Trade-Off Between Yield and Water-Use Efficiency in Piper nigrum
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Conditions
2.2. Irrigation System Set Up and Management
2.3. Green and Black Pepper Yield Coupled to Water-Use Efficiency
2.4. Gas Exchange
2.5. Water Status
2.6. Data Analysis
3. Results
3.1. Soil Water Potential Influences Yield and Water-Use Efficiency in Black Pepper Cultivars
3.2. Temporal Variation in Gas Exchange and Water-Use Efficiency Between Black Pepper Cultivars
3.3. Gas Exchange and Water Potential Responses to Soil Potential in Black Pepper Cultivars
3.4. Physiological Responses of Black Pepper Cultivars to Soil Water Potential
4. Discussion
4.1. Soil Water Potential Modulates Yield and WUE Through Cultivar-Specific Physiological Strategies in Black Pepper
4.2. Temporal Physiological Adjustments and Cultivar-Specific Stress Responses in Black Pepper
4.3. Gas Exchange Dynamics and Water-Use Trade-Offs Between Black Pepper Cultivars
4.4. Principal Component Analysis Reveals Contrasting Physiological and Agronomic Strategies Between Black Pepper Cultivars
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | Net CO2 assimilation rate |
ANOVA | Analysis of variance |
BPY | Black pepper yield |
Ci | Intercellular CO2 concentration |
CV | Coefficient of variation |
E | Transpiration rate |
GPY | Green pepper yield |
gs | Stomatal conductance |
kPa | Kilopascal |
PAR | Photosynthetically active radiation |
PCA | Principal component analysis |
TLA | Total leaf area |
WUE | Water-use efficiency |
WUEE | Instantaneous water-use efficiency (A/E) |
WUEᵢ | Intrinsic water-use efficiency (A/gs) |
Ψpd | Predawn leaf water potential |
Ψmd | Midday leaf water potential |
Ψm | Matric potential |
References
- Liang, J.; Krauss, K.W.; Finnigan, J.; Stuart-Williams, H.; Farquhar, G.D.; Ball, M.C. Linking Water Use Efficiency With Water Use Strategy From Leaves to Communities. New Phytol. 2023, 240, 1735–1742. [Google Scholar] [CrossRef]
- Alharbi, S.; Felemban, A.; Abdelrahim, A.; Al-Dakhil, M. Agricultural and Technology-Based Strategies to Improve Water-Use Efficiency in Arid and Semiarid Areas. Water 2024, 16, 1842. [Google Scholar] [CrossRef]
- Li, F.; Xiao, J.; Chen, J.; Ballantyne, A.; Jin, K.; Li, B.; Abraha, M.; John, R. Global water use efficiency saturation due to increased vapor pressure deficit. Science 2023, 381, 672–677. [Google Scholar] [CrossRef]
- Cernusak, L.A. Gas exchange and water use efficiency in plant canopies. Plant Biol. 2020, 22, 52–67. [Google Scholar] [CrossRef]
- Lobo, F.d.A.; Previl, R.; Gonzalez-Meler, M.A.; Pereira, B.L.C.; Moura, L.C.d.; Ortíz, C.E.R.; Genuncio, G.d.C.; Vourlitis, G.L. Is Intrinsic Water Use Efficiency Independent of Leaf-to-Air Vapor Pressure Deficit. Theor. Exp. Plant Physiol. 2023, 35, 65–80. [Google Scholar] [CrossRef]
- Głowacka, K.; Kromdijk, J.; Kucera, K.; Xie, J.; Cavanagh, A.P.; Leonelli, L.; Leakey, A.D.B.; Ort, D.R.; Niyogi, K.K.; Long, S.P. Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop. Nat. Commun. 2018, 9, 868. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Jubery, T.Z.; Ganapathysubramanian, B.; Gilbert, M.E.; Attinger, D. Integrating optimization with thermodynamics and plant physiology for crop ideotype design. arXiv 2017, arXiv:1704.05885. [Google Scholar]
- Kang, J.; Hao, X.; Zhou, H.; Ding, R. An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect. Agric. Water Manag. 2021, 255, 107008. [Google Scholar] [CrossRef]
- Santos, H.C.A.; Lima, J.A.L., Jr.; Silva, O.P.; Guerino, R.S.; Alves, M.C.; Sousa, D.P.; Romariz, R.N.V.; Martins, J.S.; Gonçalves, M.A.S.; Lemos, O.F.; et al. Morpho-physiological traits associated with contrasting water-use efficiency in Piper nigrum. Res. Sq. 2024, rs-4412806. [Google Scholar]
- Rasanjali, K.G.A.I.; Silva, A.C.S.; Priyadarshani, K.D.N. Influence of super absorbent polymers (Saps) on irrigation interval and growth of black pepper (Piper nigrum L.) in nursery management. OUSL J. 2019, 14, 7–25. [Google Scholar] [CrossRef]
- Ahmad, N.; Fazal, H.; Abbasi, B.H.; Farooq, S.; Ali, M.; Khan, M.A. Biological role of Piper nigrum L. (Black pepper): A review. Asian Pac. J. Trop. Biomed. 2012, 2, 1945–1953. [Google Scholar] [CrossRef]
- Petrík, P.; Petek-Petrik, A.; Mukarram, M.; Schuldt, B.; Lamarque, L.J. Leaf physiological and morphological constraints of water-use efficiency in C3 plants. AoB Plants 2023, 15, plad047. [Google Scholar] [CrossRef]
- Gago, J.; Douthe, C.; Florez-Sarasa, I.; Escalona, J.M.; Galmes, J.; Fernie, A.R.; Flexas, J.; Medrano, H. Opportunities for improving leaf water use efficiency under climate change conditions. Plant Sci. 2014, 226, 108–119. [Google Scholar] [CrossRef]
- Bertolino, L.T.; Caine, R.S.; Gray, J.E. Impact of stomatal density and morphology on water-use efficiency in a changing world. Front. Plant Sci. 2019, 10, 225. [Google Scholar] [CrossRef]
- Oliveira, R.F.; Nakayama, L.H.I. Pimenteira-do-reino. In Recomendações de Calagem e Adubação Para o Estado do Pará, 1st ed.; Brazil, E.C., Cravo, M.d.S., Viegas, I.d.J.M., Eds.; Embrapa: Brasília, Brazil, 2007; pp. 175–177. [Google Scholar]
- Souza, E.B.d.; Ferreira, D.B.d.S.; Guimarães, J.T.F.; Azevedo, F.T.M.d.; Souza, P.G.d.O.P.d. Padrões climatológicos e tendências da precipitação nos regimes chuvoso e seco da Amazônia oriental. Rev. Bras. Climatol. 2017, 21, 81–93. [Google Scholar]
- Cardoso Júnior, E.Q.; Kato, O.R.; Kato, M.d.S.A.; Lopes, S.d.C.; Sá, T.D.d.A. Métodos de Preparo de Área Sobre Algumas Características Físicas do Solo e da Produção do Maracujazeiro (Passiflora edulis) no Nordeste do Pará, 1st ed.; Embrapa Amazônia Oriental-Boletim de Pesquisa e Desenvolvimento: Belém, Brazil, 2007; 23p. [Google Scholar]
- Thornthwaite, C.W.; Mather, J.R. The Water Balance; Laboratory of Climatology: Centerton, NJ, USA, 1955; 104p. [Google Scholar]
- Vieira, G.H.S.; Nascimento, D.P.; Mônaco, P.A.V.L.; Haddade, I.R.; Rosado, T.L.; Chambela Neto, A. Eficiência de irrigação em cafeeiros conilon na região Centro Serrana do Espírito Santo. Rev. Ifes Ciência 2020, 6, 22–34. [Google Scholar] [CrossRef]
- Franco, H.H.S. Abordagem Metodológica Envolvendo Tensiometria e Determinação da Curva de Retenção de Água num Solo de Textura Média. Master’s Thesis, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba-SP, Brazil, 2015. [Google Scholar]
- Richards, L.A. A pressure membrane extraction apparatus for soil solution. Soil Sci. 1941, 51, 377–386. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.R-project.org/ (accessed on 3 March 2023).
- Marouelli, W.A. Tensiômetros Para o Controle de Irrigação em Hortaliças; Circular técnica; Embrapa Hortaliças: Brasília, Brazil, 2008; 15p. [Google Scholar]
- Doorenbos, J.; Kassam, A.H. Efeito da Água no Rendimento das Culturas; Gheyi, H.R.; de Souza, A.A.; Damasco, F.A.V.; de Medeiro, J.F., Translators; UFPB: Campina Grande, Brazil, 1994; 306p. [Google Scholar]
- Ee, K.P.; Shang, C.Y. Novel farming innovation for high production of black pepper (Piper nigrum L.). Planting Materials. J. Agric. Sci. Technol. B 2017, 7, 301–308. [Google Scholar]
- Scholander, P.F.; Bradstreet, E.D.; Hemmingsen, E.A.; Hammel, H.T. Sap pressure in vascular plants. Science 1965, 148, 339–346. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef]
- Blum, A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 2009, 112, 119–123. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, X.; Chen, L.; Jia, G. Whole-plant instantaneous and short-term water-use efficiency in response to soil water content and CO2 concentration. Plant Soil 2019, 444, 281–298. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Richards, R.A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust. J. Plant Physiol. 1984, 11, 539–552. [Google Scholar] [CrossRef]
- Jones, M.P.; Turner, N.C. Instantaneous versus long-term WUE: A review of methodologies and implications. J. Exp. Bot. 2019, 70, 1123–1135. [Google Scholar]
- Lee, H.; Santos, J.P.; Martinez, R. Structural and functional adaptations influencing WUE in contrasting pepper cultivars. Plant Physiol. Biochem. 2023, 195, 203–217. [Google Scholar]
- Smith, J.D.; Brown, R.T.; Wang, X. Advances in water-use efficiency in crop production. Agric. Water Manag. 2018, 202, 45–57. [Google Scholar]
- Patel, R.; Kumar, S.; Devi, L. Comparative assessment of water-use efficiency in pepper cultivars under different irrigation regimes. HortScience 2021, 56, 989–997. [Google Scholar]
- Yildirim, e.; Ekinci, M.; Turan, M.; Agar, G.; Ors, S.; Dursun, A.; Kul, R.; Akgul, G. Physiological and biochemical changes of pepper cultivars under combined salt and drought stress. J. Appl. Bot. Food Qual. 2022, 95, 123–130. [Google Scholar] [CrossRef]
- Boughalleb, F.; Abdellaoui, R.; Brahim, N.B.; Neffati, M. Growth, Photosynthesis, Water Use Efficiency, and Osmoregulation of the Halophyte Atriplex gombiformis Under Water Deficit Conditions. Braz. J. Bot. 2016, 39, 147–156. [Google Scholar] [CrossRef]
- Duah, S.A.; Souza, C.S.e.; Nagy, Z.; Pék, Z.; Neményi, A.; Daood, H.G.; Vinogradov, S.; Helyes, L. Effect of Water Supply on Physiological Response and Fruit Quality of Four Pepper (Capsicum annuum L.) Cultivars. Water 2021, 13, 1284. [Google Scholar] [CrossRef]
- Leal, M.P.d.S.; Dias, T.J.; Sousa, V.F.d.O.; Silva, T.I.d.; Ribeiro, J.E.d.S.; Pereira, W.E.; Souza, A.d.G.; Smiderle, O.J.; Alves, E.U. Physiology and Production of Colored Bell Pepper Cultivars in a Semi-Hydroponic System. Rev. Bras. Eng. Agrícola Ambient. 2024, 28, 90–97. [Google Scholar]
- Erwin, J.; Hussein, T.; Baumler, D.J. Pepper Photosynthesis, Stomatal Conductance, Transpiration, and Water Use Efficiency Vary with Variety and Growth Stage. HortScience 2019, 54, 1662–1670. [Google Scholar] [CrossRef]
- Araz, O.; Ekinci, M.; Yildirim, E. Physiological, Biochemical and Molecular Response of Pepper Genotypes to Water Deficit. J. Crop Health 2025, 77, 45–56. [Google Scholar] [CrossRef]
- Bhattacharya, A. Soil Water Deficit and Physiological Issues in Plants; Springer: Berlin/Heidelberg, Germany, 2021; 702p. [Google Scholar]
- Flexas, J.; Medrano, H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 2002, 89, 183–189. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J. Grain filling of cereals under soil drying. New Phytol. 2006, 169, 223–236. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding plant responses to drought-from genes to the whole plant. Funct. Plant Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef]
- Tardieu, F.; Simonneau, T. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: Modelling isohydric and anisohydric behaviours. J. Exp. Bot. 1998, 49, 419–432. [Google Scholar] [CrossRef]
- Blum, A. Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 2005, 56, 1159–1168. [Google Scholar] [CrossRef]
- Lawlor, D.W. Genetic engineering to improve plant performance under drought: Physiological evaluation of achievements, limitations, and possibilities. J. Exp. Bot. 2013, 64, 83–108. [Google Scholar] [CrossRef] [PubMed]
- Senthamil, E.; Halli, H.M.; Basavaraj, P.S.; Angadi, S.S.; Gangana Gowdra, V.M.; Harisha, C.B.; Boraiah, K.M.; Sandeep, A.B.; Salainkoppa, S.R.; Mohite, G.; et al. Waterlogging Effects on Root Morphology, Yield, and Stress Tolerance in Cowpea (Vigna unguiculata L. Walp) Grown on Semi-Arid Vertisols. J. Agron. Crop Sci. 2025, 211, e70014. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, H.C.A.; Junior, J.A.L.; Silva, O.P.; Guerino, R.S.; Alves, M.C.; da Silva, D.B.; de Aviz, W.L.C.; Medeiros, M.d.B.C.L.; Lemos, O.F.; Both, J.P.C.L.; et al. Trade-Off Between Yield and Water-Use Efficiency in Piper nigrum. Crops 2025, 5, 54. https://doi.org/10.3390/crops5040054
Santos HCA, Junior JAL, Silva OP, Guerino RS, Alves MC, da Silva DB, de Aviz WLC, Medeiros MdBCL, Lemos OF, Both JPCL, et al. Trade-Off Between Yield and Water-Use Efficiency in Piper nigrum. Crops. 2025; 5(4):54. https://doi.org/10.3390/crops5040054
Chicago/Turabian StyleSantos, Helane C. A., Joaquim A. L. Junior, Olavo P. Silva, Rafaela S. Guerino, Mariele C. Alves, Deiviane B. da Silva, William L. C. de Aviz, Maria do B. C. L. Medeiros, Oriel F. Lemos, João P. C. L. Both, and et al. 2025. "Trade-Off Between Yield and Water-Use Efficiency in Piper nigrum" Crops 5, no. 4: 54. https://doi.org/10.3390/crops5040054
APA StyleSantos, H. C. A., Junior, J. A. L., Silva, O. P., Guerino, R. S., Alves, M. C., da Silva, D. B., de Aviz, W. L. C., Medeiros, M. d. B. C. L., Lemos, O. F., Both, J. P. C. L., Luz, L. M., & Costa, L. C. (2025). Trade-Off Between Yield and Water-Use Efficiency in Piper nigrum. Crops, 5(4), 54. https://doi.org/10.3390/crops5040054