Soil Properties and Microelement Availability in Crops for Human Health: An Overview
Abstract
1. Introduction
2. Microelement Deficiency in Agriculture Hinders Global Food Security and Human Health
Mechanisms of Microelements Absorption and Plant Physiology
3. Microelement Cycling in Agroecosystems: Processes and Factors from Rocks to Fertile Fields
3.1. Selenium
3.2. Zinc
3.3. Cooper
3.4. Boron
3.5. Manganese
3.6. Molybdenum
3.7. Iron
3.8. Nickel
3.9. Chlorine
4. Conclusions and Future Perspective
- Integrative modeling: There is a pressing need to develop and validate predictive models that go beyond simple correlations. Future models should integrate multi–layered data: high-resolution soil maps (e.g., pH, texture, and SOC), climate data, crop genetics (e.g., genes for specific metal transporters), and data on soil microbial communities, which play a crucial role in nutrient cycling.
- Quantifying interactions: While many antagonisms (e.g., P–Zn, S–Se) are known, their quantitative impact under field conditions is poorly understood. Research should focus on developing dynamic models of nutrient interactions in the rhizosphere to predict the net effect of multi-nutrient fertilization on the final crop nutritional profile.
- Harnessing the rhizosphere: The role of root exudates and the soil microbiome in mobilizing microelements is a major knowledge gap. Future work should aim to identify microbial strains or plant–microbe combinations that can act as “bio-fertilizers” for specific microelements, offering a sustainable alternative to chemical inputs.
- Closing the loop from soil to health: Most studies end at crop analysis. There is a need for more integrated, long-term studies that follow the chain from soil management to crop biofortification to food processing to bioavailability in humans. This requires interdisciplinary collaboration between soil scientists, agronomists, nutritionists, and public health experts.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Graham, R.D.; Welch, R.M.; Bouis, H.E. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gaps. Adv. Agron. 2001, 70, 77–142. [Google Scholar] [CrossRef]
- Dolgopolova, N.; Eremenko, O. Complex water–soluble microelements fertilizer effectiveness on grain yields. In BIO Web of Conferences; EDP Sciences: Moscow, Russia, 2024. [Google Scholar] [CrossRef]
- Lewandowska, M.; Więeeckowska, B.; Sajdak, S.; Lubiński, J. First trimester microelements and their relationships with pregnancy outcomes and complications. Nutrients 2020, 12, 1108. [Google Scholar] [CrossRef] [PubMed]
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Microelements and Their Role in Human Health. Soil Compon. Hum. Health 2018, 7, 317–374. [Google Scholar] [CrossRef]
- Miller, B.D.D.; Welch, R.M. Food system strategies for preventing micronutrient malnutrition. Food Policy 2013, 42, 115–128. [Google Scholar] [CrossRef]
- Bouis, H.E.; Welch, R.M. Biofortification—A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci. 2010, 50, S-20–S-32. [Google Scholar] [CrossRef]
- Jha, A.B.; Warkentin, T.D. Biofortification of pulse crops: Status and future perspectives. Plants 2020, 9, 73. [Google Scholar] [CrossRef]
- Galić, L.; Vinković, T.; Ravnjak, B.; Lončarić, Z. Agronomic Biofortification of Significant Cereal Crops with Selenium—A Review. Agronomy 2021, 11, 1015. [Google Scholar] [CrossRef]
- Mayer, J.E.; Pfeiffer, W.H.; Beyer, P. Biofortified crops to alleviate micronutrient malnutrition. Curr. Opin. Plant Biol. 2008, 11, 166–170. [Google Scholar] [CrossRef]
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V.; Arora, P. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Front. Nutr. 2018, 5, 12. [Google Scholar] [CrossRef]
- Avnee; Sood, S.; Chaudhary, D.R.; Jhorar, P.; Rana, R.S. Biofortification: An approach to eradicate micronutrient deficiency. Front. Nutr. 2023, 10, 1233070. [Google Scholar] [CrossRef]
- Tavan, M.; Wee, B.; Fuentes, S.; Pang, A.; Brodie, G.; Viejo, C.G.; Gupta, D. Biofortification of kale microgreens with selenate–selenium using two delivery methods: Selenium–rich soilless medium and foliar application. Sci. Hortic. 2024, 323, 112522. [Google Scholar] [CrossRef]
- Kabata, A. Soil–plant transfer of trace elements–An environmental issue. Geoderma 2004, 122, 143–149. [Google Scholar] [CrossRef]
- Yang, X.E.; Chen, W.R.; Feng, Y. Improving human micronutrient nutrition through biofortification in the soil–plant system: China as a case study. Environ. Geochem. Health 2007, 29, 413–428. [Google Scholar] [CrossRef] [PubMed]
- de Valença, A.W.; Bake, A.; Brouwer, I.D.; Giller, K.E. Agronomic biofortification of crops to fight hidden hunger in sub–Saharan Africa. Glob. Food Secur. 2017, 12, 8–14. [Google Scholar] [CrossRef]
- Galić, L.; Galić, V.; Ivezić, V.; Zebec, V.; Jović, J.; Đikić, M.; Filipović, A.; Manojlović, M.; Almås, Å.R.; Lončarić, Z. Modelling Leverage of Different Soil Properties on Selenium Water–Solubility in Soils of Southeast Europe. Agronomy 2023, 13, 824. [Google Scholar] [CrossRef]
- Khanna, K.; Kumar, P.; Ohri, P.; Bhardwaj, R. Harnessing the Role of Selenium in Soil–Plant–Microbe Ecosystem: Ecophysiological Mechanisms and Future Prospects; Springer Science and Business Media B.V.: Dordrecht, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Martins, R.; Matías, A.; Pérez-Ramos, I.M.; Moreira, X.; Francisco, M.; Pedroche, J.; DeAndrés-Gil, C.; Gutiérrez, E.; Salas, J.J.; Moreno-Pérez, A.J.; et al. Soil physicochemical properties associated with the yield and phytochemical composition of the edible halophyte Crithmum maritimum. Sci. Total Environ. 2023, 869, 161806. [Google Scholar] [CrossRef]
- Oliver, M.A. Soil and Human Health: A Review; Blackwell Publishing Ltd.: Oxford, UK, 1997. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, S.; Wang, X.; Akram, M.A.; Hu, W.; Dong, L.; Sun, Y.; Li, H.; Degen, A.A.; Xiong, J.; et al. Concentrations and bioconcentration factors of leaf microelements in response to environmental gradients in drylands of China. Front. Plant Sci. 2023, 14, 1143442. [Google Scholar] [CrossRef]
- Nkrumah, P.N.; Baker, A.J.M.; Chaney, R.L.; Erskine, P.D.; Echevarria, G.; Morel, J.M.; van der Ent, A. Current status and challenges in developing nickel phytomining: An agronomic perspective. Plant Soil 2016, 406, 55–69. [Google Scholar] [CrossRef]
- White, J.G.; Zasoski, R.J. Mapping soil micronutrients. Field Crops Res. 1999, 60, 11–26. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Kaya, F.; Başayiğit, L.; Gyasi, Y.; Rodrigo, J.; Caballero, A. Spatial prediction of soil micronutrients using machine learning algorithms integrated with multiple digital covariates. Nutr. Cycl. Agroecosyst. 2023, 127, 137–153. [Google Scholar] [CrossRef]
- Andrade, R.; Silva, S.H.G.; Weindorf, D.C.; Chakraborty, S.; Faria, W.M.; Guilherme, L.R.G.; Curi, N. Micronutrients prediction via pXRF spectrometry in Brazil: Influence of weathering degree. Geoderma Reg. 2021, 27, e00431. [Google Scholar] [CrossRef]
- Dasgupta, S.; Debnath, S.; Das, A.; Biswas, A.; Weindorf, D.C.; Li, B.; Shukla, A.K.; Das, S.; Saha, S.; Chakraborty, S. Developing regional soil micronutrient management strategies through ensemble learning based digital soil mapping. Geoderma 2023, 433, 116457. [Google Scholar] [CrossRef]
- Barman, A.; Bera, A.; Saha, P.; Tiwari, H. Agronomic Zn Biofortification of Cereal Crops a Sustainable Way to Ensuring Nutritional Security: A Review. Int. J. Environ. Clim. Change 2023, 13, 151–168. [Google Scholar] [CrossRef]
- Kabata, A.; Szteke, B. Trace Elements in Abiotic and Biotic Environments; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Chapter 1–6 Humans Trace Elements from Soil to Human. 2007. ISBN 978-3-540-32713-4. Available online: https://link.springer.com/book/10.1007/978-3-540-32714-1 (accessed on 21 February 2025).
- Krasilnikov, P.V.; Fabrichnova, A.A.; Konyushkova, M.V.; Semenkov, I.N.; Sorokin, A.S. Soil Micronutrients, Food Systems, and Human Health at Regional Scale. Mosc. Univ. Soil Sci. Bull. 2021, 76, 239–255. [Google Scholar] [CrossRef]
- Ru, X.; Yang, L.; Shen, J.; Wang, K.; Xu, Z.; Bian, W.; Zhu, W.; Guo, Y. Microelement Strontium and Human Health: Comprehensive Analysis of the Role in Inflammation and Non–Communicable Diseases (NCDs). Front. Chem. 2024, 12, 1367395. [Google Scholar] [CrossRef]
- Maciejewski, R.; Radzikowska-Buchner, E.; Flieger, W.; Kulczycka, K.; Baj, J.; Forma, A.; Flieger, J. An Overview of Essential Microelements and Common Metallic Nanoparticles and Their Effects on Male Fertility. Int. J. Environ. Res. Public Health 2022, 19, 11066. [Google Scholar] [CrossRef]
- De la Cruz, V.; Palazuelos, R.; Domínguez, O. Micronutrient Deficiencies in Older Adults in Latin America: A Narrative Review. Food Nutr. Bull. 2024, 45, S26–S38. [Google Scholar] [CrossRef]
- Della Pepa, G.; Brandi, M.L. Microelements for bone boost: The last but not the least. Clin. Cases Miner. Bone Metab. 2016, 13, 181–185. [Google Scholar] [CrossRef]
- Zohoori, F.V.; Duckworth, R.M. Chapter 5: Microelements: Part II: F, Al, Mo and Co. Monogr. Oral. Sci. 2019, 28, 48–58. [Google Scholar] [CrossRef]
- Domingo, J.L. Metal-induced developmental toxicity in mammals: A review. J. Toxicol. Environ. Health 1994, 42, 123–141. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.B. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef]
- Lyons, G.; Stangoulis, J.; Graham, R. High–selenium wheat: Biofortification for better health. Nutr. Res. Rev. 2003, 16, 45. [Google Scholar] [CrossRef] [PubMed]
- Vukadinović, V.; Vukadinović, V. Ishrana Bilja; Sveučilište Josipa Jurja Strossmayera u Osijeku, Poljoprivredni Fakultet u Osijeku: Osijek, Croatia, 2011; Available online: https://urn.nsk.hr/urn:nbn:hr:151:009394 (accessed on 1 July 2025).
- Lončarić, Z.; Karalić, K. Mineralna Gnojiva I Gnojidba Ratarskih Usjeva; Poljoprivredni Fakultet u Osijeku: Osijek, Croatia, 2015. [Google Scholar]
- Chaney, R.L.; Giordano, P.M. Microelements as Related to Plant Deficiencies and Toxicities; Wiley: Hoboken, NJ, USA, 2015; pp. 233–279. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Schwab, A.P. The Chemistry of Iron in Soils and its Availability to Plants. J. Plant Nutr. 1982, 5, 821–840. [Google Scholar] [CrossRef]
- Baldi, E.; Cavani, L.; Mazzon, M.; Marzadori, C.; Quartieri, M.; Toselli, M. Fourteen years of compost application in a commercial nectarine orchard: Effect on microelements and potential harmful elements in soil and plants. Sci. Total Environ. 2021, 752, 141894. [Google Scholar] [CrossRef]
- Barker, A.V.; Pilbeam, D.J. Handbook of Plant Nutrition; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Vukadinović, V.; Lončarić, Z. Ishrana Bilja; Poljoprivredni Fakultet: Osijek, Croatia, 1998. [Google Scholar]
- Vukadinović, V.; Bertić, B. Praktikum iz Agrokemije i Ishrane Bilja; Sveučilište u Osijeku, BTZNC, Poljoprivredni Fakultet Osijek: Osijek, Croatia, 1989. [Google Scholar]
- Xie, X.; Hu, W.; Fan, X.; Chen, H.; Tang, M. Interactions Between Phosphorus, Zinc, and Iron Homeostasis in Nonmycorrhizal and Mycorrhizal Plants. Front. Plant Sci. 2019, 10, 1172. [Google Scholar] [CrossRef]
- Zaidel’man, F.R.; Nikiforova, A.S.; Stepantsova, L.V.; Safronov, S.B.; Krasin, V.N. Manganese, iron, and phosphorus in nodules of chernozem–like soils on the northern Tambov Plain and their importance for the diagnostics of gley intensity. Eurasian Soil Sci. 2009, 42, 477–487. [Google Scholar] [CrossRef]
- Bjørklund, G.; Aaseth, J.; Skalny, A.V.; Suliburska, J.; Skalnaya, M.G.; Nikonorov, A.A.; Tinkov, A.A. Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency. J. Trace Elem. Med. Biol. 2017, 41, 41–53. [Google Scholar] [CrossRef]
- Tsonev, T.; Lidon, F.J.C. Zinc in plants—An overview. Emir. J. Food Agric. 2012, 24, 322–333. [Google Scholar]
- Ruiz-Torres, N.; Flores-Naveda, A.; Barriga-Castro, E.D.; Camposeco-Montejo, N.; Ramírez-Barrón, S.; Borrego-Escalante, F.; Niño-Medina, G.; Hernández-Juárez, A.; Garza-Alonso, C.; Rodríguez-Salinas, P.; et al. Zinc Oxide Nanoparticles and Zinc Sulfate Impact Physiological Parameters and Boosts Lipid Peroxidation in Soil Grown Coriander Plants (Coriandrum sativum). Molecules 2021, 26, 1998. [Google Scholar] [CrossRef]
- Berbecea, A.; Radulov, I.; Sala, A.L.; Crista, F. Interrelation between metal availability, soil pH and mineral fertilization. Res. J. Agric. Sci. 2011, 43, 19–22. [Google Scholar]
- Barceloux, D.G. Molybdenum. Clin. Toxicol. 1999, 37, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Winkel, L.H.E.; Vriens, B.; Jones, G.D.; Schneider, L.S.; Pilon, E.; Bañuelos, G.S. Selenium cycling across soil–plant–atmosphere interfaces: A critical review. Nutrients 2015, 7, 4199–4239. [Google Scholar] [CrossRef]
- Natasha; Shahid, M.; Niazi, N.K.; Khalid, S.; Murtaza, B.; Bibi, I.; Rashid, M.I. A critical review of selenium biogeochemical behavior in soil–plant system with an inference to human health. Environ. Pollut. 2018, 234, 915–934. [Google Scholar] [CrossRef] [PubMed]
- Van Breemen, N.; Buurman, P. Soil Formation; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Mortvedt, J.J. Impacts of acid deposition on micronutrient cycling in agro–ecosystem. Environ. Exp. Bot. 1983, 23, 243–249. [Google Scholar] [CrossRef]
- Blume, H.-P.; Brümmer, G.W.; Fleige, H.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.-M. Soil Development and Soil Classification; Springer: Berlin, Germany, 2015. [Google Scholar] [CrossRef]
- Câmara, E.R.G.; dos Santos, J.C.B.; Filho, J.C.d.A.; Schulze, S.M.B.B.; Corrêa, M.M.; Ferreira, T.O.; de Sousa, J.E.S.; Júnior, V.S.d.S. Parent rock–pedogenesis relationship: How the weathering of metamorphic rocks influences the genesis of Planosols and Luvisols under a semiarid climate in NE Brazil. Geoderma 2021, 385, 114878. [Google Scholar] [CrossRef]
- Dou, Y.; Peng, B.; Zhao, P.; Yumin, L.; Li, C. Migration characteristics of microelements in process of landscape geochemistry in Mt. Namjagbarwa area. Chin. Geogr. Sci. 1992, 2, 245–255. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Rinklebe, J.; Frohne, T.; White, J.R.; DeLaune, R.D. Biogeochemical Factors Governing Cobalt, Nickel, Selenium, and Vanadium Dynamics in Periodically Flooded Egyptian North Nile Delta Rice Soils. Soil Sci. Soc. Am. J. 2014, 78, 1065–1078. [Google Scholar] [CrossRef]
- Zewide, I.; Sherefu, A. Review Paper on Effect of Micronutrients for Crop Production. Nutr. Food Process. 2021, 4, 01–08. [Google Scholar] [CrossRef]
- Alloway, B.J. Micronutrients and crop production: An introduction. In Micronutrient Deficiencies in Global Crop Production; Springer: Dordrecht, The Netherlands, 2008; pp. 1–39. [Google Scholar] [CrossRef]
- Welch, R.M.; Shuman, L. Micronutrient Nutrition of Plants. J. Plant Nutr. 1995, 18, 49–82. [Google Scholar] [CrossRef]
- Gottikh, R.P.; Vinokurov, S.F.; Pisotskii, B.I. Rare-earth elements as geochemical criteria of endogenous sources of microelements contained in oil. Dokl. Earth Sci. 2009, 424, 1277–1280. [Google Scholar] [CrossRef]
- Mandzhieva, S.S.; Minkina, T.M.; Bauer, T.V.; Batukaev, A.A.; Burachevskaya, M.V.; Sushkova, S.N.; Varduni, T.V.; Sherstnev, A.K.; Kalinichenko, V.P. Transformation of technogenic Cu and Zn compounds in chernozem. Environ. Eng. Manag. J. 2015, 14, 481–486. [Google Scholar] [CrossRef]
- Moiseenko, T.I.; Kudryavtseva, L.P.; Gashkina, N.A. Assessment of the geochemical background and anthropogenic load by bioaccumulation of microelements in fish. Water Resour. 2005, 32, 640–652. [Google Scholar] [CrossRef]
- Berg, G. Plant–microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 2009, 84, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.E.; Witter, E.; Mcgrath, S.P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol Biochem. 1998, 30, 1389–1414. [Google Scholar] [CrossRef]
- Lalević, B.; Hamidović, S.; Komlen, V. Građa i Funkcija Mikroorganizama u Agroekosistemu; University of Belgrade, Faculty of Agriculture: Belgrade, Serbia, 2020. [Google Scholar]
- Sipos, P. Single element and competitive sorption of copper, zinc and lead onto a Luvisol profile. Cent. Eur. J. Geosci. 2009, 1, 404–415. [Google Scholar] [CrossRef]
- Mao, J.; Xing, B. Fractionation and distribution of selenium in soils. Commun. Soil Sci. Plant Anal. 1999, 30, 2437–2447. [Google Scholar] [CrossRef]
- White, P.J. Selenium metabolism in plants. Biochim. Biophys. Acta–Gen. Subj. 2018, 1862, 2333–2342. [Google Scholar] [CrossRef]
- Lăcătușu, R.; Lungu, M.; Burileanu, M.M.S.; Kurtinecz, P.; Lazăr, R.; Rizea, N.; Stroe, V.M. Influence of long term liming and fertilization on the total and mobile selenium content in an albic luvisol. Rom. Agric. Res. 2012, 29, 233–240. [Google Scholar]
- Elrashidi, M.A.; Adriano, D.C.; Workman, S.M.; Lindsay, W.L. Chemical equilibria of selenium in soils: A theoretical development. Soil Sci. 1987, 144, 141–151. [Google Scholar] [CrossRef]
- Golubkina, N.; Sheshnitsan, S. Selenium in Soils of Moldova. J. Environ. Sci. 2014, 26, 947–952. [Google Scholar] [CrossRef]
- Geering, R.H.; Cary, E.E.; Jones, L.H.P.; Allaway, W.H. Solubility and Redox Criteria for the Possible Forms of Selenium in Soils. Soil Sci. Soc. Am. Proc. 1968, 32, 8. [Google Scholar] [CrossRef]
- White, P.J. Selenium in soils and crops. In Molecular and Integrative Toxicology; Springer: Cham, Switzerland, 2018; pp. 29–50. [Google Scholar] [CrossRef]
- Ryswyk, A.L.V.; Broersma, K.; Kalnin, C.M. Selenium content of alfalfa grown on orthic gray luvisolic and carbonated orthic gleysolic soils. Can. J. Plant Sci. 1971, 56, 753–756. [Google Scholar] [CrossRef]
- Sager, M.; Hoesch, J.; Sager, M.; Hoesch, J. Selenium Uptake in Cereals Grown in Lower Austria. J. Cent. Eur. Agric. 2006, 7, 71–78. [Google Scholar]
- Levesque, M. Selenium distribution in canadian soil profiles. Can. J. Soil Sci. 1973, 54, 63–68. [Google Scholar] [CrossRef]
- Alloway, B.J. Zinc in Soils and Crop Production; International Fertilizer Industry Association (IFA): Paris, France, 2008; p. 139. [Google Scholar]
- Neumann, H. Notes on the mineralogy and geochemistry of zinc. Mineral. Mag. J. Mineral. Soc. 1949, 28, 575–581. [Google Scholar] [CrossRef]
- Lindsay, W. Zinc in Soils and Plant Nutrition (original en inglés). Adv. Agron. 1972, 24, 147–186. [Google Scholar]
- McPhail, D.; Summerhayes, E.; Welch, S.; Brugger, J. The geochemistry and mobility of zinc in the regolith. Adv. Regolith 2003, 10, 287–291. [Google Scholar]
- Minkina, T.; Pinskiy, D.; Bauer, T.; Mandzhieva, S.; Belyaeva, O.; Kalinichenko, V.; Endovitsky, A. Effect of attendant anions on zinc adsorption and transformation in chernozem. J. Geochem. Explor. 2014, 144, 226–229. [Google Scholar] [CrossRef]
- Dère, C.; Cornu, S.; Lamy, I. Factors affecting the three–dimensional distribution of exogenous zinc in a sandy Luvisol subjected to intensive irrigation with raw wastewaters. Soil Use Manag. 2006, 22, 289–297. [Google Scholar] [CrossRef]
- Pongrac, P.; McNicol, J.W.; Lilly, A.; Thompson, J.A.; Wright, G.; Hillier, S.; White, P.J. Mineral element composition of cabbage as affected by soil type and phosphorus and zinc fertilization. Plant Soil 2019, 434, 151–165. [Google Scholar] [CrossRef]
- Liang, B.; Han, G.; Liu, M.; Li, X. Zn isotope fractionation during the development of low–humic gleysols from the Mun River Basin, northeast Thailand. Catena 2021, 206, 105565. [Google Scholar] [CrossRef]
- Karam, A.; Cescas, M.P.; Ledoux, R. Specific zinc scpption by some gleysolic c horizons in quebec soils, canada1. Commun. Soil Sci. Plant Anal. 1983, 14, 785–801. [Google Scholar] [CrossRef]
- Barrow, N.J. Mechanisms of Reaction of Zinc with Soil and Soil Components. Zinc Soils Plants 1993, 55, 15–31. [Google Scholar] [CrossRef]
- Galić, L.; Špoljarević, M.; Auriga, A.; Ravnjak, B.; Vinković, T.; Lončarić, Z. Combining Selenium Biofortification with Vermicompost Growing Media in Lamb’s Lettuce (Valerianella locusta L. Laterr). Agriculture 2021, 11, 1072. [Google Scholar] [CrossRef]
- Vahedi, R.; Rasouli, M.H.; Barin, M.; Vetukuri, R.R. Effect of Biochar and Microbial Inoculation on P, Fe, and Zn Bioavailability in a Calcareous Soil. Processes 2022, 10, 343. [Google Scholar] [CrossRef]
- Rehman, M.; Lui, L.; Wang, Q.; Saleem, M.H.; Bashir, S.; Ullah, S.; Peng, D. Copper environmental toxicology, recent advances, and future outlook: A review. Environ. Sci. Pollut. Res. 2019, 26, 18003–18016. [Google Scholar] [CrossRef]
- Vlcek, V.; Pohanka, M. Adsorption of copper in soil and its dependence on physical and chemical properties. Acta Univ. Agric. Silvic. Mendel. Brun. 2018, 66, 219–224. [Google Scholar] [CrossRef]
- Zamulina, I.V.; Gorovtsov, A.V.; Minkina, T.M.; Mandzhieva, S.S.; Burachevskaya, M.V.; Bauer, T.V. Soil organic matter and biological activity under long–term contamination with copper. Environ. Geochem. Health 2021, 4, 387–398. [Google Scholar] [CrossRef]
- Ponizovsky, A.A.; Studenikina, T.A.; Mironenko, E.V.; Kingery, W.L. Copper(II) retention by chernozem, gray forest, and dernovo–podzolic soils: Ph effect and cation balance. Soil Sci. 2001, 166, 239–248. [Google Scholar] [CrossRef]
- Minkina, T.; Mandzhieva, S.; Fedorov, Y.; Bauer, T.; Nevidomskyay, D.; Chapligin, V. Influence of organic matter on the mobility of copper, lead and zinc in soil. World Appl. Sci. J. 2013, 26, 406–409. [Google Scholar] [CrossRef]
- Minkina, T.M.; Motuzova, G.V.; Nazarenko, O.G. Interaction of heavy metals with the organic matter of an ordinary chernozem. Eurasian Soil Sci. 2006, 39, 720–726. [Google Scholar] [CrossRef]
- Burachevskaya, M.; Minkina, T.; Mandzhieva, S.; Bauer, T.; Chaplygin, V.; Zamulina, I.; Sushkova, S.; Fedorenko, A.; Ghazaryan, K.; Movsesyan, H.; et al. Study of copper, lead, and zinc speciation in the Haplic Chernozem surrounding coal-fired power plant. Appl. Geochem. 2019, 104, 102–108. [Google Scholar] [CrossRef]
- Pinskii, D.L.; Minkina, T.M.; Mandzhieva, S.S.; Fedorov, Y.A.; Bauer, T.V.; Nevidomskaya, D.G. Adsorption features of Cu(II), Pb(II), and Zn(II) by an ordinary chernozem from nitrate, chloride, acetate, and sulfate solutions. Eurasian Soil Sci. 2014, 47, 10–17. [Google Scholar] [CrossRef]
- Németh, T.; Sipos, P.; Balázs, R.; Szalai, Z.; Mészáros, E.; di Gléria, M. Adsorption of copper on the illuviation and accumulation horizons of a Luvisol. Carpathian J. Earth Environ. Sci. 2010, 5, 19–24. [Google Scholar]
- Németh, T.; Jiménez, J.; Sipos, P.; Abad, I.; Jiménez, R.; Szalai, Z. Effect of pedogenic clay minerals on the sorption of copper in a Luvisol B horizon. Geoderma 2011, 160, 509–516. [Google Scholar] [CrossRef]
- Gudzic, N.; Aksic, M.; Djikic, A.; Knezevic, J.; Gudzic, S. Content of total and available copper and zinc in the pseudogley soil in Kraljevo and Krusevac basin. In Proceedings of the Third International Scientific Symposium “Agrosym 2012”, Jahorina, Bosnia, 4–7 October 2012. [Google Scholar]
- Vrbek, B.; Pilaš, I.; Pernar, N.; Dubravac, T.; Bakšić, D.; Medak, J.; Jakovljević, T. Heavy metals in lysimetric solution of pseudogley soils in the the Kupa and Česma river areas. Period. Biol. 2009, 111, 419–426. [Google Scholar]
- Bigalke, M.; Weyer, S.; Wilcke, W. Stable Copper Isotopes: A Novel Tool to Trace Copper Behavior in Hydromorphic Soils. Soil Sci. Soc. Am. J. 2010, 74, 60–73. [Google Scholar] [CrossRef]
- Bingham, F.T. Micronutrients and plant disease. Soil Sci. Soc. Am. J. 1982, 9, 431–447. [Google Scholar]
- Berger, K.C. Boron in Soils and Crops. Adv. Agron. 1949, 1, 321–351. [Google Scholar] [CrossRef]
- Goldberg, S. Reactions of boron with soils. Plant Soil 1997, 193, 35–48. [Google Scholar] [CrossRef]
- Adams, J.A.; Hamzah, A.D.Z.; Swift, R.S. Availability and uptake of boron in a group of pedogenetically–related canterbury, new zealand soils. Aust. J. Soil Res. 1991, 29, 415–423. [Google Scholar] [CrossRef]
- Goldberg, S. Chemical modeling of boron adsorption by humic materials using the constant capacitance model. Soil Sci. 2014, 179, 561–567. [Google Scholar] [CrossRef]
- Goldberg, S.; Forster, H.S. Boron sorption on calcareous soils and reference calcites. Soil. Sci. 1991, 152, 304–310. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.J.; Zhan, L.Q.; Wu, W.; Liu, H.B. Boron availability in top–and sub–soils as affected by topography and climate. Nutr. Cycl. Agroecosyst. 2020, 118, 91–101. [Google Scholar] [CrossRef]
- Raza, M.; Mermut, A.R.; Schoenau, J.J.; Malhi, S.S. Boron fractionation in some Saskatchewan soils. Can. J. Soil Sci. 2002, 82, 173–179. [Google Scholar] [CrossRef]
- Mühlbachová, G.; Čermák, P.; Vavera, R.; Káš, M.; Pechová, M.; Marková, K.; Kusá, H.; Růžek, P.; Hlušek, J.; Lošák, T. Boron availability and uptake under increasing phosphorus rates in a pot experiment. Plant Soil Environ. 2017, 63, 483–490. [Google Scholar] [CrossRef]
- Shorrocks, V.M. The occurrence and correction of boron deficiency. Plant Soil 1997, 193, 121–148. [Google Scholar] [CrossRef]
- Das, R.; Kumar, R.; Sarkar, D.; Das, S.; Pradhan, A.K.; Das, D.; Srivastava, M.; Sinha, A.K.; Sahoo, S.; Datta, S.P.; et al. Boron fractions and its availability in soils of the Indo–Gangetic plains. CATENA 2023, 222, 106877. [Google Scholar] [CrossRef]
- Dorau, K.; Eickmeier, M.; Mansfeldt, T. Comparison of Manganese and Iron Oxide–Coated Redox Bars for Characterization of the Redox Status in Wetland Soils. Wetlands 2016, 36, 133–141. [Google Scholar] [CrossRef]
- da Silva, G.R.; da Silva, P.A.L.; Silva, S.B.E.; da S, M.L.; Gama, M.A.P.; Fernandes, A.R. Eletrochemical changes in Gleysol of the Amazon estuary Alterações eletroquímicas em Gleissolo do estuário amazônico. Rev. Ciências Agrárias 2015, 58, 152–158. [Google Scholar] [CrossRef]
- Rennert, T.; Händel, M.; Höschen, C.; Lugmeier, J.; Steffens, M.; Totsche, K.U. A NanoSIMS study on the distribution of soil organic matter, iron and manganese in a nodule from a Stagnosol. Eur. J. Soil Sci. 2014, 65, 684–692. [Google Scholar] [CrossRef]
- Van Groeningen, N.; Christl, I.; Kretzschmar, R. The Effect of Aeration on Mn(II) Sorbed to Clay Minerals and Its Impact on Cd Retention. Environ. Sci. Technol. 2021, 55, 1650–1658. [Google Scholar] [CrossRef] [PubMed]
- Hamlin, R.L. Molybdenum. In Handbook of Plant Nutrition, 1st ed.; Barker, A.V., Pilbeam, D.J., Eds.; CRC Press: Boca Raton, FL, USA, 2006; p. 20. ISBN 9780429134456. [Google Scholar]
- Marks, J.A.; Perakis, S.S.; King, E.K.; Pett, J. Soil organic matter regulates molybdenum storage and mobility in forests. Biogeochemistry 2015, 125, 167–183. [Google Scholar] [CrossRef]
- Jarrell, W.M.; Page, A.L.; Elseewi, A.A. Molybdenum in the environment. Residue Rev. 1980, 74, 1–43. [Google Scholar] [CrossRef]
- Zaborowska, M.; Kucharski, J.; Wyszkowska, J. Biological activity of soil contaminated with cobalt, tin, and molybdenum. Environ. Monit. Assess. 2016, 188, 398. [Google Scholar] [CrossRef]
- Rutkowska, B.; Szulc, W.; Spychaj, E.; Pior, N. Prediction of molybdenum availability to plants in differentiated soil conditions. Plant Soil Environ. 2017, 63, 491–497. [Google Scholar] [CrossRef]
- Carroll, K.C.; Artiola, J.F.; Brusseau, M.L. Transport of molybdenum in a biosolid–amended alkaline soil. Chemosphere 2006, 65, 778–785. [Google Scholar] [CrossRef]
- Schwertmann, U.; Taylor, R.M. Iron oxides. Miner. Soil Environ. 1989, 1, 379–438. [Google Scholar] [CrossRef]
- Uren, N.C. Forms, Reactions and Availability of Iron in Soils. J. Plant Nutr. 1984, 7, 165–176. [Google Scholar] [CrossRef]
- Mansfeldt, T.; Schuth, S.; Häusler, W.; Wagner, F.E.; Kaufhold, S.; Overesch, M. Iron oxide mineralogy and stable iron isotope composition in a Gleysol with petrogleyic properties. J. Soils Sediments 2012, 12, 97–114. [Google Scholar] [CrossRef]
- Schwertmann, U. Relations Between Iron Oxides, Soil Color, and Soil Formation. In SSSA Special Publications; Bigham, J.M., Ciolkosz, E.J., Eds.; Soil Science Society of America: Madison, WI, USA, 1993; Chapter 4. [Google Scholar] [CrossRef]
- Jaworska, H.; Dąbkowska, H.; Kobierski, M. Iron oxides as weathering indicator and the origin of Luvisols from the Vistula glaciation region in Poland. J. Soils Sediments 2016, 16, 396–404. [Google Scholar] [CrossRef]
- Wilson, C.A.; Cloy, J.M.; Graham, M.C.; Hamlet, L.E. A microanalytical study of iron, aluminium and organic matter relationships in soils with contrasting hydrological regimes. Geoderma 2013, 202–203, 71–81. [Google Scholar] [CrossRef]
- Krause, L.; Klumpp, E.; Nofz, I.; Missong, A.; Amelung, W.; Siebers, N. Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols. Geoderma 2020, 374, 114421. [Google Scholar] [CrossRef]
- Scott, J.J. Toxicity of Nickel to Soil Organisms in Denmark. Rev. Environ. Contam. Toxicol. 1997, 148, 1–34. [Google Scholar] [CrossRef]
- Iyaka, Y.A. Nickel in soils: A review of its distribution and impacts. Sci. Res. Essays 2011, 6, 6774–6777. [Google Scholar] [CrossRef]
- Harasim, P.; Filipek, T. Nickel in the environment. J. Elem. 2015, 20, 525–534. [Google Scholar] [CrossRef]
- Bowman, R.S.; Essington, M.E.; O’Connor, G.A. Soil Sorption of Nickel: Influence of Solution Composition. J. Soil Sci. Soc. Am. 1981, 45, 860–865. [Google Scholar] [CrossRef]
- Rooney, C.P.; Zhao, F.J.; McGrath, S.P. Phytotoxicity of nickel in a range of European soils: Influence of soil properties, Ni solubility and speciation. Environ. Pollut. 2007, 145, 596–605. [Google Scholar] [CrossRef]
- Öberg, G. Chloride and organic chlorine in soil. Acta Hydrochim. Hydrobiol. 1998, 26, 137–144. [Google Scholar] [CrossRef]
- Adriano, D.C.; Doner, H.E. Bromine, Chlorine, and Fluorine, Agronomy Monograph No. 9, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 449–483. [Google Scholar] [CrossRef]
- Öberg, G.M. The biogeochemistry of chlorine in soil. Handb. Environ. Chem. 2003, 3, 43–62. [Google Scholar] [CrossRef]
- Öberg, G.; Sandén, P. Retention of chloride in soil and cycling of organic matter–bound chlorine. Hydrol. Process. 2005, 19, 2123–2136. [Google Scholar] [CrossRef]
Element | Earth’s Crust | Soil | Plant | Human Body |
---|---|---|---|---|
Selenium (Se) | 0.083 | 0.01 | 0.05 | 0.11 |
Zinc (Zn) | 52 | 50 | 100 | 33.0 |
Cooper (Cu) | 14 | 20 | 14 | 1.0 |
Boron (B) | 17 | 10 | 50 | 0.30 |
Manganese (Mn) | 530 | 800 | 630 | 0.17 |
Molybdenum (Mo) | 1.4 | 3 | 0.05 | 0.08 |
Iron (Fe) | 31,000 | 40,000 | 140 | 60 |
Nickel (Ni) | 75 | 40 | 3 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galić, L.; Vukadinović, V.; Nikolin, I.; Lončarić, Z. Soil Properties and Microelement Availability in Crops for Human Health: An Overview. Crops 2025, 5, 40. https://doi.org/10.3390/crops5040040
Galić L, Vukadinović V, Nikolin I, Lončarić Z. Soil Properties and Microelement Availability in Crops for Human Health: An Overview. Crops. 2025; 5(4):40. https://doi.org/10.3390/crops5040040
Chicago/Turabian StyleGalić, Lucija, Vesna Vukadinović, Iva Nikolin, and Zdenko Lončarić. 2025. "Soil Properties and Microelement Availability in Crops for Human Health: An Overview" Crops 5, no. 4: 40. https://doi.org/10.3390/crops5040040
APA StyleGalić, L., Vukadinović, V., Nikolin, I., & Lončarić, Z. (2025). Soil Properties and Microelement Availability in Crops for Human Health: An Overview. Crops, 5(4), 40. https://doi.org/10.3390/crops5040040