Journal Description
Liquids
Liquids
is an international, peer-reviewed, open access journal on all aspects of liquid material research published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within AGRIS, and other databases.
- Rapid Publication: first decisions in 16 days; acceptance to publication in 5.8 days (median values for MDPI journals in the second half of 2022).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
How Does Heat Propagate in Liquids?
Liquids 2023, 3(1), 92-117; https://doi.org/10.3390/liquids3010009 - 30 Jan 2023
Abstract
In this paper, we proceed to illustrate the consequences and implications of the Dual Model of Liquids (DML) by applying it to the heat propagation. Within the frame of the DML, propagation of thermal (elastic) energy in liquids is due to wave-packet propagation
[...] Read more.
In this paper, we proceed to illustrate the consequences and implications of the Dual Model of Liquids (DML) by applying it to the heat propagation. Within the frame of the DML, propagation of thermal (elastic) energy in liquids is due to wave-packet propagation and to the wave-packets’ interaction with the material particles of the liquid, meant in the DML as aggregates of molecules swimming in an ocean of amorphous liquid. The liquid particles interact with the lattice particles, a population of elastic wave-packets, by means of an inertial force, exchanging energy and momentum with them. The hit particle relaxes at the end of the interaction, releasing the energy and momentum back to the system a step forward and a time lapse later, like in a tunnel effect. The tunnel effect and the duality of liquids are the new elements that suggest on a physical basis for the first time, using a hyperbolic equation to describe the propagation of energy associated to the dynamics of wave-packet interaction with liquid particles. Although quantitatively relevant only in the transient phase, the additional term characterizing the hyperbolic equation, usually named the “memory term”, is physically present also once the stationary state is attained; it is responsible for dissipation in liquids and provides a finite propagation velocity for wave-packet avalanches responsible in the DML for the heat conduction. The consequences of this physical interpretation of the “memory” term added to the Fourier law for the phononic contribution are discussed and compiled with numerical prediction for the value of the memory term and with the conclusions of other works on the same topic.
Full article
(This article belongs to the Section Physics of Liquids)
►
Show Figures
Open AccessEditorial
Acknowledgment to the Reviewers of Liquids in 2022
Liquids 2023, 3(1), 90-91; https://doi.org/10.3390/liquids3010008 - 13 Jan 2023
Abstract
High-quality academic publishing is built on rigorous peer review [...]
Full article
Open AccessArticle
Linear Solvation–Energy Relationships (LSER) and Equation-of-State Thermodynamics: On the Extraction of Thermodynamic Information from the LSER Database
Liquids 2023, 3(1), 66-89; https://doi.org/10.3390/liquids3010007 - 11 Jan 2023
Abstract
There is a remarkable wealth of thermodynamic information in freely accessible databases, the LSER database being a classical example. The LSER, or Abraham solvation parameter model, is a very successful predictive tool in a variety of applications in the (bio)chemical and environmental sector.
[...] Read more.
There is a remarkable wealth of thermodynamic information in freely accessible databases, the LSER database being a classical example. The LSER, or Abraham solvation parameter model, is a very successful predictive tool in a variety of applications in the (bio)chemical and environmental sector. The model and the associated database are very rich in thermodynamic information and information on intermolecular interactions, which, if extracted properly, would be particularly useful in various thermodynamic developments for further applications. Partial Solvation Parameters (PSP), based on equation-of-state thermodynamics, are designed as a versatile tool that would facilitate this extraction of information. The present work explores the possibilities of such an LSER–PSP interconnection and the challenging issues this effort is faced with. The thermodynamic basis of the very linearity of the LSER model is examined, especially, with respect to the contribution of strong specific interactions in the solute/solvent system. This is done by combining the equation-of-state solvation thermodynamics with the statistical thermodynamics of hydrogen bonding. It is verified that there is, indeed, a thermodynamic basis of the LFER linearity. Besides the provenance of the sought linearity, an insight is gained on the thermodynamic character and content of coefficients and terms of the LSER linearity equations. The perspectives from this insight for the further development of LSER and related databases are discussed. The thermodynamic LSER–PSP interconnection is examined as a model for the exchange in information between QSPR-type databases and equation-of-state developments and the associated challenges are examined with representative calculations.
Full article
(This article belongs to the Special Issue Modeling of Liquids Behavior: Experiments, Theory and Simulations)
►▼
Show Figures

Figure 1
Open AccessReview
The Relevance of Cavity Creation for Several Phenomena Occurring in Water
Liquids 2023, 3(1), 57-65; https://doi.org/10.3390/liquids3010006 - 09 Jan 2023
Abstract
The solvent-excluded volume effect is an under-appreciated general phenomenon occurring in liquids and playing a fundamental role in many cases. It is quantified and characterized by means of the theoretical concept of cavity creation and its Gibbs free energy cost. The magnitude of
[...] Read more.
The solvent-excluded volume effect is an under-appreciated general phenomenon occurring in liquids and playing a fundamental role in many cases. It is quantified and characterized by means of the theoretical concept of cavity creation and its Gibbs free energy cost. The magnitude of the reversible work of cavity creation proves to be particularly large in water, and this fact plays a key role for, among other things, the poor solubility of nonpolar species, the formation of host–guest complexes, and the folding of globular proteins. An analysis of some examples is provided in the present review.
Full article
(This article belongs to the Special Issue Modeling of Liquids Behavior: Experiments, Theory and Simulations)
►▼
Show Figures

Figure 1
Open AccessCommunication
Density and Dynamic Viscosity of Perfluorodecalin-Added n-Hexane Mixtures: Deciphering the Role of Fluorous Liquids
by
and
Liquids 2023, 3(1), 48-56; https://doi.org/10.3390/liquids3010005 - 04 Jan 2023
Abstract
Fluorous solvents are deputed as prominent solvent systems owing to their salient features, unique physical properties, and ecological importance. In this study, the temperature- and composition-dependence of physical properties, density (ρ/g·cm−3), and dynamic viscosity (η/mPa·s), of neat
[...] Read more.
Fluorous solvents are deputed as prominent solvent systems owing to their salient features, unique physical properties, and ecological importance. In this study, the temperature- and composition-dependence of physical properties, density (ρ/g·cm−3), and dynamic viscosity (η/mPa·s), of neat perfluorodecalin (PFD) and PFD-added n-hexane mixtures with select compositions are reported. Density follows a linear decrease with temperature and a quadratic increase with the mole fraction of PFD. The sensitivity or dependence of density on temperature increases with an increase in PFD mole fraction. The temperature-dependence of the dynamic viscosity of the investigated mixtures follows the Arrhenius-type expression from which the resultant activation energy of the viscous flow (Ea,η) is determined. Interestingly, the composition-dependence of dynamic viscosity shows exponential growth with an increase in PFD mole fraction. Excess molar volumes (VE) and deviation in the logarithmic viscosities ∆(ln η) of the mixtures are calculated to highlight the presence of strong repulsive interactions between the two mixture components.
Full article
(This article belongs to the Special Issue Modeling of Liquids Behavior: Experiments, Theory and Simulations)
►▼
Show Figures

Figure 1
Open AccessCommunication
Climbing Colloidal Suspension
Liquids 2023, 3(1), 40-47; https://doi.org/10.3390/liquids3010004 - 02 Jan 2023
Abstract
►▼
Show Figures
Mixtures of powder and liquid are ubiquitous in nature as well as industries and exhibit complex flowing and deforming behaviors, including sol to gel transition under shear stress. In order to better understand the characteristic features of this type of mixture, we observed
[...] Read more.
Mixtures of powder and liquid are ubiquitous in nature as well as industries and exhibit complex flowing and deforming behaviors, including sol to gel transition under shear stress. In order to better understand the characteristic features of this type of mixture, we observed the behavior of a mixture of colloidal silica particles and water as a model system under vibration. The mixture showed different states, from powder-like to viscous fluid-like, with increasing content of water. At certain concentrations of silica particles (around 70 wt. %) and under relatively faster vibration (over 17 Hz), we observed that the colloidal suspension of silica particles and water climbed up the wall of a container against gravity. The main purpose of this paper is to report how we can observe the climbing suspension of colloidal silica. The rheological measurements of the climbing suspension demonstrated that the climbing suspension showed shear-thickening behavior, where force chain networks and normal stress differences are considered to develop. Therefore, we speculate that the transient formation and breaking of force networks and normal stress differences under vibration contribute to the occurrence of the climbing suspension. The tunable nature of colloidal suspensions may help to elucidate the climbing mechanism in the future.
Full article

Figure 1
Open AccessReview
Vibrational Raman Spectroscopy of the Hydration Shell of Ions
Liquids 2023, 3(1), 19-39; https://doi.org/10.3390/liquids3010003 - 27 Dec 2022
Abstract
Ionic perturbation of water has important implications in various chemical, biological and environmental processes. Previous studies revealed the structural and dynamical perturbation of water in the presence of ions, mainly with concentrated electrolyte solutions having significant interionic interactions. These investigations highlighted the need
[...] Read more.
Ionic perturbation of water has important implications in various chemical, biological and environmental processes. Previous studies revealed the structural and dynamical perturbation of water in the presence of ions, mainly with concentrated electrolyte solutions having significant interionic interactions. These investigations highlighted the need of selective extraction of the hydration shell water from a dilute electrolyte solution that is largely free from interionic interactions. Double-difference infrared (DDIR) and Raman multivariate curve resolution (Raman-MCR), as well as MD simulation, provided valuable insight in this direction, suggesting that the perturbed water mainly resides in the immediate vicinity of the ion, called the hydration shell. Recently, we have introduced Raman difference spectroscopy with simultaneous curve fitting (Raman-DS-SCF) analysis that can quantitatively extract the vibrational response of the perturbed water pertaining to the hydration shell of fully hydrated ions/solute. The DS-SCF analysis revealed novel hydrogen-bond (H-bond) structural features of hydration water, such as the existence of extremely weakly interacting water–OH (νmax ~ 3600 cm−1) in the hydration shell of high-charge-density metal ions (Mg2+, Dy3+). In addition, Raman-DS-SCF retrieves the vibrational response of the shared water in the water–shared-ion pair (WSIP), which is different from the hydration shell water of either the interacting cation and anion. Herein, we discuss the perturbation of water H-bonding in the immediate vicinity of cation, anion, zwitterion and hydrophobes and also the inter-ionic interactions, with a focus on the recent results from our laboratory using Raman-DS-SCF spectroscopy.
Full article
(This article belongs to the Special Issue Hydration of Ions in Aqueous Solution)
►▼
Show Figures

Figure 1
Open AccessArticle
Thermodynamic Analysis of the Solubility of Sulfadiazine in (Acetonitrile 1-Propanol) Cosolvent Mixtures from 278.15 K to 318.15 K
by
, , , , , and
Liquids 2023, 3(1), 7-18; https://doi.org/10.3390/liquids3010002 - 22 Dec 2022
Abstract
Drug solubility is one of the most significant physicochemical properties as it is related to drug design, formulation, quantification, recrystallization, and other processes, so understanding it is crucial for the pharmaceutical industry. In this context, this research presents the thermodynamic analysis of the
[...] Read more.
Drug solubility is one of the most significant physicochemical properties as it is related to drug design, formulation, quantification, recrystallization, and other processes, so understanding it is crucial for the pharmaceutical industry. In this context, this research presents the thermodynamic analysis of the solubility of sulfadiazine (SD) in cosolvent mixtures {acetonitrile + 1-propanol} at 9 temperatures (278.15 K–318.15 K), which is a widely used drug in veterinary therapy, and two solvents of high relevance in the pharmaceutical industry, respectively. The solubility of SD, in cosolvent mixtures {acetonitrile + 1-propanol} is an endothermic process where the maximum solubility was reached in pure acetonitrile at 318.15 K and the minimum in 1-propanol at 278.15 K. Although the solubility parameters of acetonitrile and propanol were similar, the addition of acetonitrile to the cosolvent mixture leads to a positive cosolvent effect on the solubility of DS. As for the thermodynamic functions of the solution, the process is strongly influenced by enthalpy, and according to the enthalpy–entropy compensation analysis, the process is enthalpy-driven in intermediate to rich mixtures in 1-propanol and entropy-driven in mixtures rich in acetonitrile.
Full article
(This article belongs to the Special Issue Modeling of Liquids Behavior: Experiments, Theory and Simulations)
►▼
Show Figures

Figure 1
Open AccessArticle
Application of Solution Calorimetry to Determining the Fusion Enthalpy of an Arylaliphatic Compound at 298.15 K: n-Octadecanophenone
Liquids 2023, 3(1), 1-6; https://doi.org/10.3390/liquids3010001 - 21 Dec 2022
Abstract
Evaluating the temperature dependence of the fusion enthalpy is no trivial task, as any compound melts at a unique temperature. At the same time, knowledge of the fusion enthalpies under some common conditions, particularly at the reference temperature of 298.15 K, would substantially
[...] Read more.
Evaluating the temperature dependence of the fusion enthalpy is no trivial task, as any compound melts at a unique temperature. At the same time, knowledge of the fusion enthalpies under some common conditions, particularly at the reference temperature of 298.15 K, would substantially facilitate the comparative analysis and development of the predictive schemes. In this work, we continue our investigations of the temperature dependence of the fusion enthalpy of organic non-electrolytes using solution calorimetry. As an object of study, n-octadecanophenone, an arylaliphatic compound was chosen. The solvent appropriate for evaluating the fusion enthalpy at 298.15 K from the solution enthalpy of crystal was selected: p-xylene. The heat capacity and fusion enthalpy at the melting temperature were measured by differential scanning calorimetry to derive the fusion enthalpy at 298.15 K from the Kirchhoff’s law of Thermochemistry. An agreement between the independently determined values was demonstrated. This particular result opens a perspective for further studies of the fusion thermochemistry of arylaliphatic compounds at 298.15 K by solution calorimetry.
Full article
(This article belongs to the Special Issue Modeling of Liquids Behavior: Experiments, Theory and Simulations)
►▼
Show Figures

Figure 1
Open AccessArticle
Solvent and H/D Isotopic Substitution Effects on the Krichevskii Parameter of Solutes: A Novel Approach to Their Accurate Determination
Liquids 2022, 2(4), 474-503; https://doi.org/10.3390/liquids2040028 - 15 Dec 2022
Abstract
We establish a direct route for the accurate determination of the solvent effect on the Krichevskii parameter of a solute, based solely on the contrasting solvation behavior of the solute in the desired solvent relative to that of the reference solvent, i.e., in
[...] Read more.
We establish a direct route for the accurate determination of the solvent effect on the Krichevskii parameter of a solute, based solely on the contrasting solvation behavior of the solute in the desired solvent relative to that of the reference solvent, i.e., in terms of the distinct solvation Gibbs free energies of the solute and the corresponding Krichevskii parameters of an ideal gas solute in the pair of solvents. First, we illustrate the proposed approach in the determination of the solvent effect on the Krichevskii parameter of gaseous solutes in aqueous solutions, when the solvents are different isotopic forms (isotopomers) of water, and then, by generalizing the approach to any pair of solvents. For that purpose, we (a) identify the links between the standard solvation Gibbs free energy of the solute in the two involved solvent environments and the resulting Krichevskii parameters, (b) discuss the fundamentally based linear behavior between the Krichevskii parameter and the standard solvation Gibbs free energy of the solute in an solvent, and interpret two emblematic cases of solutions involving either an ideal gas solute or an solute behaving identically as the solvating species, as well as (c) provide a novel microstructural interpretation of the solvent effect on the Krichevskii parameter according to a rigorous characterization of the critical solvation as described by a finite unambiguous structure making/breaking parameter of the solute in the pair of solvents.
Full article
(This article belongs to the Section Chemical Physics of Liquids)
►▼
Show Figures

Graphical abstract
Open AccessArticle
An Ab Initio Investigation of the Hydration of Tin(II)
Liquids 2022, 2(4), 465-473; https://doi.org/10.3390/liquids2040027 - 14 Dec 2022
Abstract
The structure of tin(II) is not well known in aqueous solution. The energies, structures, and vibrational frequencies of [Sn(H2O)n,]2+ n = 0–9, 18 have been calculated at the Hartree–Fock and second order Møller–Plesset levels of theory using
[...] Read more.
The structure of tin(II) is not well known in aqueous solution. The energies, structures, and vibrational frequencies of [Sn(H2O)n,]2+ n = 0–9, 18 have been calculated at the Hartree–Fock and second order Møller–Plesset levels of theory using the CEP, LANL2, and SDD effective core potentials in combination with their associated basis sets, or with the 6-31G* and 6-31+G* basis sets. The tin–oxygen distances and totally symmetric stretching frequency of the aquatin(II) ions were compared with each other, and with solution measurements where available.
Full article
(This article belongs to the Special Issue Hydration of Ions in Aqueous Solution)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Solvation Structure and Ion–Solvent Hydrogen Bonding of Hydrated Fluoride, Chloride and Bromide—A Comparative QM/MM MD Simulation Study
Liquids 2022, 2(4), 445-464; https://doi.org/10.3390/liquids2040026 - 09 Dec 2022
Abstract
In this study, the correlated resolution-of-identity Møller–Plesset perturbation theory of second order (RIMP2) ab initio level of theory has been combined with the newly parameterised, flexible SPC-mTR2 water model to formulate an advanced QM/MM MD simulation protocol to study the solvation properties of
[...] Read more.
In this study, the correlated resolution-of-identity Møller–Plesset perturbation theory of second order (RIMP2) ab initio level of theory has been combined with the newly parameterised, flexible SPC-mTR2 water model to formulate an advanced QM/MM MD simulation protocol to study the solvation properties of the solutes F , Cl and Br in aqueous solution. After the identification of suitable ion–water Lennard–Jones parameters for the QM/MM coupling, a total simulation period of 10 ps (equilibration) plus 25 ps (sampling) could be achieved for each target system at QM/MM conditions. The resulting simulation data enable an in-depth analysis of the respective hydration structure, the first shell ligand exchange characteristics and the impact of solute–solvent hydrogen bonding on the structural properties of first shell water molecules. While a rather unexpected tailing of the first shell ion–oxygen peak renders the identification of a suitable QM boundary region challenging, the presented simulation results provide a valuable primer for more advanced simulation approaches focused on the determination of single-ion thermodynamical properties.
Full article
(This article belongs to the Special Issue Hydration of Ions in Aqueous Solution)
►▼
Show Figures

Figure 1
Open AccessArticle
Density and Refractive Index of Binary Ionic Liquid Mixtures with Common Cations/Anions, along with ANFIS Modelling
Liquids 2022, 2(4), 432-444; https://doi.org/10.3390/liquids2040025 - 05 Dec 2022
Abstract
Ionic liquids have many interesting properties as they share the properties of molten salts as well as organic liquids, such as low volatility, thermal stability, electrical conductivity, non-flammability, and much more. Ionic liquids are known to be good solvents for many polar and
[...] Read more.
Ionic liquids have many interesting properties as they share the properties of molten salts as well as organic liquids, such as low volatility, thermal stability, electrical conductivity, non-flammability, and much more. Ionic liquids are known to be good solvents for many polar and nonpolar solutes. Combined with their special properties, ionic liquids are good replacements for the conventional toxic and volatile organic solvents. Each ionic liquid has different properties than others. In order to alter, tune, and enhance the properties of ionic liquids, sometimes, it is necessary to mix different ionic liquids to achieve the desired properties. However, using mixtures of ionic liquids in chemical processes requires reliable estimations of the mixtures’ physical properties such as refractive index and density. The ionic liquids used in this work are 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM][BF4]), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF6]). These ionic liquids were supplied by Io-li-tec and used as received. However, new measurements for the density and refractive index were taken for the pure ionic liquids to be used as reference. In the present work, the densities and refractive indices of four different binary mixtures of ionic liquids with common cations and/or anions have been measured at various compositions and room conditions. The accuracy of different empirical mixing rules for calculation of the mixtures refractive indices was also studied. It was found that the overall absolute average percentage deviation from the ideal solution in the calculation of the molar volume of the examined binary mixtures was 0.78%. Furthermore, all of the examined mixing rules for the calculation of the refractive indices of the mixtures were found to be accurate. However, the most accurate empirical formula was found to be Heller’s relation, with an average percentage error of 0.24%. Furthermore, an artificial intelligence model, an adaptive neuro-fuzzy inference system (ANFIS), was developed to predict the density and refractive index of the different mixtures studied in this work as well as the published literature data. The predictions of the developed model were analyzed by various methods including both statistical and graphical approaches. The obtained results show that the developed model accurately predicts the density and refractive index with overall R2, RMSE, and AARD% values of 0.968, 7.274, 0.368% and 0.948, 7.32 × 10−3 and 0.319%, respectively, for the external validation dataset. Finally, a variance-based global sensitivity analysis was formed using extended the Fourier amplitude sensitivity test (EFAST). Our modelling showed that the ANFIS model outperforms the best available empirical models in the literature for predicting the refractive index of the different mixtures of ionic liquids.
Full article
(This article belongs to the Special Issue Modeling of Liquids Behavior: Experiments, Theory and Simulations)
►▼
Show Figures

Figure 1
Open AccessArticle
Using Two Group-Contribution Methods to Calculate Properties of Liquid Compounds Involved in the Cyclohexanone Production Operations
Liquids 2022, 2(4), 413-431; https://doi.org/10.3390/liquids2040024 - 23 Nov 2022
Abstract
A numerical application has been carried out to determine the thermophysical properties of more than fifty pure liquid compounds involved in the production process of cyclohexanone, whose real values are unknown, in many cases. Two group-contribution methods, the Joback and the Marrero–Gani methods,
[...] Read more.
A numerical application has been carried out to determine the thermophysical properties of more than fifty pure liquid compounds involved in the production process of cyclohexanone, whose real values are unknown, in many cases. Two group-contribution methods, the Joback and the Marrero–Gani methods, both used in the fields of physicochemistry and engineering, are employed. Both methods were implemented to evaluate critical properties, phase transition properties, and others, which are required for their use in industrial process simulation/design. The quality of the estimates is evaluated by comparing them with those from the literature, where available. In general, both models provide acceptable predictions, although each of them shows improvement for some of the properties considered, recommending their use, when required.
Full article
(This article belongs to the Special Issue Modeling of Liquids Behavior: Experiments, Theory and Simulations)
►▼
Show Figures

Figure 1
Open AccessArticle
The Solubility of Ethyl Candesartan in Mono Solvents and Investigation of Intermolecular Interactions
by
Liquids 2022, 2(4), 404-412; https://doi.org/10.3390/liquids2040023 - 17 Nov 2022
Abstract
In this work, the experimental solubility of ethyl candesartan in the selected solvents within the temperature ranging from 278.15 to 318.15 K was studied. It can be easily found that the solubility of ethyl candesartan increases with the rising temperature in all solvents.
[...] Read more.
In this work, the experimental solubility of ethyl candesartan in the selected solvents within the temperature ranging from 278.15 to 318.15 K was studied. It can be easily found that the solubility of ethyl candesartan increases with the rising temperature in all solvents. The maximum solubility value was obtained in N,N-dimethylformamide (DMF, 7.91 × 10−2), followed by cyclohexanone (2.810 × 10−2), 1,4-dioxanone (2.69 × 10−2), acetone (7.04 × 10−3), ethyl acetate (4.20 × 10−3), n-propanol (3.69 × 10−3), isobutanol (3.38 × 10−3), methanol (3.17 × 10−3), n-butanol (3.03 × 10−3), ethanol (2.83 × 10−3), isopropanol (2.69 × 10−3), and acetonitrile (1.15 × 10−2) at the temperature of 318.15 K. Similar results of solubility sequence from large to small were also obtained in other temperatures. The X-ray diffraction analysis illustrates that the crystalline forms of all samples were consistent, and no crystalline transformation occurred during the dissolution process. In aprotic solvents, except for individual solvents, the solubility data decreases with the decreasing values of hydrogen bond basicity (β) and dipolarity/polarizability (π*). The largest average relative deviation (ARD) data in the modified Apelblat equation is 1.9% and observed in isopropanol; the maximum data in λh equation is 4.3% and found in n-butanol. The results of statistical analysis show that the modified Apelblat equation is the more suitable correlation of experimental data for ethyl candesartan in selected mono solvents at all investigated temperatures. In addition, different parameters were used to quantify the solute–solvent interactions that occurred in the dissolution process including Abraham solvation parameters (APi), Hansen solubility parameters (HPi), and Catalan parameters (CPi).
Full article
(This article belongs to the Special Issue Modeling of Liquids Behavior: Experiments, Theory and Simulations)
►▼
Show Figures

Figure 1
Open AccessArticle
Isomorph Invariance in the Liquid and Plastic-Crystal Phases of Asymmetric-Dumbbell Models
Liquids 2022, 2(4), 388-403; https://doi.org/10.3390/liquids2040022 - 09 Nov 2022
Abstract
We present a numerical study of the asymmetric dumbbell model consisting of “molecules” constructed as two different-sized Lennard-Jones spheres connected by a rigid bond. In terms of the largest (A) particle radius, we report data for the structure and dynamics of the liquid
[...] Read more.
We present a numerical study of the asymmetric dumbbell model consisting of “molecules” constructed as two different-sized Lennard-Jones spheres connected by a rigid bond. In terms of the largest (A) particle radius, we report data for the structure and dynamics of the liquid phase for the bond lengths 0.05, 0.1, 0.2, and 0.5, and analogous data for the plastic-crystal phase for the bond lengths 0.05, 0.1, 0.2, and 0.3. Structure is probed by means of the AA, AB, and BB radial distribution functions. Dynamics is probed via the A and B particle mean-square displacement as functions of time and via the rotational time-autocorrelation function. Consistent with the systems’ strong virial potential-energy correlations, the structure and dynamics are found to be isomorph invariant to a good approximation in reduced units, while they generally vary considerably along isotherms of the same (20%) density variation. Even the rotational time-autocorrelation function, which due to the constant bond length is not predicted to be isomorph invariant, varies more along isotherms than along isomorphs. Our findings provide the first validation of isomorph-theory predictions for plastic crystals for which isomorph invariance, in fact, is found to apply better than in the liquid phase of asymmetric-dumbbell models.
Full article
(This article belongs to the Section Physics of Liquids)
►▼
Show Figures

Figure 1
Open AccessArticle
Correlation of Surface Tension of Mono-Solvents at Various Temperatures
Liquids 2022, 2(4), 378-387; https://doi.org/10.3390/liquids2040021 - 26 Oct 2022
Abstract
Surface tension is among the most important factors in chemical and pharmaceutical processes. Modeling the surface tension of solvents at different temperatures helps to optimize the type of solvent and temperature. The surface tension of solvents at different temperatures with their solvation parameters
[...] Read more.
Surface tension is among the most important factors in chemical and pharmaceutical processes. Modeling the surface tension of solvents at different temperatures helps to optimize the type of solvent and temperature. The surface tension of solvents at different temperatures with their solvation parameters was used in this study to develop a model based on the van’t Hoff equation by multiple linear regression. Abraham solvation parameters, Hansen solubility parameters, and Catalan parameters are among the most discriminating descriptors. The overall MPD of the model was 3.48%, with a minimum and maximum MPD of 0.04% and 11.62%, respectively. The model proposed in this study could be useful for predicting the surface tension of mono-solvents at different temperatures.
Full article
(This article belongs to the Special Issue Modeling of Liquids Behavior: Experiments, Theory and Simulations)
►▼
Show Figures

Figure 1
Open AccessArticle
Revision and Extension of a Generally Applicable Group Additivity Method for the Calculation of the Refractivity and Polarizability of Organic Molecules at 298.15 K
by
and
Liquids 2022, 2(4), 327-377; https://doi.org/10.3390/liquids2040020 - 13 Oct 2022
Abstract
In a continuation and extension of an earlier publication, the calculation of the refractivity and polarizability of organic molecules at standard conditions is presented, applying a commonly applicable computer algorithm based on an atom group additivity method, where the molecules are broken down
[...] Read more.
In a continuation and extension of an earlier publication, the calculation of the refractivity and polarizability of organic molecules at standard conditions is presented, applying a commonly applicable computer algorithm based on an atom group additivity method, where the molecules are broken down into their constituting atoms, these again being further characterized by their immediate neighbor atoms. The calculation of their group contributions, carried out by means of a fast Gauss–Seidel fitting calculus, used the experimental data of 5988 molecules from literature. An immediate subsequent ten-fold cross-validation test confirmed the extraordinary accuracy of the prediction of the molar refractivity, indicated by a correlation coefficient R2 and a cross-validated analog Q2 of 0.9997, a standard deviation σ of 0.38, a cross-validated analog S of 0.41, and a mean absolute deviation of 0.76%. The high reliability of the predictions was exemplified with three classes of molecules: ionic liquids and silicon- and boron-containing compounds. The corresponding molecular polarizabilities were calculated indirectly from the refractivity using the inverse Lorentz–Lorenz relation. In addition, it could be shown that there is a close relationship between the “true” volume and the refractivity of a molecule, revealing an excellent correlation coefficient R2 of 0.9645 and a mean absolute deviation of 7.53%.
Full article
(This article belongs to the Special Issue Modeling of Liquids Behavior: Experiments, Theory and Simulations)
►▼
Show Figures

Figure 1
Open AccessArticle
Estimating Equivalent Alkane Carbon Number Using Abraham Solute Parameters
Liquids 2022, 2(4), 318-326; https://doi.org/10.3390/liquids2040019 - 02 Oct 2022
Abstract
The use of equivalent alkane carbon numbers (EACN) to characterize oils is important in surfactant-oil-water (SOW) systems. However, the measurement of EACN values is non-trivial and thus it becomes desirable to predict EACN values from structure. In this work, we present a simple
[...] Read more.
The use of equivalent alkane carbon numbers (EACN) to characterize oils is important in surfactant-oil-water (SOW) systems. However, the measurement of EACN values is non-trivial and thus it becomes desirable to predict EACN values from structure. In this work, we present a simple linear model that can be used to estimate the EACN value of oils with known Abraham solute parameters. We used linear regression with leave-one-out cross validation on a dataset of N = 80 oils with known Abraham solute parameters to derive a general model that can reliably estimate EACN values based upon the Abraham solute parameters: E (the measured liquid or gas molar refraction at 20 °C minus that of a hypothetical alkane of identical volume), S (dipolarity/polarizability), A (hydrogen bond acidity), B (hydrogen bond basicity), and V (McGowan characteristic volume) with good accuracy within the chemical space studied (N = 80, R2 = 0.92, RMSE = 1.16, MAE = 0.90, p < 2.2 × 10−16). These parameters are consistent with those in other models found in the literature and are available for a wide range of compounds.
Full article
(This article belongs to the Special Issue Modeling of Liquids Behavior: Experiments, Theory and Simulations)
►▼
Show Figures

Figure 1
Open AccessReview
Thermodynamic Modeling of Mineral Scaling in High-Temperature and High-Pressure Aqueous Environments
Liquids 2022, 2(4), 303-317; https://doi.org/10.3390/liquids2040018 - 28 Sep 2022
Abstract
Methods of predicting mineral scale formation have evolved over the years from simple empirical fittings to sophisticated computational programs. Though best practices can now solve complex multi-phase, multi-component systems, they are largely restricted to temperatures below 300 °C. This review examines critical gaps
[...] Read more.
Methods of predicting mineral scale formation have evolved over the years from simple empirical fittings to sophisticated computational programs. Though best practices can now solve complex multi-phase, multi-component systems, they are largely restricted to temperatures below 300 °C. This review examines critical gaps in existing mineral scale modeling approaches as well as strategies to overcome them. Above 300 °C, the most widely used model of standard thermodynamic functions for aqueous species fails when fluid densities are below 0.7 g cm−3. This failure occurs due to the model’s reliance on an empirical form of the Born equation which is unable to capture the trends observed in these high temperature, low density regimes. However, new models based on molecular solvent-solute interactions offer a pathway to overcome some of the deficiencies currently limiting high-temperature and high-pressure mineral scale predictions. Examples of the most common scale prediction methods are presented, and their advantages and disadvantages are discussed.
Full article
(This article belongs to the Special Issue Modeling of Liquids Behavior: Experiments, Theory and Simulations)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Crystals, Liquids, Materials, Molecules, Nanomaterials
Recent Advances in Liquid Crystals
Topic Editors: Jiatong Sun, Xiaoqian WangDeadline: 31 May 2023

Conferences
Special Issues
Special Issue in
Liquids
Electrolytes for High-Performance Rechargeable Batteries
Guest Editor: Isidora Cekic-LaskovicDeadline: 28 February 2023
Special Issue in
Liquids
Liquid Characteristics and Behaviors in Additive Manufacturing Technologies
Guest Editor: Yang LiuDeadline: 21 April 2023
Special Issue in
Liquids
Aggregation Phenomena in Solution
Guest Editor: Maria Angela CastricianoDeadline: 30 April 2023
Special Issue in
Liquids
Transport Processes in Non-electrolyte Liquids and Solutions
Guest Editor: Abdul-Fattah AsfourDeadline: 10 May 2023
Topical Collections
Topical Collection in
Liquids
Feature Papers in Solutions and Liquid Mixtures Research
Collection Editors: Enrico Bodo, Federico Marini