Previous Issue
Volume 5, June
 
 

Crops, Volume 5, Issue 4 (August 2025) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 1613 KiB  
Article
Allelopathic Effect of Salvia pratensis L. on Germination and Growth of Crops
by Marija Ravlić, Renata Baličević, Miroslav Lisjak, Željka Vinković, Jelena Ravlić, Ana Županić and Brankica Svitlica
Crops 2025, 5(4), 45; https://doi.org/10.3390/crops5040045 - 22 Jul 2025
Abstract
Salvia pratensis L. is a valuable medicinal plant rich in bioactive compounds, yet its allelopathic potential remains underexplored. This study evaluated allelopathic effects and total phenolic (TPC) and flavonoid (TFC) contents of water extracts from the dry aboveground biomass of S. pratensis. [...] Read more.
Salvia pratensis L. is a valuable medicinal plant rich in bioactive compounds, yet its allelopathic potential remains underexplored. This study evaluated allelopathic effects and total phenolic (TPC) and flavonoid (TFC) contents of water extracts from the dry aboveground biomass of S. pratensis. To assess their selectivity and potential application in sustainable weed management, extracts at five different concentrations were tested on the germination and early growth of lettuce, radish, tomato, and carrot. The results demonstrated that the phytotoxic effects of S. pratensis extracts were both concentration- and species-dependent. Higher extract concentrations significantly inhibited germination and seedling growth, while lower concentrations of extracts stimulated shoot elongation by up to 30% compared to the control. Phytochemical analysis revealed that S. pratensis extracts contain notable TPC and TFC contents, with their concentrations increasing consistently with the extract concentration. Correlation analysis showed that higher TPC and TFC contents were strongly negatively correlated with germination and seedling growth parameters. Radish exhibited the highest sensitivity to the extracts, while lettuce was the most tolerant. Further research under field conditions is needed to assess the efficacy, selectivity, and practical potential of S. pratensis extracts in sustainable crop production systems. Full article
Show Figures

Figure 1

44 pages, 3979 KiB  
Review
Sesame Diseases and Pests: Assessment of Threats to the Establishment of an Australian Industry
by Dante L. Adorada, Lachlan C. Jones, Jian Liu and Geoff M. Gurr
Crops 2025, 5(4), 44; https://doi.org/10.3390/crops5040044 - 14 Jul 2025
Viewed by 274
Abstract
The emerging sesame (Sesamum indicum L.) industry in Australia faces potential threats from multiple pre-harvest diseases and pests, which will necessitate an initiative-taking approach for pest management. Here we assess the diseases and pests most likely to impede the development of a [...] Read more.
The emerging sesame (Sesamum indicum L.) industry in Australia faces potential threats from multiple pre-harvest diseases and pests, which will necessitate an initiative-taking approach for pest management. Here we assess the diseases and pests most likely to impede the development of a viable Australian sesame industry. Drawing on the international literature, we also consider the management approaches most likely to be viable and identify key research gaps necessary for effective and sustainable crop protection. More than sixty-seven plant pathogens have been identified worldwide that cause diseases in sesame, with some being observed to be major in Australia. Part of this review aims to provide an extensive overview of previous research on sesame and its diseases, shedding light on the evolving knowledge within sesame research, emerging trends, and the current state of understanding on the topic as it applies to Australia. Among the hundreds of pests reported to attack sesame internationally, this review identifies fifty-six pest taxa that are established in, or native to, Australia. We rank those most likely to be serious based on overseas damage levels and observations from recent trial plantings in Northern Australia. Chemical control methods have demonstrated efficacy overseas but are associated with concerns over resistance and environmental impact. Extremely limited numbers of pesticides are currently registered for pest or disease control in sesame by the Australian Pesticides and Veterinary Medicines Authority so non-chemical methods will be important. These include botanical, biological, cultural, and physical control approaches. This review underscores the need for continued research and tailored plant protection strategies to optimize sesame. Full article
Show Figures

Figure 1

8 pages, 192 KiB  
Perspective
Diversification of Rice-Based Cropping Systems with Vegetables and Legumes in Asia and Africa
by Ramasamy Srinivasan
Crops 2025, 5(4), 43; https://doi.org/10.3390/crops5040043 - 14 Jul 2025
Viewed by 560
Abstract
Rice is one of the most important staple foods worldwide. Asia, particularly South and Southeast Asia, is a major rice producer, and rice production is also gradually increasing in Africa. However, rice cultivation poses economic and environmental challenges, which are exacerbated by climate [...] Read more.
Rice is one of the most important staple foods worldwide. Asia, particularly South and Southeast Asia, is a major rice producer, and rice production is also gradually increasing in Africa. However, rice cultivation poses economic and environmental challenges, which are exacerbated by climate change. Hence, diversification of rice-based production systems is highly imperative to improve soil health and thus sustain productivity while also enhancing income opportunities. Vegetables and pulses are crucial components for diversifying rice-based production systems as they have the potential to increase income and improve soil health. The World Vegetable Center has introduced mungbeans and vegetable soybeans to diversify the cereal-based production systems in Asia. About 27–93% of the mungbean area in India, Pakistan, Bangladesh, and Myanmar is planted with varieties containing improved germplasm developed by WorldVeg in collaboration with national agricultural research systems. Additionally, the introduction of vegetables and legumes is highly remunerative and improves dietary diversity, leading to better nutrition. For instance, the productivity of vegetable crops increased by 200–350% when they were combined with improved production practices. Such diversification also holds great promise for improving income and nutrition in Africa. It also enhances the resilience of farming systems, particularly in a changing climate. Hence, governments should prioritize system diversification to enhance the income and livelihood opportunities for smallholders in Asia and Africa. Full article
13 pages, 253 KiB  
Perspective
Enhancing Climate Resilience of Forage Ecosystems Through Sustainable Intensification and Educational Knowledge Transfer in the Southeastern USA
by Liliane Severino da Silva
Crops 2025, 5(4), 42; https://doi.org/10.3390/crops5040042 - 11 Jul 2025
Viewed by 247
Abstract
Forages are the primary feed source for livestock production systems due to their diversity of adapted species and lower production costs. Forage-based livestock operations are complex systems across climates, soil types, genetics, and production systems. Therefore, increasing the resilience of forage ecosystems requires [...] Read more.
Forages are the primary feed source for livestock production systems due to their diversity of adapted species and lower production costs. Forage-based livestock operations are complex systems across climates, soil types, genetics, and production systems. Therefore, increasing the resilience of forage ecosystems requires a comprehensive approach to assess and understand the conditions of each system while considering its needs, goals, and resources. In the southeastern USA, favorable climatic conditions allow for the incorporation of annual forage species into perennial stands to extend the grazing season. Adopting management strategies that support forage biodiversity and nutrients, and land use efficiency are ways to improve sustainable production intensification of forage ecosystems. Additionally, providing proper access to education and knowledge transfer for current and future generations is essential to guarantee the success and longevity of the livestock industry. This review provides an overview of key issues related to the climate and economic resilience of forage–livestock ecosystems and the role of agricultural education and knowledge transfer in shaping sustainable ecosystems. Full article
13 pages, 362 KiB  
Article
SNP Effects on Yield and Agronomic Traits in an International Winter Wheat Collection Grown in Western Siberia
by Vladimir Shamanin, Sergey Shepelev, Alexandr Kovalchuk, Alexey Morgounov, Yerlan Turuspekov and Inna Pototskaya
Crops 2025, 5(4), 41; https://doi.org/10.3390/crops5040041 - 10 Jul 2025
Viewed by 194
Abstract
The extension of genetic diversity is the basis for yield and adaptability improvements of winter wheat varieties under climate fluctuations. In the present study, an international collection consisting of 96 winter bread wheat accessions from Russia, Germany, Finland, Kazakhstan, Bulgaria, Turkey, the USA, [...] Read more.
The extension of genetic diversity is the basis for yield and adaptability improvements of winter wheat varieties under climate fluctuations. In the present study, an international collection consisting of 96 winter bread wheat accessions from Russia, Germany, Finland, Kazakhstan, Bulgaria, Turkey, the USA, and the international programme (Turkey–CIMMYT–ICARDA) was analysed under the conditions of Western Siberia during three growing seasons. Yield and yield-related traits were recorded following standard agronomy practices. Genotyping of the germplasm panel was conducted using 55 KASP markers at the Institute of Plant Biology and Biotechnology (Kazakhstan). The yield had a high correlation with the number of fertile tillers per unit area (0.68), which indicates significant yield reduction in wheat accessions from different origins that are not adaptive to the conditions of Western Siberia. The main stable QTLs associated with yield-related traits during two growing seasons, ippb_ta_1147 (1A), ippb_ta_107 (4A), ippb_ta_239 (5D), and ippb_ta_283 (6A), can be used in MAS for the improvement of yield and related traits. The outperforming genotypes Zhiva, Zolushka, Doneko, Line K 18918, Line 2293; CO13D1299, KS13DH0030-32, Gondvana//HBK0935-29-15/KS90W077-2-2/VBF0589-1… are recommended to be included in hybridisation programmes and represent promising sources for breeding high-yielding and climate-resilient winter wheat. Full article
Show Figures

Figure 1

20 pages, 356 KiB  
Review
Soil Properties and Microelement Availability in Crops for Human Health: An Overview
by Lucija Galić, Vesna Vukadinović, Iva Nikolin and Zdenko Lončarić
Crops 2025, 5(4), 40; https://doi.org/10.3390/crops5040040 - 7 Jul 2025
Viewed by 316
Abstract
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). [...] Read more.
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). In recent years, there has been a growing focus on vitality and longevity, which are closely associated with the sufficient intake of essential microelements. This review focuses on these nine elements, whose bioavailability in the food chain is critically determined by their geochemical behavior in soils. There is a necessity for an understanding of the sources, soil–plant transfer, and plant uptake mechanisms of these microelements, with particular emphasis on the influence of key soil properties, including pH, redox potential, organic matter content, and mineral composition. There is a dual challenge of microelement deficiencies in agricultural soils, leading to inadequate crop accumulation, and the potential for localized toxicities arising from anthropogenic inputs or geogenic enrichment. A promising solution to microelement deficiencies in crops is biofortification, which enhances nutrient content in food by improving soil and plant uptake. This strategy includes agronomic methods (e.g., fertilization, soil amendments) and genetic approaches (e.g., marker-assisted selection, genetic engineering) to boost microelement density in edible tissues. Moreover, emphasizing the need for advanced predictive modeling techniques, such as ensemble learning-based digital soil mapping, enhances regional soil microelement management. Integrating machine learning with digital covariates improves spatial prediction accuracy, optimizes soil fertility management, and supports sustainable agriculture. Given the rising global population and the consequent pressures on agricultural production, a comprehensive understanding of microelement dynamics in the soil–plant system is essential for developing sustainable strategies to mitigate deficiencies and ensure food and nutritional security. This review specifically focuses on the bioavailability of these nine essential microelements (Se, Zn, Cu, B, Mn, Mo, Fe, Ni, and Cl), examining the soil–plant transfer mechanisms and their ultimate implications for human health within the soil–plant–human system. The selection of these nine microelements for this review is based on their recognized dual importance: they are not only essential for various plant metabolic functions, but also play a critical role in human nutrition, with widespread deficiencies reported globally in diverse populations and agricultural systems. While other elements, such as cobalt (Co) and iodine (I), are vital for health, Co is primarily required by nitrogen-fixing microorganisms rather than directly by all plants, and the main pathway for iodine intake is often marine-based rather than soil-to-crop. Full article
(This article belongs to the Topic Soil Health and Nutrient Management for Crop Productivity)
Previous Issue
Back to TopTop