023, 50, 98–109. [Google Scholar] [CrossRef]
- Hamley, I.W. Introduction to Soft Matter: Synthetic and Biological Self-Assembling Materials; John Wiley & Sons: Chichester, UK, 2007. [Google Scholar]
- Marques, E.; Silva, B. Surfactants, Phase Behavior. In Encyclopedia of Colloid and Interface Science; Tadros, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1290–1333. [Google Scholar]
- Wang, X.; Zhang, Y.; Gui, S.; Huang, J.; Cao, J.; Li, Z.; Li, Q.; Chu, X. Characterization of Lipid-Based Lyotropic Liquid Crystal and Effects of Guest Molecules on Its Microstructure: A Systematic Review. AAPS PharmSciTech 2018, 19, 2023–2040. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Jahn, A.; Cho, S.-J.; Kim, J.S.; Ki, M.-H.; Kim, D.-D. Lyotropic Liquid Crystal Systems in Drug Delivery: A Review. J. Pharm. Investig. 2015, 45, 1–11. [Google Scholar] [CrossRef]
- Dierking, I.; Martins Figueiredo Neto, A. Novel Trends in Lyotropic Liquid Crystals. Crystals 2020, 10, 604. [Google Scholar] [CrossRef]
- Hamade, F.; Amit, S.K.; Woods, M.B.; Davis, V.A. The Effects of Size and Shape Dispersity on the Phase Behavior of Nanomesogen Lyotropic Liquid Crystals. Crystals 2020, 10, 715. [Google Scholar] [CrossRef]
- Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Radushkevich, L.V.; Lukyanovich, V.M. On the Structure of Carbon Formed under Thermal Treatment of Carbon Oxide on Iron. Zhurnal Fiz. Khimii 1952, 26, 88–95. [Google Scholar]
- Goncharuk, A.I.; Lebovka, N.I.; Lisetski, L.N.; Minenko, S.S. Aggregation, Percolation and Phase Transitions in Nematic Liquid Crystal EBBA Doped with Carbon Nanotubes. J. Phys. D. Appl. Phys. 2009, 42, 165411. [Google Scholar] [CrossRef]
- Manilo, M.; Lebovka, N.; Barany, S. Characterization of the Electric Double Layers of Multi-Walled Carbon Nanotubes, Laponite and Nanotube-Laponite Hybrids in Aqueous Suspensions. Colloids Surf. A Physicochem. Eng. Asp. 2014, 462, 211–216. [Google Scholar] [CrossRef]
- Lee, H.S.; Yun, C.H. Translational and Rotational Diffusions of Multiwalled Carbon Nanotubes with Static Bending. J. Phys. Chem. C 2008, 112, 10653–10658. [Google Scholar] [CrossRef]
- Brochard, F.; De Gennes, P.G. Theory of Magnetic Suspensions in Liquid Crystals. J. Phys. 1970, 31, 691–708. [Google Scholar] [CrossRef]
- Hayes, C.F. Magnetic Platelets in a Nematic Liquid Crystal. Mol. Cryst. Liq. Cryst. 1976, 36, 245–253. [Google Scholar] [CrossRef]
- Lee, W.; Chiu, C.-S. Observation of Self-Diffraction by Gratings in Nematic Liquid Crystals Doped with Carbon Nanotubes. Opt. Lett. 2001, 26, 521–523. [Google Scholar] [CrossRef]
- Lee, W.; Yeh, S.-L.; Chang, C.-C.; Lee, C.-C. Beam Coupling in Nanotube-Doped Nematic Liquid-Crystal Films. Opt. Express 2001, 9, 791–795. [Google Scholar] [CrossRef]
- Lynch, M.D.; Patrick, D.L. Organizing Carbon Nanotubes with Liquid Crystals. Nano Lett. 2002, 2, 1197–1201. [Google Scholar] [CrossRef]
- Chan, C.; Crawford, G.; Gao, Y.; Hurt, R.; Jian, K.; Li, H.; Sheldon, B.; Sousa, M.; Yang, N. Liquid Crystal Engineering of Carbon Nanofibers and Nanotubes. Carbon N. Y. 2005, 43, 2431–2440. [Google Scholar] [CrossRef]
- Zakri, C.; Poulin, P. Phase Behavior of Nanotube Suspensions: From Attraction Induced Percolation to Liquid Crystalline Phases. J. Mater. Chem. 2006, 16, 4095–4098. [Google Scholar] [CrossRef]
- Zakri, C. Carbon Nanotubes and Liquid Crystalline Phases. Liq. Cryst. Today 2007, 16, 1–11. [Google Scholar] [CrossRef]
- Hegmann, T.; Qi, H.; Marx, V.M. Nanoparticles in Liquid Crystals: Synthesis, Self-Assembly, Defect Formation and Potential Applications. J. Inorg. Organomet. Polym. Mater. 2007, 17, 483–508. [Google Scholar] [CrossRef]
- Lagerwall, J.P.F.; Scalia, G. Carbon Nanotubes in Liquid Crystals. J. Mater. Chem. 2008, 18, 2890–2898. [Google Scholar] [CrossRef]
- Qi, H.; Hegmann, T. Impact of Nanoscale Particles and Carbon Nanotubes on Current and Future Generations of Liquid Crystal Displays. J. Mater. Chem. 2008, 18, 3288–3294. [Google Scholar] [CrossRef]
- Rahman, M.; Lee, W. Scientific Duo of Carbon Nanotubes and Nematic Liquid Crystals. J. Phys. D. Appl. Phys. 2009, 42, 63001. [Google Scholar] [CrossRef]
- Khoo, I.C. Nonlinear Optics of Liquid Crystalline Materials. Phys. Rep. 2009, 471, 221–267. [Google Scholar] [CrossRef]
- Dolgov, L.; Kovalchuk, O.; Lebovka, N.; Tomylko, S.; Yaroshchuk, O. Liquid Crystal Dispersions of Carbon Nanotubes: Dielectric, Electro-Optical and Structural Peculiarities. In Carbon Nanotubes; Marulanda, J.M., Ed.; IntechOpen Limited: London, UK, 2010. [Google Scholar]
- Schymura, S.; Kühnast, M.; Lutz, V.; Jagiella, S.; Dettlaff-Weglikowska, U.; Roth, S.; Giesselmann, F.; Tschierske, C.; Scalia, G.; Lagerwall, J. Towards Efficient Dispersion of Carbon Nanotubes in Thermotropic Liquid Crystals. Adv. Funct. Mater. 2010, 20, 3350–3357. [Google Scholar] [CrossRef]
- Scalia, G. Alignment of Carbon Nanotubes in Thermotropic and Lyotropic Liquid Crystals. ChemPhysChem 2010, 11, 333–340. [Google Scholar] [CrossRef]
- Garbovskiy, Y.A.; Glushchenko, A. V Liquid Crystalline Colloids of Nanoparticles: Preparation, Properties, and Applications. Solid State Phys. 2010, 62, 1–74. [Google Scholar] [CrossRef]
- Garbovskiy, Y.; Glushchenko, I. Nano-Objects and Ions in Liquid Crystals: Ion Trapping Effect and Related Phenomena. Crystals 2015, 5, 501–533. [Google Scholar] [CrossRef]
- Garbovskiy, Y. Conventional and Unconventional Ionic Phenomena in Tunable Soft Materials Made of Liquid Crystals and Nanoparticles. Nano Express 2021, 2, 12004. [Google Scholar] [CrossRef]
- Bisoyi, H.K.; Kumar, S. Liquid-Crystal Nanoscience: An Emerging Avenue of Soft Self-Assembly. Chem. Soc. Rev. 2011, 40, 306–319. [Google Scholar] [CrossRef]
- Stamatoiu, O.; Mirzaei, J.; Feng, X.; Hegmann, T. Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles. In Liquid Crystals; Tschierske, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 318, pp. 331–393. [Google Scholar]
- Matsuyama, A. Phase Separations in Mixtures of a Nanoparticle and a Liquid Crystal. In Smart Nanoparticles Technology; Hashim, A.A., Ed.; IntechOpen: London, UK, 2012; pp. 241–268. [Google Scholar]
- Scalia, G. Liquid Crystals of Carbon Nanotubes and Carbon Nanotubes in Liquid Crystals. In Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications; Li, Q., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 341–378. [Google Scholar]
- Lagerwall, J.P.F.; Scalia, G. A New Era for Liquid Crystal Research: Applications of Liquid Crystals in Soft Matter Nano-, Bio-and Microtechnology. Curr. Appl. Phys. 2012, 12, 1387–1412. [Google Scholar] [CrossRef]
- Schymura, S.; Scalia, G. On the Effect of Carbon Nanotubes on Properties of Liquid Crystals. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120261. [Google Scholar] [CrossRef] [PubMed]
- Blanc, C.; Coursault, D.; Lacaze, E. Ordering Nano-and Microparticles Assemblies with Liquid Crystals. Liq. Cryst. Rev. 2013, 1, 83–109. [Google Scholar] [CrossRef]
- Lisetski, L.; Soskin, M.; Lebovka, N. Chapter 10: Carbon Nanotubes in Liquid Crystals: Fundamental Properties and Applications. In Physics of Liquid Matter: Modern Problems; Bulavin, L., Lebovka, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 171, pp. 243–298. [Google Scholar]
- Yadav, S.P.; Singh, S. Carbon Nanotube Dispersion in Nematic Liquid Crystals: An Overview. Prog. Mater. Sci. 2016, 80, 38–76. [Google Scholar] [CrossRef]
- Schymura, S.; Park, J.H.; Dierking, I.; Scalia, G. Carbon Nanotubes in Thermotropic Low Molar Mass Liquid Crystals. In Liquid Crystals with Nano and Microparticles; Lagerwall, J.P.F., Scalia, G., Eds.; Soft Condensed Matter; World Scientific: Singapore, 2017; pp. 603–630. [Google Scholar]
- Dierking, I. From Colloids in Liquid Crystals to Colloidal Liquid Crystals. Liq. Cryst. 2019, 46, 2057–2074. [Google Scholar] [CrossRef]
- Shen, Y.; Dierking, I. Perspectives in Liquid-Crystal-Aided Nanotechnology and Nanoscience. Appl. Sci. 2019, 9, 2512. [Google Scholar] [CrossRef]
- Draude, A.P.; Dierking, I. Thermotropic Liquid Crystals with Low-Dimensional Carbon Allotropes. Nano Express 2021, 2, 12002. [Google Scholar] [CrossRef]
- Bukowczan, A.; Hebda, E.; Pielichowski, K. The Influence of Nanoparticles on Phase Formation and Stability of Liquid Crystals and Liquid Crystalline Polymers. J. Mol. Liq. 2021, 321, 114849. [Google Scholar] [CrossRef]
- Javadian, S.; Dalir, N. Thermotropic Liquid Crystalline/Multiwalled Carbon Nanotubes Nanocomposites. In Liquid Crystal Polymer Nanocomposites; Visakh, P.M., Semkin, A., Özdemir, Z.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 91–116. [Google Scholar]
- Urbanski, M.; Lagerwall, J.P.F.; Scalia, G. Nanotube Networks in Liquid Crystals. Proc. SPIE 2016, 9769, 71–78. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Hu, C.-Y.; Pan, H.-C.; Lo, K.-Y. Electrooptical Responses of Carbon Nanotube-Doped Liquid Crystal Devices. Jpn. J. Appl. Phys. 2005, 44, 8077. [Google Scholar] [CrossRef]
- Jeon, S.Y.; Shin, S.H.; Jeong, S.J.; Lee, S.H.; Jeong, S.H.; Lee, Y.H.; Choi, H.C.; Kim, K.J. Effects of Carbon Nanotubes on Electro-Optical Characteristics of Liquid Crystal Cell Driven by in-Plane Field. Appl. Phys. Lett. 2007, 90, 121901. [Google Scholar] [CrossRef]
- Lee, W.; Chen, H.-Y.; Shih, Y.-C. Reduced Dc Offset and Faster Dynamic Response in a Carbon-Nanotube-Impregnated Liquid-Crystal Display. J. Soc. Inf. Disp. 2008, 16, 733–741. [Google Scholar] [CrossRef]
- Malik, P.; Chaudhary, A.; Mehra, R.; Raina, K.K. Electro-Optic, Thermo-Optic and Dielectric Responses of Multiwalled Carbon Nanotube Doped Ferroelectric Liquid Crystal Thin Films. J. Mol. Liq. 2012, 165, 7–11. [Google Scholar] [CrossRef]
- Jeong, S.J.; Park, K.A.; Jeong, S.H.; Jeong, H.J.; An, K.H.; Nah, C.W.; Pribat, D.; Lee, S.H.; Lee Sr, Y.H. Electroactive Superelongation of Carbon Nanotube Aggregates in Liquid Crystal Medium. Nano Lett. 2007, 7, 2178–2182. [Google Scholar] [CrossRef] [PubMed]
- Basu, R.; Iannacchione, G.S. Carbon Nanotube Dispersed Liquid Crystal: A Nano Electromechanical System. Appl. Phys. Lett. 2008, 93, 183105. [Google Scholar] [CrossRef]
- Lebovka, N.; Dadakova, T.; Lysetskiy, L.; Melezhyk, O.; Puchkovska, G.; Gavrilko, T.; Baran, J.; Drozd, M. Phase Transitions, Intermolecular Interactions and Electrical Conductivity Behavior in Carbon Multiwalled Nanotubes/Nematic Liquid Crystal Composites. J. Mol. Struct. 2008, 887, 135–143. [Google Scholar] [CrossRef]
- Sureshkumar, P.; Srivastava, A.K.; Jeong, S.J.; Kim, M.; Jo, E.M.; Lee, S.H.; Lee, Y.H. Anomalous Electrokinetic Dispersion of Carbon Nanotube Clusters in Liquid Crystal under Electric Field. J. Nanosci. Nanotechnol. 2009, 9, 4741–4746. [Google Scholar] [CrossRef]
- Trushkevych, O.; Gölden, F.; Pivnenko, M.; Xu, H.; Collings, N.; Crossland, W.A.; Müller, S.; Jakoby, R. Dielectric Anisotropy of Nematic Liquid Crystals Loaded with Carbon Nanotubes in Microwave Range. Electron. Lett. 2010, 46, 693–695. [Google Scholar] [CrossRef]
- Garbovskiy, Y. Electrical Properties of Liquid Crystal Nano-Colloids Analysed from Perspectives of the Ionic Purity of Nano-Dopants. Liq. Cryst. 2016, 43, 648–653. [Google Scholar] [CrossRef]
- Garbovskiy, Y. Adsorption/Desorption of Ions in Liquid Crystal Nanocolloids: The Applicability of the Langmuir Isotherm, Impact of High Electric Fields and Effects of the Nanoparticle’s Size. Liq. Cryst. 2016, 43, 853–860. [Google Scholar] [CrossRef]
- Garbovskiy, Y. Impact of Contaminated Nanoparticles on the Non-Monotonous Change in the Concentration of Mobile Ions in Liquid Crystals. Liq. Cryst. 2016, 43, 664–670. [Google Scholar] [CrossRef]
- Konshina, E.A.; Galin, I.F.; Shcherbinin, D.P.; Gavrish, E.O. Study of Dynamics and Relaxation Optical Response of Nematic Liquid Crystals Doped with CdSe/ZnS Quantum Dots. Liq. Cryst. 2014, 41, 1229–1234. [Google Scholar] [CrossRef]
- Shcherbinin, D.P.; Konshina, E.A. Ionic Impurities in Nematic Liquid Crystal Doped with Quantum Dots CdSe/ZnS. Liq. Cryst. 2017, 44, 648–655. [Google Scholar] [CrossRef]
- Dierking, I.; Scalia, G.; Morales, P.; LeClere, D. Aligning and Reorienting Carbon Nanotubes with Nematic Liquid Crystals. Adv. Mater. 2004, 16, 865–869. [Google Scholar] [CrossRef]
- Dierking, I.; Scalia, G.; Morales, P. Liquid Crystal—Carbon Nanotube Dispersions. J. Appl. Phys. 2005, 97, 44309. [Google Scholar] [CrossRef]
- Duran, H.; Gazdecki, B.; Yamashita, A.; Kyu, T. Effect of Carbon Nanotubes on Phase Transitions of Nematic Liquid Crystals. Liq. Cryst. 2005, 32, 815–821. [Google Scholar] [CrossRef]
- Scalia, G.; Haluska, M.; Dettlaff-Weglikowska, U.; Giesselmann, F.; Roth, S. Polarized Raman Spectroscopy Study of SWCNT Orientational Order in an Aligning Liquid Crystalline Matrix. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2005; Volume 786, pp. 114–117. [Google Scholar]
- Scalia, G.; Lagerwall, J.P.F.; Haluska, M.; Dettlaff-Weglikowska, U.; Giesselmann, F.; Roth, S. Effect of Phenyl Rings in Liquid Crystal Molecules on SWCNTs Studied by Raman Spectroscopy. Phys. Status Solidi 2006, 243, 3238–3241. [Google Scholar] [CrossRef]
- Scalia, G.; Lagerwall, J.P.F.; Schymura, S.; Haluska, M.; Giesselmann, F.; Roth, S. Carbon Nanotubes in Liquid Crystals as Versatile Functional Materials. Phys. Status Solidi 2007, 244, 4212–4217. [Google Scholar] [CrossRef]
- Fedoryako, A.P.; Lebovka, N.I.; Lisetski, L.N.; Melezhyk, O.V.; Shtifanyuk, P.P. Anisotropic Organic Media as Model Bioequvalent Systems. 1. Liquid Crystals Containing Dispersed Multiwall Nanotubes under Aspects of Anisotropic Intermolecular Interactions. Biophys. Bull. 2007, 18, 108–111. [Google Scholar]
- Lisetski, L.N.; Lebovka, N.I.; Sidletsky, O.T.; Panikarskaya, V.D.; Kasian, N.A.; Kositsyn, S.S.; Lisunova, M.O.; Melezhyk, O. V Spectrophotometry and Electrical Conductivity Studies of Multiwall Nanotubes Dispersed in Nematic Liquid Crystals. Funct. Mater. 2007, 14, 233–237. [Google Scholar]
- Lysetskiy, L.; Panikarskaya, V.; Sidletskiy, O.; Kasian, N.; Kositsyn, S.; Shtifanyuk, P.; Lebovka, N.; Lisunova, M.; Melezhyk, O. Optical Transmission and Conductivity of Nematic Liquid Crystals Containing Dispersed Multiwall Nanotubes. Mol. Cryst. Liq. Cryst. 2007, 478, 127–883. [Google Scholar] [CrossRef]
- Lisetski, L.N.; Minenko, S.S.; Fedoryako, A.P.; Lebovka, N.I. Dispersions of Multiwalled Carbon Nanotubes in Different Nematic Mesogens: The Study of Optical Transmittance and Electrical Conductivity. Phys. E Low-Dimens. Syst. Nanostructures 2009, 41, 431–435. [Google Scholar] [CrossRef]
- Lisetski, L.N.; Minenko, S.S.; Zhukov, A.V.; Shtifanyuk, P.P.; Lebovka, N.I. Dispersions of Carbon Nanotubes in Cholesteric Liquid Crystals. Mol. Cryst. Liq. Cryst. 2009, 510, 43–1177. [Google Scholar] [CrossRef]
- Lebovka, N.I.; Goncharuk, A.I.; Boyko, Y.P.; Lisetsky, L.; Puchkovska, G.A.; Gavrilko, T.; Baran, J. Interface Interaction and Electrical Conductivity in Composites Carbon Nanotubes/Liquid Crystal. Nanosyst. Nanomater. Nanotehnologies 2009, 7, 701–715. [Google Scholar]
- Minenko, S.S.; Lisetski, L.N.; Goncharuk, A.I.; Lebovka, N.I.; Ponevchinsky, V.V.; Soskin, M.S. Aggregates of Multiwalled Carbon Nanotubes in Nematic Liquid Crystal Dispersions: Experimental Evidence and a Physical Picture. Funct. Mater. 2010, 17, 454–459. [Google Scholar]
- Lisetski, L.N.; Minenko, S.S.; Ponevchinsky, V.V.; Soskin, M.S.; Goncharuk, A.I.; Lebovka, N.I. Microstructure and Incubation Processes in Composite Liquid Crystalline Material (5CB) Filled with Multi Walled Carbon Nanotubes. Materwiss. Werksttech. 2011, 42, 5–14. [Google Scholar] [CrossRef]
- Lisetski, L.N.; Minenko, S.S.; Fedoryako, A.P.; Lebovka, N.I.; Soskin, M.S. Dispersions of Carbon Nanotubes in Cholesteric Liquid Crystals: Features of Aggregate Formation. Funct. Mater. 2013, 20, 153–157. [Google Scholar] [CrossRef]
- Lebovka, N.I.; Lisetski, L.N.; Goncharuk, A.I.; Minenko, S.S.; Ponevchinsky, V.V.; Soskin, M.S. Phase Transitions in Smectogenic Liquid Crystal 4-Butoxybenzylidene-4′-Butylaniline (BBBA) Doped by Multiwalled Carbon Nanotubes. Phase Transit. 2013, 86, 463–476. [Google Scholar] [CrossRef]
- Dolgov, L.; Yaroshchuk, O.; Lebovka, M. Effect of Electro-Optical Memory in Liquid Crystals Doped with Carbon Nanotubes. Mol. Cryst. Liq. Cryst. 2008, 496, 212–229. [Google Scholar] [CrossRef]
- Dolgov, L.; Yaroshchuk, O.; Lebovka, N. Structure and Electrooptic Response of Liquid Crystal with Negative Dielectric Anisotropy, Doped Carbon Nanotubes. Nanosyst. Nanomater. Nanotehnol. 2008, 6, 625–633. [Google Scholar]
- Dolgov, L.A.; Lebovka, N.I.; Yaroshchuk, O. V Effect of Electrooptical Memory in Suspensions of Carbon Nanotubes in Liquid Crystals. Colloid J. 2009, 71, 603–611. [Google Scholar] [CrossRef]
- Dolgov, L.; Yaroshchuk, O.; Tomylko, S.; Lebovka, N. Electro-Optical Memory of a Nematic Liquid Crystal Doped by Multi-Walled Carbon Nanotubes. Condens. Matter Phys. 2012, 15, 33401. [Google Scholar] [CrossRef]
- Ponevchinsky, V.V.; Goncharuk, A.I.; Vasil’Ev, V.I.; Lebovka, N.I.; Soskin, M.S. Self-Organized Composites of Multiwalled Carbon Nanotubes and Nematic Liquid Crystal 5CB: Optical Singularities and Percolation Behavior in Electrical Conductivity. In Proceedings of the Ninth International Conference on Correlation Optics, Chernivtsi, Ukraine, 20–24 September 2009; Volume 7388, p. 738802. [Google Scholar]
- Ponevchinsky, V.V.; Goncharuk, A.I.; Vasil’ev, V.I.; Lebovka, N.I.; Soskin, M.S. Cluster Self-Organization of Nanotubes in a Nematic Phase: The Percolation Behavior and Appearance of Optical Singularities. JETP Lett. 2010, 91, 241–244. [Google Scholar] [CrossRef]
- Ponevchinsky, V.; Goncharuk, A.I.; Vasil’ev, V.I.; Lebovka, N.I.; Soskin, M.S. Optical Singularities Induced in a Nematic-Cell by Carbon Nanotubes. In Proceedings of the Complex Light and Optical Forces IV, San Francisco, CA, USA, 23–28 January 2010; Volume 7613, p. 761306. [Google Scholar] [CrossRef]
- Ponevchinsky, V.V.; Goncharuk, A.I.; Naydenov, S.V.; Lisetski, L.N.; Lebovka, N.I.; Soskin, M.S. Complex Light with Optical Singularities Induced by Nanocomposites. In Proceedings of the Complex Light and Optical Forces V, San Francisco, CA, USA, 22–27 January 2011; Volume 7950, p. 79500A. [Google Scholar] [CrossRef]
- Ponevchinsky, V.V.; Goncharuk, A.I.; Minenko, S.S.; Lisetski, L.N.; Lebovka, N.I.; Soskin, M.S. Incubation Processes in Nematic 5CB + Multi-Walled Carbon Nanotubes Composites: Induced Optical Singularities and Inversion Walls, Percolation Phenomena. Nonlinear Opt. Quantum Opt. 2012, 43, 281–302. [Google Scholar]
- Ponevchinsky, V.V.; Goncharuk, A.I.; Minenko, S.S.; Lisetskii, L.N.; Lebovka, N.I.; Soskin, M.S. Fine Topological Structure of Coherent Complex Light Created by Carbon Nanocomposites in LC. In Proceedings of the Complex Light and Optical Forces VI, San Francisco, CA, USA, 21–26 January 2012; Volume 8274, pp. 135–143. [Google Scholar] [CrossRef]
- Lisetski, L.N.; Lebovka, N.I.; Naydenov, S.V.; Soskin, M.S. Dispersions of Multi-Walled Carbon Nanotubes in Liquid Crystals: A Physical Picture of Aggregation. J. Mol. Liq. 2011, 164, 143–147. [Google Scholar] [CrossRef]
- Trushkevych, O.; Collings, N.; Hasan, T.; Scardaci, V.; Ferrari, A.C.; Wilkinson, T.D.; Crossland, W.A.; Milne, W.I.; Geng, J.; Johnson, B.F.G.; et al. Characterization of Carbon Nanotube—Thermotropic Nematic Liquid Crystal Composites. J. Phys. D. Appl. Phys. 2008, 41, 125106. [Google Scholar] [CrossRef]
- Lisetski, L.N.; Chepikov, A.M.; Minenko, S.S.; Lebovka, N.I.; Soskin, M.S. Dispersions of Carbon Nanotubes in Nematic Liquid Crystals: Effects of Nanotube Geometry. Funct. Mater. 2011, 18, 143–149. [Google Scholar]
- Lahiri, T.; Pushkar, S.K.; Poddar, P. Theoretical Study on the Effect of Electric Field for Carbon Nanotubes Dispersed in Nematic Liquid Crystal. Phys. B Condens. Matter 2020, 588, 412177. [Google Scholar] [CrossRef]
- Moghadas, F.; Poursamad, J.B.; Sahrai, M.; Emdadi, M. Flexoelectric Coefficients Enhancement via Doping Carbon Nanotubes in Nematic Liquid Crystal Host. Eur. Phys. J. E 2019, 42, 103. [Google Scholar] [CrossRef]
- Petrescu, E.; Cirtoaje, C. Dynamic Behavior of a Nematic Liquid Crystal with Added Carbon Nanotubes in an Electric Field. Beilstein J. Nanotechnol. 2018, 9, 233–241. [Google Scholar] [CrossRef]
- Veveričík, M.; Bury, P.; Kopčansky, P.; Timko, M.; Mitróová, Z. Effect of Carbon Nanotubes on Liquid Crystal Behavior in Electric and Magnetic Fields Studied by SAW. Procedia Eng. 2017, 192, 935–940. [Google Scholar] [CrossRef]
- Sumandra, S.B.; Mahendra, B.; Nugroho, F.; Yusuf, Y. Alignment of Carbon Nanotubes under the Influences of Nematic Liquid Crystals and Electric Fields—An Analytical Study. Int. J. Comput. Mater. Sci. Eng. 2022, 11, 2150033. [Google Scholar] [CrossRef]
- Cirtoaje, C.; Petrescu, E. The Influence of Single-Walled Carbon Nanotubes on the Dynamic Properties of Nematic Liquid Crystals in Magnetic Field. Materials 2019, 12, 4031. [Google Scholar] [CrossRef]
- Cîrtoaje, C.; Petrescu, E.; Moţoc, C. Electric Field Effects in Nematic Liquid Crystals Doped with Carbon Nanotubes. Phys. E Low-Dimens. Syst. Nanostruct. 2013, 54, 242–246. [Google Scholar] [CrossRef]
- Petrescu, E.; Cirtoaje, C. Electric Properties of Multiwalled Carbon Nanotubes Dispersed in Liquid Crystals and Their Influence on Freedericksz Transitions. Nanomaterials 2022, 12, 1119. [Google Scholar] [CrossRef]
- Cîrtoaje, C.; Stoian, V.; Petrescu, E.; Moţoc, C. Relaxation Phenomena in Nematic Liquid Crystals with Multiwall Carbon Nanotubes Adding. In Proceedings of the Smart Sensors, Actuators, and MEMS VII; and Cyber Physical Systems, Barcelona, Spain, 4–6 May 2015; Volume 9517, pp. 355–364. [Google Scholar]
- Cirtoaje, C.; Petrescu, E. Measurement of Magnetic Anisotropy of Multiwalled Carbon Nanotubes in Nematic Host. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 84, 244–248. [Google Scholar] [CrossRef]
- Lebovka, N.; Melnyk, V.; Mamunya, Y.; Klishevich, G.; Goncharuk, A.; Pivovarova, N. Low Temperature Phase Transformations in 4-Cyano-4′-Pentylbiphenyl (5CB) Filled by Multiwalled Carbon Nanotubes. Phys. E Low-Dimens. Syst. Nanostructures 2013, 52, 65–69. [Google Scholar] [CrossRef]
- Klishevich, G.V.; Curmei, N.D.; Lebovka, N.I.; Melnik, V.I. Conformational Effects and Photoluminescence Spectra of Nanocomposites 5CB Liquid Crystals-Carbon Nanotubes. Ukr. J. Phys. 2016, 61, 968–972. [Google Scholar] [CrossRef]
- Yaroshchuk, O.; Tomylko, S.; Lebovka, N. Two-Step Electrical Percolation in Nematic Liquid Crystal Filled by Multiwalled Carbon Nanotubes. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2015, 92, 12502. [Google Scholar]
- Lebovka, N.; Bulavin, L.; Kovalchuk, V.; Melnyk, I.; Repnin, K. Two Step Percolation in Aggregating Systems. Condens. Matter Phys. 2017, 20, 13602. [Google Scholar] [CrossRef]
- Samoilov, A.N.; Minenko, S.S.; Lisetski, L.N.; Lebovka, N.I.; Soskin, M.S.; Torgova, S.I. Dispersions of Carbon Nanotubes in Cholesteric Liquid Crystals with Photoactive Components. Funct. Mater. 2014, 21, 373–378. [Google Scholar] [CrossRef]
- Lisetski, L.N.; Fedoryako, A.P.; Samoilov, A.N.; Minenko, S.S.; Soskin, M.S.; Lebovka, N.I. Optical Transmission of Nematic Liquid Crystal 5CB Doped by Single-Walled and Multi-Walled Carbon Nanotubes. Eur. Phys. J. E 2014, 37, 68. [Google Scholar] [CrossRef] [PubMed]
- Lebovka, N.I.; Vygornitskii, N.V.; Bulavin, L.A.; Mazur, L.O.; Lisetski, L.N. Monte Carlo Studies of Optical Transmission of Anisotropic Suspensions. J. Mol. Liq. 2018, 272, 1025–1029. [Google Scholar] [CrossRef]
- Van Der Schoot, P.; Popa-Nita, V.; Kralj, S. Alignment of Carbon Nanotubes in Nematic Liquid Crystals. J. Phys. Chem. B 2008, 112, 4512–4518. [Google Scholar] [CrossRef] [PubMed]
- Popa-Nita, V.; Kralj, S. Liquid Crystal-Carbon Nanotubes Mixtures. J. Chem. Phys. 2010, 132, 24902. [Google Scholar] [CrossRef]
- Popa-Nita, V.; Buček, S. Length Bidisperse Carbon Nanotubes Dispersions in Thermotropic Liquid Crystals. Phys. Res. Int. 2012, 2012, 750890. [Google Scholar] [CrossRef]
- Popa-Nita, V. The Phase Behavior of Rigid Rods in an Anisotropic Mean Field with Applications to Carbon Nanotubes in Nematic Liquid Crystals. J. Chem. Phys. 2015, 143, 94901. [Google Scholar] [CrossRef]
- Popa-Nita, V.; Repnik, R. Binary Mixture Composed of Nematic Liquid Crystal and Carbon Nanotubes: A Theoretical Description. In Liquid Crystals-Self-Organized Soft Functional Materials for Advanced Applications; Carlescu, I., Ed.; IntechOpen Limited: London, UK, 2018. [Google Scholar]
- Jeong, H.S.; Ko, Y.K.; Kim, Y.H.; Yoon, D.K.; Jung, H.-T. Self Assembled Plate-like Structures of Single-Walled Carbon Nanotubes by Non-Covalent Hybridization with Smectic Liquid Crystals. Carbon 2010, 48, 774–780. [Google Scholar] [CrossRef]
- Sigdel, K.P.; Iannacchione, G.S. Effect of Carbon Nanotubes on the Isotropic to Nematic and the Nematic to Smectic-A Phase Transitions in Liquid Crystal and Carbon Nanotubes Composites. Eur. Phys. J. E 2011, 34, 34. [Google Scholar] [CrossRef]
- Basu, R.; Petschek, R.G.; Rosenblatt, C. Nematic Electroclinic Effect in a Carbon-Nanotube-Doped Achiral Liquid Crystal. Phys. Rev. E 2011, 83, 41707. [Google Scholar] [CrossRef]
- Kalakonda, P.; Basu, R.; Nemitz, I.R.; Rosenblatt, C.; Iannacchione, G.S. Studies of Nanocomposites of Carbon Nanotubes and a Negative Dielectric Anisotropy Liquid Crystal. J. Chem. Phys. 2014, 140, 104908. [Google Scholar] [CrossRef] [PubMed]
- Petrov, M.; Katranchev, B.; Rafailov, P.M.; Naradikian, H.; Dettlaff-Weglikowska, U.; Keskinova, E. Smectic C Liquid Crystal Growth and Memory Effect through Surface Orientation by Carbon Nanotubes. J. Mol. Liq. 2013, 180, 215–220. [Google Scholar] [CrossRef]
- Cetinkaya, M.C.; Yildiz, S.; Ozbek, H. The Effect Of-COOH Functionalized Carbon Nanotube Doping on Electro-Optical, Thermo-Optical and Elastic Properties of a Highly Polar Smectic Liquid Crystal. J. Mol. Liq. 2018, 272, 801–814. [Google Scholar] [CrossRef]
- Varshini, G.V.; Shankar Rao, D.S.; Mukherjee, P.K.; Krishna Prasad, S. Nanophase Segregation of Nanostructures: Induction of Smectic A and Re-Entrance in a Carbon Nanotube/Nematic Liquid Crystal Composite. J. Phys. Chem. B 2018, 122, 10774–10781. [Google Scholar] [CrossRef] [PubMed]
- Varshini, G.V.; Rao, D.S.S.; Mukherjee, P.K.; Prasad, S.K. Suppression of the Reentrant Nematic and Stabilization of the Smectic Phases by Carbon Nanotubes. J. Mol. Liq. 2019, 286, 110858. [Google Scholar] [CrossRef]
- Yildiz, S.; Cetinkaya, M.C.; Ozbek, H. The Influence of Multi-Walled Carbon Nanotube Doping on Liquid Crystalline Phase Transitions of a Smectogen Octylcyanobiphenyl: A High-Resolution Birefringence Study. Fluid Phase Equilib. 2019, 495, 47–58. [Google Scholar] [CrossRef]
- Ibragimov, T.D. Reduction of the Order Parameter and High Electric Conductivity of SWCNT Doped Smectic a Liquid Crystal. Fuller. Nanotub. Carbon Nanostruct. 2021, 29, 615–619. [Google Scholar] [CrossRef]
- Lagerwall, J. An introduction to the physics of liquid crystals. In Fluids, Colloids and Soft Materials: An Introduction to Soft Matter Physics; Nieves, A.F., Puertas, A.M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 307–340. [Google Scholar] [CrossRef]
- Chepikov, A.M.; Minenko, S.S.; Lisetski, L.N.; Lebovka, N.I.; Usol’tseva, N.V.; Soskin, M.S. Dispersions of Carbon Nanotubes and Organomodified Clay Platelets in Cholesteric Liquid Crystals. Funct. Mater. 2012, 19, 343–347. [Google Scholar]
- Lebovka, N.I.; Lisetski, L.N.; Nesterenko, M.I.; Panikarskaya, V.D.; Kasian, N.A.; Minenko, S.S.; Soskin, M.S. Anomalous Selective Reflection in Cholesteryl Oleyl Carbonate—Nematic 5CB Mixtures and Effects of Their Doping by Single-Walled Carbon Nanotubes. Liq. Cryst. 2013, 40, 968–975. [Google Scholar] [CrossRef]
- Basu, R.; Boccuzzi, K.; Ferjani, S.; Lemieux, R.; Petschek, R.; Rosenblatt, C. Carbon Nanotube-Induced Chirality and Macroscopic Helical Twist in Achiral Liquid Crystals. In Proceedings of the APS March Meeting Abstracts, Boston, MA, USA, 27 February–2 March 2012; Volume 2012, pp. C1–C120. [Google Scholar]
- Basu, R.; Chen, C.-L.; Rosenblatt, C. Carbon Nanotube-Induced Macroscopic Helical Twist in an Achiral Nematic Liquid Crystal. J. Appl. Phys. 2011, 109, 83518. [Google Scholar] [CrossRef]
- Ponevchinsky, V.V.; Goncharuk, A.I.; Denisenko, V.G.; Lebovka, N.I.; Lisetski, L.N.; Nesterenko, M.I.; Panikarskaya, V.D.; Soskin, M.S. LC Nanocomposites: Induced Optical Singularities, Managed Nano/Micro Structure, and Electrical Conductivity. In Proceedings of the Complex Light and Optical Forces VII, San Francisco, CA, USA, 2–7 February 2013; Volume 8637. [Google Scholar] [CrossRef]
- Hansen, C.M. Hansen Solubility Parameters: A User’s Handbook; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Deriabina, O.; Lebovka, N.; Bulavin, L.; Goncharuk, A. Regulation of Dispersion of Carbon Nanotubes in Binary Water+ 1-Cyclohexyl-2-Pyrrolidone Mixtures. Phys. E Low-Dimens. Syst. Nanostruct. 2014, 59, 150–157. [Google Scholar] [CrossRef]
- Chang, C.-K.; Chiu, S.-W.; Kuo, H.-L.; Tang, K.-T. Cholesteric Liquid Crystal-Carbon Nanotube Hybrid Architectures for Gas Detection. Appl. Phys. Lett. 2012, 100, 43501. [Google Scholar] [CrossRef]
- Petryshak, V.; Mikityuk, Z.; Vistak, M.; Gotra, Z.; Akhmetova, A.; Wójcik, W.; Assembay, A. Highly Sensitive Active Medium of Primary Converter SO2 Sensors Based on Cholesteric-Nematic Mixtures, Doped by Carbon Nanotubes. Prz. Elektrotech 2017, 1, 119–122. [Google Scholar] [CrossRef]
- Mykytyuk, Z.M.; Vistak, M.V.; Kogut, I.T.; Petryshak, V.S. Highly Sensitive Active Medium of Sensor NO2, Based on Cholesteric Nematic Mixture with Impurities of Carbon Nanotubes. Phys. Chem. Solid State 2021, 22, 426–431. [Google Scholar] [CrossRef]
- Köysal, O. Conductivity and Dielectric Properties of Cholesteric Liquid Crystal Doped with Single Wall Carbon Nanotube. Synth. Met. 2010, 160, 1097–1100. [Google Scholar] [CrossRef]
- Usol’tseva, N.V.; Smirnova, M.V.; Sotsky, V.V.; Smirnova, A.I. Physical Properties of Cholesteric Liquid Crystals-Carbon Nanotube Dispersions. J. Phys. Conf. Ser. 2014, 558, 12003. [Google Scholar] [CrossRef]
- Usol’tseva, N.V.; Smirnova, M.V.; Kazak, A.V.; Smirnova, A.I.; Bumbina, N.V.; Ilyin, S.O.; Rozhkova, N.N. Rheological Characteristics of Different Carbon Nanoparticles in Cholesteric Mesogen Dispersions as Lubricant Coolant Additives. J. Frict. Wear 2015, 36, 380–385. [Google Scholar] [CrossRef]
- Berezina, E.V.; Godlevskiy, V.A.; Usol’Tseva, N. V Investigation of Cholesteric Liquid Crystals and Carbon Nanotubes Additives on Mineral Oil Antifrictional and Rheological Characteristics. Procedia Eng. 2016, 150, 579–583. [Google Scholar] [CrossRef]
- Lisetski, L.N.; Minenko, S.S.; Samoilov, A.N.; Lebovka, N.I. Optical Density and Microstructure-Related Properties of Photoactive Nematic and Cholesteric Liquid Crystal Colloids with Carbon Nanotubes. J. Mol. Liq. 2017, 235, 90–97. [Google Scholar] [CrossRef]
- Samoilov, A.N.; Minenko, S.S.; Lisetski, L.N.; Soskin, M.S.; Torgova, S.I.; Lebovka, N.I. Anomalous Optical Properties of Photoactive Cholesteric Liquid Crystal Doped with Single-Walled Carbon Nanotubes. Liq. Cryst. 2018, 45, 250–261. [Google Scholar] [CrossRef]
- Gharde, R.A.; Thakare, S.Y. Effects of Concentration of Multiwall Carbon Nanotube on Cholesteric Liquid Crystal. Int. J. Chem. Phys. Sci. 2015, 4, 68–74. [Google Scholar]
- Yaroshchuk, O.; Tomylko, S.; Gvozdovskyy, I.; Yamaguchi, R. Cholesteric Liquid Crystal—Carbon Nanotube Composites with Photo-Settable Reversible and Memory Electro-Optic Modes. Appl. Opt. 2013, 52, E53–E59. [Google Scholar] [CrossRef]
- Middha, M.; Kumar, R.; Raina, K.K. Memory Effects in Chiral Nematic Liquid Crystals Doped with Functionalised Single-Walled Carbon Nanotubes. Liq. Cryst. 2015, 42, 1028–1035. [Google Scholar] [CrossRef]
- Middha, M.; Kumar, R.; Raina, K.K. Improved Electro-Optical Response of Induced Chiral Nematic Liquid Crystal Doped with Multi-Walled Carbon Nanotubes. Ferroelectrics 2016, 495, 75–86. [Google Scholar] [CrossRef]
- Miao, Z.; Wang, D. An Electrically and Thermally Erasable Liquid Crystal Film Containing NIR Absorbent Carbon Nanotube. Molecules 2022, 27, 562. [Google Scholar] [CrossRef] [PubMed]
- Draude, A.P.; Kalavalapalli, T.Y.; Iliut, M.; McConnell, B.; Dierking, I. Stabilization of Liquid Crystal Blue Phases by Carbon Nanoparticles of Varying Dimensionality. Nanoscale Adv. 2020, 2, 2404–2409. [Google Scholar] [CrossRef]
- Ao, G.; Nepal, D.; Aono, M.; Davis, V.A. Cholesteric and Nematic Liquid Crystalline Phase Behavior of Double-Stranded DNA Stabilized Single-Walled Carbon Nanotube Dispersions. ACS Nano 2011, 5, 1450–1458. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Wang, Y.; Zhao, Y.; Shang, L. Cholesteric Cellulose Liquid Crystals with Multifunctional Structural Colors. Adv. Funct. Mater. 2022, 32, 2107242. [Google Scholar] [CrossRef]
- Meyer, R.B.; Liebert, L.; Strzelecki, L.; Keller, P. Ferroelectric Liquid Crystals. J. Phys. Lett. 1975, 36, 69–71. [Google Scholar] [CrossRef]
- Collings, P.J. Ferroelectric Liquid Crystals: The 2004 Benjamin Franklin Medal in Physics Presented to Robert B. Meyer of Brandeis University. J. Frankl. Inst. 2005, 342, 599–608. [Google Scholar] [CrossRef]
- Lagerwall, S.T. Ferroelectric and Antiferroelectric Liquid Crystals; Wiley-VCH Verlag GmbH.: Weinheim, Germany, 1999; ISBN 3-527-2983-1-2. [Google Scholar]
- Guo, Q.; Yan, K.; Chigrinov, V.; Zhao, H.; Tribelsky, M. Ferroelectric Liquid Crystals: Physics and Applications. Crystals 2019, 9, 470. [Google Scholar] [CrossRef]
- Lagerwall, J.P.F.; Dabrowski, R.; Scalia, G. Antiferroelectric Liquid Crystals with Induced Intermediate Polar Phases and the Effects of Doping with Carbon Nanotubes. J. Non. Cryst. Solids 2007, 353, 4411–4417. [Google Scholar] [CrossRef]
- Arora, P.; Mikulko, A.; Podgornov, F.; Haase, W. Dielectric and Electro-Optic Properties of New Ferroelectric Liquid Crystalline Mixture Doped with Carbon Nanotubes. Mol. Cryst. Liq. Cryst. 2009, 502, 1–8. [Google Scholar] [CrossRef]
- Podgornov, F.V.; Suvorova, A.M.; Lapanik, A.V.; Haase, W. Electrooptic and Dielectric Properties of Ferroelectric Liquid Crystal/Single Walled Carbon Nanotubes Dispersions Confined in Thin Cells. Chem. Phys. Lett. 2009, 479, 206–210. [Google Scholar] [CrossRef]
- Prakash, J.; Choudhary, A.; Mehta, D.S.; Biradar, A.M. Effect of Carbon Nanotubes on Response Time of Ferroelectric Liquid Crystals. Phys. Rev. E 2009, 80, 12701. [Google Scholar] [CrossRef] [PubMed]
- Prakash, J.; Kumar, A.; Joshi, T.; Mehta, D.S.; Biradar, A.M.; Haase, W. Spontaneous Polarization in Smectic A Phase of Carbon Nanotubes Doped Deformed Helix Ferroelectric Liquid Crystal. Mol. Cryst. Liq. Cryst. 2011, 541, 166–404. [Google Scholar] [CrossRef]
- Malik, P.; Chaudhary, A.; Raina, K.K. Dielectric Studies of Carbon Nanotube Doped Ferroelectric Liquid Crystal Films. Asian J. Chem. 2009, 21, S095–S098. [Google Scholar]
- Neeraj; Kumar, P.; Raina, K.K. Analysis of Dielectric and Electro-Optic Responses of Nanomaterials Doped Ferroelectric Liquid Crystal Mixture. J. Mater. Sci. Technol. 2011, 27, 1094–1098. [Google Scholar] [CrossRef]
- Neeraj; Raina, K.K. Dynamic Responses of Dispersed Ferroelectric Liquid Crystal Composite Materials. Integr. Ferroelectr. 2011, 125, 104–110. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Pozhidaev, E.P.; Chigrinov, V.G.; Manohar, R. Single Walled Carbon Nano-Tube, Ferroelectric Liquid Crystal Composites: Excellent Diffractive Tool. Appl. Phys. Lett. 2011, 99, 201106. [Google Scholar] [CrossRef]
- Gupta, S.K.; Kumar, A.; Srivastava, A.K.; Manohar, R. Modification in Dielectric Properties of SWCNT Doped Ferroelectric Liquid Crystals. J. Non. Cryst. Solids 2011, 357, 1822–1826. [Google Scholar] [CrossRef]
- Gupta, S.K.; Singh, D.P.; Manohar, R. SWCNT Doped Ferroelectric Liquid Crystal: The Electro-Optical Properties with Enhanced Dipolar Contribution. Curr. Appl. Phys. 2013, 13, 684–687. [Google Scholar] [CrossRef]
- Gupta, S.K.; Singh, D.P.; Manohar, R. Enhancement of Dielectric and Electro-Optical Properties in SWCNT Dispersed Ferroelectric Liquid Crystals. Ferroelectrics 2014, 468, 84–91. [Google Scholar] [CrossRef]
- Shukla, R.K.; Raina, K.K.; Hamplová, V.; Kašpar, M.; Bubnov, A. Dielectric Behaviour of the Composite System: Multiwall Carbon Nanotubes Dispersed in Ferroelectric Liquid Crystal. Phase Transit. 2011, 84, 850–857. [Google Scholar] [CrossRef]
- Shukla, R.K.; Chaudhary, A.; Bubnov, A.; Raina, K.K. Multi-Walled Carbon Nanotubes-Ferroelectric Liquid Crystal Nanocomposites: Effect of Cell Thickness and Dopant Concentration on Electro-Optic and Dielectric Behaviour. Liq. Cryst. 2018, 45, 1672–1681. [Google Scholar] [CrossRef]
- Shukla, R.K.; Chaudhary, A.; Bubnov, A.; Hamplova, V.; Raina, K.K. Electrically Switchable Birefringent Self-Assembled Nanocomposites: Ferroelectric Liquid Crystal Doped with the Multiwall Carbon Nanotubes. Liq. Cryst. 2020, 47, 1379–1389. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiao, Y.; Yang, S.; Xu, J.; Yang, W.; Li, M.; Wang, D.; Zhou, Y. Alignment of Single-Walled Carbon Nanotubes with Ferroelectric Liquid Crystal. J. Phys. Chem. C 2012, 116, 16694–16699. [Google Scholar] [CrossRef]
- Sood, N.; Khosla, S.; Singh, D.; Bawa, S.S. Dielectric Investigations of Pure and Carbon Nanotube-Doped Deformed Helix Ferroelectric Liquid Crystals. Liq. Cryst. 2012, 39, 1169–1174. [Google Scholar] [CrossRef]
- Tripathi, S.; Prakash, J.; Chandran, A.; Joshi, T.; Kumar, A.; Dhar, A.; Biradar, A.M. Enhanced Dielectric and Electro-Optical Properties of a Newly Synthesised Ferroelectric Liquid Crystal Material by Doping Gold Nanoparticle-Decorated Multiwalled Carbon Nanotubes. Liq. Cryst. 2013, 40, 1255–1262. [Google Scholar] [CrossRef]
- Khosla, S.; Sharma, A. Dielectric Behavior of Carbon-Nanotube-Doped Ferroelectric Liquid Crystal Mixture. J. Inf. Disp. 2013, 14, 127–129. [Google Scholar] [CrossRef]
- Khushboo; Jayoti, D.; Malik, P.; Chaudhary, A.; Mehra, R.; Raina, K.K. Properties of Ferroelectric Liquid Crystal/Multiwall Carbon Nanotube Doped Composite. Integr. Ferroelectr. 2014, 158, 123–130. [Google Scholar] [CrossRef]
- Raina, K.K. Others Multiwall Carbon Nanotubes Doped Ferroelectric Liquid Crystal Composites: A Study of Modified Electrical Behavior. Phys. B Condens. Matter 2014, 434, 1–6. [Google Scholar] [CrossRef]
- Ganguly, P.; Kumar, A.; Tripathi, S.; Haranath, D.; Biradar, A.M. Effect of Functionalisation of Carbon Nanotubes on the Dielectric and Electro-Optical Properties of Ferroelectric Liquid Crystal. Liq. Cryst. 2014, 41, 793–799. [Google Scholar] [CrossRef]
- Yakemseva, M.; Dierking, I.; Kapernaum, N.; Usoltseva, N.; Giesselmann, F. Dispersions of Multi-Wall Carbon Nanotubes in Ferroelectric Liquid Crystals. Eur. Phys. J. E 2014, 37, 7. [Google Scholar] [CrossRef]
- Lagerwall, J.P.; Scalia, G. The Effects of Carbon Nanotubes on the Clearing Transition of the Antiferroelectric Liquid Crystal MHPOBC. Ferroelectrics 2016, 495, 69–74. [Google Scholar] [CrossRef]
- Kumar, P.; Sinha, A. Electro-Optical Properties of Carbon Nanotubes Doped Ferroelectric Liquid Crystal. Integr. Ferroelectr. 2018, 186, 71–76. [Google Scholar] [CrossRef]
- Dey, K.C.; Mandal, P.K. Effect of Multi-Walled Carbon Nanotubes on Dielectric and Electro-Optic Properties of a High Tilt Antiferroelectric Liquid Crystal. Phase Transit. 2019, 92, 302–315. [Google Scholar] [CrossRef]
- Mukherjee, P.K. Influence of Carbon Nanotubes in Antiferroelectric Liquid Crystals. Soft Mater. 2019, 17, 321–327. [Google Scholar] [CrossRef]
- Mukherjee, P.K. Effect of Carbon Nanotubes in Ferroelectric Liquid Crystals. Liq. Cryst. 2022, 49, 366–371. [Google Scholar] [CrossRef]
- Subhasri, P.; Balasubramanian, V.; Vasanthi, T.; Balamuralikrishnan, S.; Jayaprakasam, R.; Vijayakumar, V.N. Optical Modulation Studies of Multiwall Carbon Nanotube Dispersed in Hydrogen Bonded Ferroelectric Liquid Crystal Mixture for Electro-Optic Devices. Ferroelectrics 2020, 558, 187–198. [Google Scholar] [CrossRef]
- Debnath, A.; Mandal, P.K. Influence of Carbon Nanotubes on the Dielectric and Electro-Optical Properties of a Proto-Type Ferroelectric Mixture Used in Display Devices. J. Mol. Liq. 2021, 343, 117653. [Google Scholar] [CrossRef]
- Kumar, S.; Bisoyi, H.K. Aligned Carbon Nanotubes in the Supramolecular Order of Discotic Liquid Crystals. Angew. Chemie 2007, 119, 1523–1525. [Google Scholar] [CrossRef]
- Bisoyi, H.K.; Kumar, S. Carbon Nanotubes in Triphenylene and Rufigallol-Based Room Temperature Monomeric and Polymeric Discotic Liquid Crystals. J. Mater. Chem. 2008, 18, 3032–3039. [Google Scholar] [CrossRef]
- Lee, J.J.; Yamaguchi, A.; Alam, M.A.; Yamamoto, Y.; Fukushima, T.; Kato, K.; Takata, M.; Fujita, N.; Aida, T. Discotic Ionic Liquid Crystals of Triphenylene as Dispersants for Orienting Single-Walled Carbon Nanotubes. Angew. Chemie 2012, 124, 8618–8622. [Google Scholar] [CrossRef]
- Kumar, S. Nanoparticles in Discotic Liquid Crystals. In Liquid Crystals with Nano and Microparticles; World Scientific: Singapore, 2017; pp. 461–496. [Google Scholar]
- Kumar, S. Investigations on Discotic Liquid Crystals. Liq. Cryst. 2020, 47, 1195–1203. [Google Scholar] [CrossRef]
- Weiss, V.; Thiruvengadathan, R.; Regev, O. Preparation and Characterization of a Carbon Nanotube- Lyotropic Liquid Crystal Composite. Langmuir 2006, 22, 854–856. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Yu, B.; Liu, W.; Hao, J. Carbon Nanotubes Incorporated within Lyotropic Hexagonal Liquid Crystal Formed in Room-Temperature Ionic Liquids. Langmuir 2007, 23, 8549–8553. [Google Scholar] [CrossRef]
- Lagerwall, J.P.F.; Scalia, G.; Haluska, M.; Dettlaff-Weglikowska, U.; Giesselmann, F.; Roth, S. Simultaneous Alignment and Dispersion of Carbon Nanotubes with Lyotropic Liquid Crystals. Phys. Status Solidi 2006, 243, 3046–3049. [Google Scholar] [CrossRef]
- Lagerwall, J.; Scalia, G.; Haluska, M.; Dettlaff-Weglikowska, U.; Roth, S.; Giesselmann, F. Nanotube Alignment Using Lyotropic Liquid Crystals. Adv. Mater. 2007, 19, 359–364. [Google Scholar] [CrossRef]
- Lagerwall, J.P.F. Three Facets of Modern Liquid Crystal Science. Ph.D. Thesis, Naturwissenschaftlichen Fakultat IIder Martin-Luther-Universit¨at Halle-Wittenberg, Halle, Germany, 2010. [Google Scholar]
- Scalia, G.; von Bühler, C.; Hägele, C.; Roth, S.; Giesselmann, F.; Lagerwall, J.P.F. Spontaneous Macroscopic Carbon Nanotube Alignment via Colloidal Suspension in Hexagonal Columnar Lyotropic Liquid Crystals. Soft Matter 2008, 4, 570–576. [Google Scholar] [CrossRef]
- Jo, H.R.; Yamamoto, J.; Lagerwall, J.; Scalia, G. Effects of Carbon Nanotubes on a Very Low Surfactant Concentration Lyotropic Liquid Crystal Host. In Proceedings of the Emerging Liquid Crystal Technologies IX, San Francisco, CA, USA, 5 February 2014; Volume 9004, pp. 139–147. [Google Scholar]
- Dölle, S.; Park, J.H.; Schymura, S.; Jo, H.; Scalia, G.; Lagerwall, J.P.F. Nanoparticle Guests in Lyotropic Liquid Crystals. In Liquid Crystals with Nano and Microparticles; World Scientific: Singapore, 2017; pp. 695–722. [Google Scholar]
- Nativ-Roth, E.; Yerushalmi-Rozen, R.; Regev, O. Phase Behavior and Shear Alignment in SWNT-Surfactant Dispersions. Small 2008, 4, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Schymura, S.; Enz, E.; Roth, S.; Scalia, G.; Lagerwall, J.P.F. Macroscopic-Scale Carbon Nanotube Alignment via Self-Assembly in Lyotropic Liquid Crystals. Synth. Met. 2009, 159, 2177–2179. [Google Scholar] [CrossRef]
- Schymura, S.; Dölle, S.; Yamamoto, J.; Lagerwall, J. Filament Formation in Carbon Nanotube-Doped Lyotropic Liquid Crystals. Soft Matter 2011, 7, 2663–2667. [Google Scholar] [CrossRef]
- Schymura, S. Liquid Crystalline Carbon Nanotube Suspensions: From Unique Challenges to Unique Properties/von Stefan Schymura. Doctoral Dissertation, Universitäts-und Landesbibliothek Sachsen-Anhalt, Halle, Germany, 2013. [Google Scholar]
- Xin, X.; Li, H.; Kalwarczyk, E.; Kelm, A.; Fiałkowski, M.; Gorecka, E.; Pociecha, D.; Hołyst, R. Single-Walled Carbon Nanotube/Lyotropic Liquid Crystal Hybrid Materials Fabricated by a Phase Separation Method in the Presence of Polyelectrolyte. Langmuir 2010, 26, 8821–8828. [Google Scholar] [CrossRef]
- Zhao, M.; Gao, Y.; Zheng, L. Lyotropic Liquid Crystalline Phases Formed in Binary Mixture of 1-Tetradecyl-3-Methylimidazolium Chloride/Ethylammonium Nitrate and Its Application in the Dispersion of Multi-Walled Carbon Nanotubes. Colloids Surf. A Physicochem. Eng. Asp. 2010, 369, 95–100. [Google Scholar] [CrossRef]
- Abe, H.; Tan, Z.; Kondo, A.; Naito, M. Direct Filament Formation of Biological Carbon Nanotube Suspensions. Addit. Pap. Present. 2012, 2012, 132–135. [Google Scholar] [CrossRef]
- Abe, H.; Tan, Z.; Kondo, A.; Naito, M. Filament Formation in Biological Carbon Nanotube Suspensions. Trans. Join. Weld. Res. Inst. 2012, 41, 29–32. [Google Scholar] [CrossRef]
- Tardani, F.; La Mesa, C. Elasticity of Dispersions Based on Carbon Nanotubes Dissolved in a Lyotropic Nematic Solvent. J. Phys. Chem. C 2011, 115, 9424–9431. [Google Scholar] [CrossRef]
- Ould-Moussa, N.; Blanc, C.; Zamora-Ledezma, C.; Maugey, M.; Poulin, P.; Anglaret, E.; Nobili, M. Dispersion and Alignment of Individual Single Wall Carbon Nanotubes in a Chromonic Liquid Crystal. Liq. Cryst. 2012, 40, 1628–1635. [Google Scholar] [CrossRef]
- Vijayaraghavan, D. Self-Assembled Ordering of Single-Walled Carbon Nanotubes in a Lyotropic Liquid Crystal System. J. Mol. Liq. 2014, 199, 128–132. [Google Scholar] [CrossRef]
- Vijayaraghavan, D.; Mishra, J.; Thejas, R. Magnetic Field Dependence of the Hexagonal to Isotropic Transition Temperature of a Single-Walled Carbon Nanotubes Dispersed Lyotropic Liquid Crystal. Phase Transit. 2019, 92, 634–641. [Google Scholar] [CrossRef]
- Srour, H.K.; Atta, N.F.; Khalil, M.W.; Galal, A. Ionic Liquid Crystals/Nano-Nickel Oxide-Decorated Carbon Nanotubes Composite for Electrocatalytic Treatment of Urea-Contaminated Water. J. Water Process Eng. 2022, 48, 102823. [Google Scholar] [CrossRef]
- Islam, M.F.; Alsayed, A.M.; Dogic, Z.; Zhang, J.; Lubensky, T.C.; Yodh, A.G. Nematic Nanotube Gels. Phys. Rev. Lett. 2004, 92, 88303. [Google Scholar] [CrossRef]
- Islam, M.F.; Nobili, M.; Ye, F.; Lubensky, T.C.; Yodh, A.G. Cracks and Topological Defects in Lyotropic Nematic Gels. Phys. Rev. Lett. 2005, 95, 148301. [Google Scholar] [CrossRef] [PubMed]
- Hough, L.A.; Islam, M.F.; Hammouda, B.; Yodh, A.G.; Heiney, P.A. Structure of Semidilute Single-Wall Carbon Nanotube Suspensions and Gels. Nano Lett. 2006, 6, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Ohara, S.; Naito, M.; Abe, H. Supramolecular Hydrogel of Bile Salts Triggered by Single-Walled Carbon Nanotubes. Adv. Mater. 2011, 23, 4053–4057. [Google Scholar] [CrossRef]
- Meuer, S.; Braun, L.; Zentel, R. Solubilisation of Multi Walled Carbon Nanotubes by $α$-Pyrene Functionalised PMMA and Their Liquid Crystalline Self-Organisation. Chem. Commun. 2008, 27, 3166–3168. [Google Scholar] [CrossRef]
- Lee, H.W.; You, W.; Barman, S.; Hellstrom, S.; LeMieux, M.C.; Oh, J.H.; Liu, S.; Fujiwara, T.; Wang, W.M.; Chen, B.; et al. Lyotropic Liquid-Crystalline Solutions of High-Concentration Dispersions of Single-Walled Carbon Nanotubes with Conjugated Polymers. Small 2009, 5, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.S.; Jung, B.M.; Lee, H.; Chang, J.Y. Preparation of Polymeric SWNT- Liquid Crystal Composites Using a Polymerizable Surfactant. Macromolecules 2010, 43, 5376–5381. [Google Scholar] [CrossRef]
- Jang, H.-S.; Kim, T.-H.; Do, C.; Lee, M.-J.; Choi, S.-M. Single-Walled Carbon Nanotube Induced Re-Entrant Hexagonal Phases in a Pluronic Block Copolymer System. Soft Matter 2013, 9, 3050–3056. [Google Scholar] [CrossRef]
- Wang, L.; Xin, X.; Guo, K.; Yang, M.; Ma, X.; Yuan, J.; Shen, J.; Yuan, S. Ordered Carbon Nanotubes-n-Dodecyl Tetraethylene Monoether Liquid Crystal Composites through Phase Separation Induced by Poly (Ethylene Glycol). Phys. Chem. Chem. Phys. 2014, 16, 14771–14780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Miao, Z.; Shen, W. Development of Polymer-Dispersed Liquid Crystals: From Mode Innovation to Applications. Compos. Part A Appl. Sci. Manuf. 2022, 163, 107234. [Google Scholar] [CrossRef]
- Pagidi, S.; Pasupuleti, K.S.; Reddeppa, M.; Ahn, S.; Kim, Y.; Kim, J.-H.; Kim, M.-D.; Lee, S.H.; Jeon, M.Y. Resistive Type NO2 Gas Sensing in Polymer-Dispersed Liquid Crystals with Functionalized-Carbon Nanotubes Dopant at Room Temperature. Sens. Actuators B Chem. 2022, 370, 132482. [Google Scholar] [CrossRef]
- Mănăilă-Maximean, D.; Cîrcu, V.; Ganea, P.; Bărar, A.; Danila, O.; Staicu, T.; Loiko, V.A.; Konkolovich, A.V.; Miskevich, A.A. Polymer Dispersed Liquid Crystals Films Doped with Carbon Nanotubes: Preparation Methods. In Proceedings of the Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies IX, Constanta, Romania, 23–26 August 2018; Volume 10977, p. 1097702. [Google Scholar]
- Liu, Y.; Shen, J.; Shen, T.; Zheng, J.; Zhuang, S. Electro-Optical Properties and Frequency Response of Polymer-Dispersed Liquid Crystal Gratings Doped with Multi-Walled Carbon Nanotubes. J. Mater. Sci. 2021, 56, 12660–12670. [Google Scholar] [CrossRef]
Materials, References | Discussed Issues |
---|---|
CNTs in liquid solvents [50] | The review discussed the phase behavior of CNT suspensions, formation of LC phases, effect of surfactants, and interparticle interactions on the aggregation and percolation threshold |
CNTs in water and different LC phases [51] | LC phases of CNTs in water and the effects of insertion of CNTs into thermotropic or lyotropic LCs were discussed. |
Nanoparticles in LCs [52] | The self-assembly of nanoparticles in different thermotropic, lyotropic, and amphotropic LC phases was analyzed. |
CNTs in LCs [53] | The review analyzed the alignment and efficient dispersion of CNTs in thermotropic and lyotropic LC hosts, distortions of the LC director field. The potentially relevant applications in displays or similar electro-optic devices were also considered. |
Nanoscale particles and CNTs in LCs [54] | A review of the impact of nanoscale particles (metal and semiconductor nanoclusters or nanorods) and CNTs in LC nanocomposites on the improvement of LC display (LCD) applications was given. |
CNTs in thermotropic nematic LCs [55] | The different dispersion methods, stability, alignment, and distribution of the CNTs inside the LC suspension were analyzed. The photorefractive effect, dielectric relaxation behavior, phase transition temperatures in CNT–LC suspensions, and improvement in LC device performance via doping CNTs were also discussed. |
Different metamaterials on the base of LCs doped with nanoparticles [56] | The review presented discussion of linear and nonlinear optical properties of LC materials doped with fullerene C60, CNTs, polymers, gold and silver nanospheres, and other nanoparticulates of various shapes and forms. |
CNTs in LCs [57] | The review was presented on dielectric, electro-optical, nonlinear optical, and micro-structural properties of thermotropic nematic LCs doped with CNTs. The impact of the spatial arrangement of CNTs on heating–cooling hysteretic behavior of electrical conductivity and percolation effects was discussed. Mechanisms of electro-optic memory effect and its enhancement via chiral dopant were also analyzed. |
CNTs in LCs [58] | Discussion of factors affecting the efficient dispersion of CNTs in thermotropic LCs, preparation of the dispersions, their stability, and uniaxial CNT alignment in the LC host was presented. |
CNTs in LCs [59] | Different methods of dispersion, ordering, and aligning of CNTs in thermotropic and lyotropic LC hosts were analyzed. |
Different nanoparticles in LCs [60] | Comprehensive discussion of behavior of different LC colloids of nanoparticles was given. The data on different types of nanoparticles (aerosil, CNTs, metallic, ferroelectric, magnetic, organic, dielectric, and semiconductor) in thermotropic and lyotropic LCs were presented. Various applications of LC nanocolloids were also discussed. |
Different nanoparticles in LCs [61,62] | Considerations of ion trapping effects and related phenomena in LCs doped with nanoparticles of various origins (carbon-based, metal, dielectric, semiconductor, magnetic, ferroelectric, and polymeric) were presented. The percolation effects, aggregation phenomena, ion capturing capabilities, effects of the purity of the nanoparticle, and current challenges in the field were also reviewed. |
CNTs and other nanomaterials in LCs [63] | Tutorial review on the behavior of nanorods and discs, CNTs in thermotropic and lyotropic LCs, as well as discussion of LC phases formed by CNTs was presented. |
Nanoparticle-doped LC phases [64] | Extensive discussions of properties of LC nanoparticle dispersions (LCs with additives of nanorods, nanotubes, and nanoclays) and different electro-optic applications were provided. |
Nanoparticles dispersed in LCs [65] | Discussion of recent theories of phase separations and phase behaviors in mixtures of nanoparticles (spherical and rod-like) and LCs was given. For nanotubes dispersed in LCs, the effects of external magnetic and electric fields on the phase behaviors were also considered. |
LCs of CNTs and CNTs in LCs [66] | The review provided analysis of dispersion of CNTs in isotropic liquids (particularly in water in presence of surfactants) and formation of lyotropic LC phases (Onsager’s transition). Aligning of CNTs in thermotropic and lyotropic LCs, LC polymers, and polymerized LCs was also discussed. |
Colloidal particles organized by LCs and LC phases from colloids [67] | The review presented comprehensive discussions of applications of LCs in soft-matter nanotechnologies with consideration of the effects of LCs on the organization of colloidal particles and formation of LC phases from colloids. The particular effects related to CNT colloids were also considered. |
CNTs in LCs [68] | The different aspects of the CNT–LC combination, evaluations of the CNTs’ effect on selected properties of LCs, and the direct effect of CNT bundles on LC reorientation were analyzed. |
Nano- and microparticles in LCs [69] | The ordering of nano-and microparticles in LCs, shape-induced effects, and specific interactions on CNTs in LC matrices were analyzed. |
CNTs in LCs [70] | The structure and properties of LCs doped with CNTs were critically reviewed. Behavior of thermotropic (nematics, cholesterics, and smectics), lyotropic, and chromonic, ionic, and hydrogen-bonded LC phases was discussed. The discussions include behavior electrical conductivity, dielectric permittivity, phase transitions, optical transmission, and different memory effects. Properties of combined well-dispersed LC composites that contain CNTs and platelets of organoclays were also discussed. The review mentioned possible practical applications of LC + CNT-based materials in various electro-optic and optoelectronic devices. |
CNTs in LCs [71] | A comprehensive overview of CNT suspensions in LCs was given. The dispersion and interaction of CNTs in LC matrices has been extensively discussed. The different effects of LCs on the CNTs’ alignment and effects of CNTs on the enhancement and fine-tuning of LC properties were presented. In particular, the phase behavior of CNT + LC composites, optical transmittance, memory effects, dielectric and electrical conductivity behavior, ionic effects, impacts of electric/magnetic field, and perspectives of application of composites were briefly discussed. |
CNTs in LCs [72] | A comprehensive review on different properties of thermotropic LCs doped with CNTs was presented. The dispersion of CNTs, electrical and magnetic switching of LC–CNT composites, CNTs’ effects on properties of ferroelectric LCs and perspective of practical applications of these composite LC–nanotube dispersions were discussed. |
Different nanoparticles in LCs [73] | A critical review on the behavior of dispersion of different nanoparticles (ferroelectric, ferromagnetic, nanotubes, nanorods and nanowires, graphene-related materials, etc.) in LCs, and the formation of LCs by anisotropic-shaped nanoparticles was presented. The possible areas of practical applications of such materials were discussed. |
Different nanoparticles in LCs [74] | The properties of LCs (electro-optical, alignment, viscosity, clearing point, elastic properties etc…) doped with various kinds of nanoparticles (ferroelectric, noble metallic, semiconductor, and carbon) were reviewed. The possible multifunctional applications of such materials were discussed. The self-assembly of anisotropic nanoparticles (rods, tubes, disks, flexible chains, and wires) into lyotropic LC phases, and applications of such materials in various functional devices, biological sensors, and drug delivery systems were also discussed. |
Low-dimensional carbon allotropes in LCs [75] | A topical review on the behavior of LC dispersions of carbon nanomaterials, such as fullerenes, nanotubes, and graphene variants was presented. In particular, the behavior of nematic and ferroelectric LCs doped with CNTs, dispersibility of CNTs, and possible practical applications of such materials were discussed. |
Different nanoparticles in LCs [76] | A general review on the behavior of LCs and LC polymers doped with nanomaterials (metals, metal oxides, layered silicates, CNTs, graphene oxides, graphene, etc.) was presented. |
CNTs in LCs [77] | A general review on different properties of LCs doped with CNTs was given. |
Different nanoparticles in polymer-modified LCs [22] | The book contains discussion of polymer-modified nanoparticle-laden LCs. In particular, the properties of polymer-stabilized CNT-reinforced LCs were discussed. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisetski, L.; Bulavin, L.; Lebovka, N. Effects of Dispersed Carbon Nanotubes and Emerging Supramolecular Structures on Phase Transitions in Liquid Crystals: Physico-Chemical Aspects. Liquids 2023, 3, 246-277. https://doi.org/10.3390/liquids3020017
Lisetski L, Bulavin L, Lebovka N. Effects of Dispersed Carbon Nanotubes and Emerging Supramolecular Structures on Phase Transitions in Liquid Crystals: Physico-Chemical Aspects. Liquids. 2023; 3(2):246-277. https://doi.org/10.3390/liquids3020017
Chicago/Turabian StyleLisetski, Longin, Leonid Bulavin, and Nikolai Lebovka. 2023. "Effects of Dispersed Carbon Nanotubes and Emerging Supramolecular Structures on Phase Transitions in Liquid Crystals: Physico-Chemical Aspects" Liquids 3, no. 2: 246-277. https://doi.org/10.3390/liquids3020017
APA StyleLisetski, L., Bulavin, L., & Lebovka, N. (2023). Effects of Dispersed Carbon Nanotubes and Emerging Supramolecular Structures on Phase Transitions in Liquid Crystals: Physico-Chemical Aspects. Liquids, 3(2), 246-277. https://doi.org/10.3390/liquids3020017