Enhancing Climate Resilience of Forage Ecosystems Through Sustainable Intensification and Educational Knowledge Transfer in the Southeastern USA
Abstract
1. Introduction
2. Forage–Livestock Operations in the Southeastern USA
3. Climate-Resilient Sustainable Intensification Strategies for Forage Ecosystems
3.1. The Use of Diverse Forage Mixtures
3.2. The Use of Integrated Systems in Livestock Operations
3.3. Soil Fertility, Health, and Nutrient Accumulation
3.4. Strategies for Greenhouse Gas Emissions Mitigation in Forage–Livestock Systems
4. The Role of Agricultural Education and Knowledge Transfer in Shaping Climate-Resilient Forage–Livestock Ecosystems
5. Conclusions and Implications
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
USA | United States of America |
ES | Ecosystem services |
FAO | The Food and Agriculture Organization |
SOC | Soil organic carbon |
CRMS | Climate-resilient management strategies |
BNF | Biological nitrogen fixation |
OM | Organic matter |
GHG | Greenhouse gas emissions |
ADG | Average daily gain |
N | Nitrogen |
P | Phosphorus |
K | Potassium |
AU | Animal unit |
ICLS | Integrated crop-livestock system |
C | Carbon |
CH4 | Methane |
N2O | Nitrous Oxide |
HEI | Higher education institution |
References
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Peters, M.; Herrero, M.; Fisher, M.; Erb, K.-H.; Rao, I.; Subbarao, G.V.; Castro, A.; Arango, J.; Chará, J.; Murgueitio, E.; et al. Challenges and opportunities for improving eco-efficiency of tropical forage-based systems to mitigate greenhouse gas emissions. Trop. Grassl.-Forrajes Trop. 2013, 1, 156. [Google Scholar] [CrossRef]
- Broderick, G.A. Review: Optimizing ruminant conversion of feed protein to human food protein. Animal 2018, 12, 1722–1734. [Google Scholar] [CrossRef] [PubMed]
- D’Ottavio, P.; Francioni, M.; Trozzo, L.; Sedić, E.; Budimir, K.; Avanzolini, P.; Trombetta, M.F.; Porqueddu, C.; Santilocchi, R.; Toderi, M. Trends and approaches in the analysis of ecosystem services provided by grazing systems: A review. Grass Forage Sci. 2018, 73, 15–25. [Google Scholar] [CrossRef]
- Arias, P.; Bellouin, N.; Coppola, E.; Jones, R.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.; Plattner, G.-K.; Rogelj, J. Climate Change 2021: The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 33–144. [Google Scholar] [CrossRef]
- Jägermeyr, J.; Müller, C.; Ruane, A.C.; Elliott, J.; Balkovic, J.; Castillo, O.; Faye, B.; Foster, I.; Folberth, C.; Franke, J.A.; et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2021, 2, 873–885. [Google Scholar] [CrossRef]
- Chang, J.; Ciais, P.; Viovy, N.; Soussana, J.-F.; Klumpp, K.; Sultan, B. Future productivity and phenology changes in European grasslands for different warming levels: Implications for grassland management and carbon balance. Carbon Balance Manag. 2017, 12, 11. [Google Scholar] [CrossRef]
- Giridhar, K.; Samireddypalle, A. Impact of climate change on forage availability for livestock. In Climate Change Impact on Livestock: Adaptation and Mitigation; Springer: New Delhi, India, 2015; pp. 97–112. [Google Scholar]
- Abdalla, A.L.; Abdalla Filho, A.L.; Natel, A.S.; Louvandini, H.; Piccolo, M.C.; Nechet, K.L.; Torre Neto, A.; Ghini, R. Nutritive Value and Enteric Methane Production of Brachiaria spp. Under Elevated [CO2]. Int. J. Plant Prod. 2020, 14, 119–126. [Google Scholar] [CrossRef]
- Abdalla Filho, A.L.; Lima, P.D.M.T.; Sakita, G.Z.; Silva, T.P.D.E.; Da Costa, W.D.S.; Ghini, R.; Abdalla, A.L.; Piccolo, M.D.C. CO2 fertilization does not affect biomass production and nutritive value of a C4 tropical grass in short timeframe. Grass Forage Sci. 2019, 74, 670–677. [Google Scholar] [CrossRef]
- Sollenberger, L.E.; Kohmann, M.M. Forage legume responses to climate change factors. Crop Sci. 2024, 64, 2419–2432. [Google Scholar] [CrossRef]
- Erice, G.; Irigoyen, J.J.; Pérez, P.; Martínez-Carrasco, R.; Sánchez-Díaz, M. Effect of elevated CO2 temperature and drought on photosynthesis of nodulated alfalfa during a cutting regrowth cycle. Physiol. Plant. 2006, 126, 458–468. [Google Scholar] [CrossRef]
- Irigoyen, J.J.; Goicoechea, N.; Antolín, M.C.; Pascual, I.; Sánchez-Díaz, M.; Aguirreolea, J.; Morales, F. Growth, photosynthetic acclimation and yield quality in legumes under climate change simulations: An updated survey. Plant Sci. 2014, 226, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Sollenberger, L.E. Challenges, opportunities, and applications of grazing research. Crop Sci. 2015, 55, 2540–2549. [Google Scholar] [CrossRef]
- USDA-NASS. 2022 Census of Agriculture. Available online: https://www.nass.usda.gov/Publications/AgCensus/2022 (accessed on 20 May 2025).
- Ingram, K.; Dow, K.; Carter, L.; Anderson, J. Climate of the Southeast United States: Variability, Change, Impacts and Vulnerability; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Mullenix, M.K.; Rouquette, F.M. Cool-season annual grasses or grass-clover management options for extending the fall–winter-early spring grazing season for beef cattle. Prof. Anim. Sci. 2018, 34, 231–239. [Google Scholar] [CrossRef]
- Silveira, M.L.; Rouquette, F.M.; Smith, G.R.; Silva, H.M.S.; Dubeux, J.C.B. Soil fertility principles for warm-season perennial forages and sustainable pasture production. Forage Grazinglands 2014, 12, 1–9. [Google Scholar] [CrossRef]
- Redmon, L. Reducing input costs for livestock production systems. In Proceedings of the Annual Meeting of the Southern Branch of the American Society of Agronomy, Lexington, KY, USA, 30–31 January 2000; p. 6. [Google Scholar]
- McCormick, J.S.; Sulc, R.M.; Barker, D.J.; Beuerlein, J.E. Yield and nutritive value of autumn-seeded winter-hardy and winter-sensitive annual forages. Crop Sci. 2006, 46, 1981–1989. [Google Scholar] [CrossRef]
- Dillard, S.L.; Hancock, D.W.; Harmon, D.D.; Mullenix, M.K.; Beck, P.A.; Soder, K.J. Animal performance and environmental efficiency of cool- and warm-season annual grazing systems. J. Anim. Sci. 2018, 96, 3491–3502. [Google Scholar] [CrossRef]
- Fontaneli, R.S.; Sollenberger, L.E.; Staples, C.R. Yield, yield distribution, and nutritive value of intensively managed warm-season annual grasses. Agron. J. 2001, 93, 1257–1262. [Google Scholar] [CrossRef]
- FAO. Sustainable Food Systems: Concepts and Framework. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/b620989c-407b-4caf-a152-f790f55fec71/content (accessed on 20 May 2025).
- Isbell, F.; Craven, D.; Connolly, J.; Loreau, M.; Schmid, B.; Beierkuhnlein, C.; Bezemer, T.M.; Bonin, C.; Bruelheide, H.; De Luca, E.; et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 2015, 526, 574–577. [Google Scholar] [CrossRef]
- Tracy, B.F.; Foster, J.L.; Butler, T.J.; Islam, M.A.; Toledo, D.; Vendramini, J.M.B. Resilience in forage and grazinglands. Crop Sci. 2018, 58, 31–42. [Google Scholar] [CrossRef]
- Dubeux, J.C.B., Jr.; Jaramillo, D.M.; Santos, E.R.S.; Garcia, L.; Queiroz, L.M.D.; Bretas, I.L.; de Souza, C.H.L.; Trumpp, K.R. Sustainable intensification of livestock systems using forage legumes in the Anthropocene. Grass Forage Sci. 2024, 79, 481–498. [Google Scholar] [CrossRef]
- Conant, R.T.; Cerri, C.E.P.; Osborne, B.B.; Paustian, K. Grassland management impacts on soil carbon stocks: A new synthesis. Ecol. Appl. 2017, 27, 662–668. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 1999, 63, 1350–1358. [Google Scholar] [CrossRef]
- Tarré, R.; Macedo, R.; Cantarutti, R.B.; Rezende, C.D.P.; Pereira, J.M.; Ferreira, E.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M. The effect of the presence of a forage legume on nitrogen and carbon levels in soils under Brachiaria pastures in the Atlantic forest region of the South of Bahia, Brazil. Plant Soil 2001, 234, 15–26. [Google Scholar] [CrossRef]
- Ammann, C.; Flechard, C.R.; Leifeld, J.; Neftel, A.; Fuhrer, J. The carbon budget of newly established temperate grassland depends on management intensity. Agric. Ecosyst. Environ. 2007, 121, 5–20. [Google Scholar] [CrossRef]
- Allard, V.; Soussana, J.F.; Falcimagne, R.; Berbigier, P.; Bonnefond, J.M.; Ceschia, E.; D’hour, P.; Hénault, C.; Laville, P.; Martin, C.; et al. The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grassland. Agric. Ecosyst. Environ. 2007, 121, 47–58. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Change Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Martin, G. Farming with forages can reconnect crop and livestock operations to enhance circularity and foster ecosystem services. Grass Forage Sci. 2022, 77, 270–281. [Google Scholar] [CrossRef]
- Beck, P.A.; Stewart, C.B.; Phillips, J.M.; Watkins, K.B.; Gunter, S.A. Effect of species of cool-season annual grass interseeded into Bermudagrass sod on the performance of growing calves. J. Anim. Sci. 2007, 85, 536–544. [Google Scholar] [CrossRef]
- Mullenix, M.K.; Bungenstab, E.J.; Lin, J.C.; Gamble, B.E.; Muntifering, R.B. Productivity, quality characteristics, and beef cattle performance from cool-season annual forage mixtures. Prof. Anim. Sci. 2012, 28, 379–386. [Google Scholar] [CrossRef]
- Mullenix, M.K.; Dillard, S.L.; Lin, J.C.; Gamble, B.E.; Muntifering, R.B. Evaluation of wheat and triticale forage for stocker production in the Gulf Coast region. Prof. Anim. Sci. 2014, 30, 296–304. [Google Scholar] [CrossRef]
- Dubeux, J.C.B.; Dilorenzo, N.; Blount, A.; Mackowiak, C.; Santos, E.R.S.; Silva, H.M.S.; Ruiz-Moreno, M.; Schulmeister, T. Animal Performance and Pasture Characteristics on Cool-Season Annual Grass Mixtures in North Florida. Crop Sci. 2016, 56, 2841–2852. [Google Scholar] [CrossRef]
- Jaramillo, D.M.; Dubeux, J.C.B.; Sollenberger, L.E.; Vendramini, J.M.B.; Mackowiak, C.; Dilorenzo, N.; Garcia, L.; Queiroz, L.M.; Santos, E.R.S.; Homem, B.G.C.; et al. Water footprint, herbage, and livestock responses for nitrogen-fertilized grass and grass-legume grazing systems. Crop Sci. 2021, 61, 3844–3858. [Google Scholar] [CrossRef]
- Santos, E.R.S.; Dubeux, J.C.B.; Sollenberger, L.E.; Blount, A.R.S.; Mackowiak, C.; Dilorenzo, N.; Jaramillo, D.M.; Garcia, L.; Pereira, T.P.; Ruiz-Moreno, M. Herbage responses and biological N2 fixation of bahiagrass and rhizoma peanut monocultures compared with their binary mixtures. Crop Sci. 2018, 58, 2149–2163. [Google Scholar] [CrossRef]
- Jaramillo, D.M.; Dubeux, J.C.B.; Mackowiak, C.; Sollenberger, L.E.; Dilorenzo, N.; Rowland, D.L.; Blount, A.R.S.; Santos, E.R.S.; Garcia, L.; Ruiz-Moreno, M. Annual and perennial peanut mixed with ‘Pensacola’ bahiagrass in North Florida. Crop Sci. 2018, 58, 982–992. [Google Scholar] [CrossRef]
- Brink, G.E.; Sanderson, M.A.; Casler, M.D. Grass and legume effects on nutritive value of complex forage mixtures. Crop Sci. 2015, 55, 1329–1337. [Google Scholar] [CrossRef]
- Queiroz, L.M.D.; Dubeux, J.C.B.; Sollenberger, L.E.; Vendramini, J.M.B.; Liao, H.L.; Mackowiak, C.L.; Van Santen, E.; Jaramillo, D.M.; Santos, E.R.S.; Garcia, L.; et al. Sward responses of rhizoma peanut–bahiagrass mixtures and bahiagrass monocultures in contrasting on-farm environments. Crop Sci. 2025, 65, e70049. [Google Scholar] [CrossRef]
- Shepard, E.M.; Sollenberger, L.E.; Kohmann, M.M.; Da Silva, L.S.; Harling, J.F.; Dubeux, J.C.B.; Vendramini, J.M.B. Establishing rhizoma peanut–bahiagrass mixtures. Agrosystems Geosci. Environ. 2022, 5, e20285. [Google Scholar] [CrossRef]
- Barneze, A.S.; Whitaker, J.; McNamara, N.P.; Ostle, N.J. Legumes increase grassland productivity with no effect on nitrous oxide emissions. Plant Soil 2020, 446, 163–177. [Google Scholar] [CrossRef]
- Santos, E.R.S.; Dubeux, J.C.B.; Jaramillo, D.M.; Garcia, L.; Queiroz, L.M.D.; Silva, C.S.; Abreu, D.S.; Ruiz-Moreno, M. Overseeding cool-season forages on rhizoma peanut fields. Crop Forage Turfgrass Manag. 2020, 6, e20060. [Google Scholar] [CrossRef]
- Pereira Neto, J.D.; Dubeux, J.C.B.; Ferreira Dos Santos, M.V.; Da Silva Santos, E.R.; Bretas, I.L.; Jaramillo, D.M.; Ruiz-Moreno, M.; Rodrigues Da Cruz, P.J.; Dantas Queiroz, L.M.; Tembe Oduor, K.; et al. Herbage responses and animal performance of nitrogen-fertilized grass and grass-legume grazing systems. J. Agric. Sci. 2024, 162, 77–89. [Google Scholar] [CrossRef]
- White, J.A.; Muir, J.P.; Lambert, B.D. Overseeding cool-season annual legumes and grasses into dormant ‘Tifton 85’ bermudagrass for forage and biomass. Crop Sci. 2018, 58, 964–971. [Google Scholar] [CrossRef]
- van Cleef, F.O.S.; Dubeux, J.C.B.; Ciriaco, F.M.; Henry, D.D.; Ruiz-Moreno, M.; Jaramillo, D.M.; Garcia, L.; Santos, E.R.S.; DiLorenzo, N.; Vendramini, J.M.B.; et al. Inclusion of a tannin-rich legume in the diet of beef steers reduces greenhouse gas emissions from their excreta. Sci. Rep. 2022, 12, 14220. [Google Scholar] [CrossRef]
- Garcia, L.; Dubeux, J.C.B.; Sollenberger, L.E.; Vendramini, J.M.B.; Dilorenzo, N.; Santos, E.R.S.; Jaramillo, D.M.; Ruiz-Moreno, M. Nutrient excretion from cattle grazing nitrogen-fertilized grass or grass–legume pastures. Agron. J. 2021, 113, 3110–3123. [Google Scholar] [CrossRef]
- Dubeux, J.C.B.; Sollenberger, L.E.; Mathews, B.W.; Scholberg, J.M.; Santos, H.Q. Nutrient cycling in warm-climate grasslands. Crop Sci. 2007, 47, 915–928. [Google Scholar] [CrossRef]
- Kohmann, M.M.; Sollenberger, L.E.; Dubeux, J.C.B.; Silveira, M.L.; Moreno, L.S.B.; Da Silva, L.S.; Aryal, P. Nitrogen fertilization and proportion of legume affect litter decomposition and nutrient return in grass pastures. Crop Sci. 2018, 58, 2138–2148. [Google Scholar] [CrossRef]
- Sollenberger, L.E.; Kohmann, M.M.; Dubeux, J.C.B.; Silveira, M.L. Grassland management affects delivery of regulating and supporting ecosystem services. Crop Sci. 2019, 59, 441–459. [Google Scholar] [CrossRef]
- Skinner, R.H.; Dell, C.J. Yield and soil carbon sequestration in grazed pastures sown with two or five forage species. Crop Sci. 2016, 56, 2035–2044. [Google Scholar] [CrossRef]
- Muir, J.P.; Batista Dubeux Junior, J.C.; Santos, M.V.F.D.; Foster, J.L.; Caraciolo Ferreira, R.L.; Lira, M.D.A.; Bellows, B.; Osei, E.; Singh, B.B.; Brady, J.A. Sustainable warm-climate forage legumes: Versatile products and services. Grasses 2025, 4, 16. [Google Scholar] [CrossRef]
- Sollenberger, L.E.; Kohmann, M.M. Climate Change and Legume Performance in Grassland Agroecosystems. In Proceedings of the International Grassland Congress, Covington, KY, USA, 14–19 May 2023. [Google Scholar]
- Silva, L.S.; Sollenberger, L.E.; Moura Kohmann, M.; Dubeux, J.C.; Aryal, P.; Silveira, M.L.; Vendramini, J.M.B. Litter mass and nitrogen disappearance in year-round nitrogen-fertilized grass and legume–grass forage systems. Agron. J. 2021, 113, 5170–5182. [Google Scholar] [CrossRef]
- Silva, L.S.; Sollenberger, L.E.; Kimberly Mullenix, M.; Kohmann, M.M.; Dubeux, J.C.B.; Silveira, M.L. Soil carbon and nitrogen stocks in nitrogen-fertilized grass and legume-grass forage systems. Nutr. Cycl. Agroecosystems 2022, 122, 105–117. [Google Scholar] [CrossRef]
- Dillard, S.L.; Billman, E.D.; Soder, K.J. Assessment of forage brassica species for dairy and beef-cattle fall grazing systems. Appl. Anim. Sci. 2020, 36, 157–166. [Google Scholar] [CrossRef]
- Han, K.J.; Smith, D.J.; Pitman, W.D. Potential of cool-season species as cover crops and forage in the Southeastern United States. Crop Forage Turfgrass Manag. 2018, 4, 1–7. [Google Scholar] [CrossRef]
- Farney, J.K.; Sassenrath, G.F.; Davis, C.J.; Presley, D. Composition, Forage Production, and Costs Are Variable in Three-Way Cover Crop Mixes as Fall Forage. Crop Forage Turfgrass Manag. 2018, 4, 1–7. [Google Scholar] [CrossRef]
- Beck, P.; Hess, T.; Hubbell, D.; Gadberry, M.S.; Jennings, J.; Sims, M. Replacing synthetic N with clovers or alfalfa in bermudagrass pastures. 1. Herbage mass and pasture carrying capacity. Anim. Prod. Sci. 2017, 57, 539. [Google Scholar] [CrossRef]
- Burt, J.C.; Baxter, L.L.; Prevatt, C.G.; Kimberly Mullenix, M.; Stewart, R.L., Jr.; Tucker, J.J. Improving bermudagrass in the Southeastern United States with alfalfa as an alternative nitrogen source in grazing systems. Grassl. Res. 2022, 1, 280–289. [Google Scholar] [CrossRef]
- Hendricks, T.J.; Tucker, J.J.; Hancock, D.W.; Mullenix, M.K.; Baxter, L.L.; Stewart, R.L.; Segers, J.R.; Bernard, J.K. Forage accumulation and nutritive value of bermudagrass and alfalfa–bermudagrass mixtures when harvested for baleage. Crop Sci. 2020, 60, 2792–2801. [Google Scholar] [CrossRef]
- Rushing, B.; Lemus, R.; Maples, J.G.; Lyles, J.C. Stocker cattle performance on interseeded alfalfa bermudagrass pastures in Mississippi. Crop Forage Turfgrass Manag. 2022, 8, e20164. [Google Scholar] [CrossRef]
- Bouton, J.H.; Gates, R.N. Grazing-Tolerant Alfalfa Cultivars Perform Well under Rotational Stocking and Hay Management. Agron. J. 2003, 95, 1461–1464. [Google Scholar] [CrossRef]
- Bouton, J.H.; Gates, R.N.; Utley, P.R. Persistence and Yield among Nondormant Alfalfas Selected for Grazing Tolerance. J. Prod. Agric. 1998, 11, 314–318. [Google Scholar] [CrossRef]
- Burt, J.C.; Baxter, L.L.; Silva, L.S.; Vasco, C.M.; Prevatt, C.G.; Mullenix, M.K.; Lawton Stewart, R.; Tucker, J.J. Alfalfa-bermudagrass mixtures managed under contrasting harvest strategies in the southeastern US. Grass Forage Sci. 2024, 79, 689–702. [Google Scholar] [CrossRef]
- Pezzopane, J.R.M.; Bernardi, A.C.C.; Bosi, C.; Oliveira, P.P.A.; Marconato, M.H.; De Faria Pedroso, A.; Esteves, S.N. Forage productivity and nutritive value during pasture renovation in integrated systems. Agrofor. Syst. 2019, 93, 39–49. [Google Scholar] [CrossRef]
- Russelle, M.P.; Entz, M.H.; Franzluebbers, A.J. Reconsidering Integrated Crop–Livestock Systems in North America. Agron. J. 2007, 99, 325–334. [Google Scholar] [CrossRef]
- Sulc, R.M.; Franzluebbers, A.J. Exploring integrated crop–livestock systems in different ecoregions of the United States. Eur. J. Agron. 2014, 57, 21–30. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Integrated Crop–Livestock Systems in the Southeastern USA. Agron. J. 2007, 99, 361–372. [Google Scholar] [CrossRef]
- Santos, E.R.S.; Dubeux, J.C.B.; Mackowiak, C.L.; Wright, D.L.; Anguelov, G. Integrated crop-livestock systems result in less nitrate leaching than ungrazed crop systems in North Florida. J. Environ. Qual. 2023, 52, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Franzluebbers, A.J.; Hendrickson, J.R. Should we consider integrated crop–livestock systems for ecosystem services, carbon sequestration, and agricultural resilience to climate change? Agron. J. 2024, 116, 415–432. [Google Scholar] [CrossRef]
- Poudel, S.; Pent, G.; Fike, J. Silvopastures: Benefits, Past Efforts, Challenges, and Future Prospects in the United States. Agronomy 2024, 14, 1369. [Google Scholar] [CrossRef]
- Lima, M.A.; Paciullo, D.S.C.; Morenz, M.J.F.; Gomide, C.A.M.; Rodrigues, R.A.R.; Chizzotti, F.H.M. Productivity and nutritive value of Brachiaria decumbens and performance of dairy heifers in a long-term silvopastoral system. Grass Forage Sci. 2019, 74, 160–170. [Google Scholar] [CrossRef]
- Sharrow, S.H.; Brauer, D.; Clason, T.R. Silvopastoral Practices. In North American Agroforestry: An Integrated Science and Practice; Wiley: Hoboken, NJ, USA, 2009; pp. 105–131. [Google Scholar]
- Pezzopane, J.R.M.; Bosi, C.; Nicodemo, M.L.F.; Santos, P.M.; Cruz, P.G.D.; Parmejiani, R.S. Microclimate and soil moisture in a silvopastoral system in southeastern Brazil. Bragantia 2015, 74, 110–119. [Google Scholar] [CrossRef]
- Poudel, S.; Fike, J.; Pent, G. Hair Cortisol as a Measure of Chronic Stress in Ewes Grazing Either Hardwood Silvopastures or Open Pastures. Agronomy 2022, 12, 1566. [Google Scholar] [CrossRef]
- Thomsen, S.J.; Poudel, S.; Fike, J.H.; Pent, G.J. Heifer performance and body temperatures in open pasture versus silvopasture in mid-Atlantic USA. Agrofor. Syst. 2024, 98, 47–59. [Google Scholar] [CrossRef]
- Agunbiade, G.; Sahoo, D.; O’Halloran, L.; Silva, L.; Malcomson, H. Impact of silvopasture on soil health and water quality in the Southeast USA: A review. J. Hydrol. Reg. Stud. 2025, 59, 102448. [Google Scholar] [CrossRef]
- Hoosbeek, M.R.; Remme, R.P.; Rusch, G.M. Trees enhance soil carbon sequestration and nutrient cycling in a silvopastoral system in south-western Nicaragua. Agrofor. Syst. 2016, 92, 263–273. [Google Scholar] [CrossRef]
- Silveira Pontes, L.; Barro, R.S.; Savian, J.V.; Berndt, A.; Moletta, J.L.; Porfírio-da-Silva, V.; Bayer, C.; de Faccio Carvalho, P.C. Performance and methane emissions by beef heifer grazing in temperate pastures and in integrated crop-livestock systems: The effect of shade and nitrogen fertilization. Agric. Ecosyst. Environ. 2018, 253, 90–97. [Google Scholar] [CrossRef]
- Ladyman, J.; Lambert, J.; Wiesner, K. What is a complex system? Eur. J. Philos. Sci. 2013, 3, 33–67. [Google Scholar] [CrossRef]
- Baveye, P.C.; Baveye, J.; Gowdy, J. Soil “ecosystem” services and natural capital: Critical appraisal of research on uncertain ground. Front. Environ. Sci. 2016, 4, 41. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Doran, J.W.; Coleman, D.C.; Bezdicek, D.F.; Stewart, B.A. Defining Soil Quality for a Sustainable Environment; SSSA Special Publications: Madison, WI, USA, 1994. [Google Scholar] [CrossRef]
- Gittings, T.; Giller, P.S.; Stakelum, G. Dung decomposition in contrasting temperate pastures in relation to dung beetle and earthworm activity. Pedobiologia 1994, 38, 455–474. [Google Scholar] [CrossRef]
- Doube, B.M. Chapter 8—Dung Beetles of Southern Africa. In Dung Beetle Ecology; Hanski, I., Cambefort, Y., Eds.; Princeton University Press: Hoboken, NJ, USA, 1991; pp. 133–155. [Google Scholar]
- Kaleri, A.R.; Ma, J.; Abro, S.A.; Faqir, Y.; Nabi, F.; Hakeem, A.; Ahmed, A.; Ahmed, S.; Jakhar, A.M.; Shah, S.M.; et al. Dung Beetle Improves soil Bacterial Diversity and Enzyme Activity and Enhances Growth and Antioxidant Content of Chinese Cabbage (Brassica rapa ssp. pekinensis). J. Soil Sci. Plant Nutr. 2021, 21, 3387–3401. [Google Scholar] [CrossRef]
- García, C.C.V.; Dubeux, J.C.B.; Martini, X.; Conover, D.; Santos, E.R.S.; Homem, B.G.C.; Ruiz-Moreno, M.; Da Silva, I.A.G.; Abreu, D.S.; Queiroz, L.M.D.; et al. The role of dung beetle species in nitrous oxide emission, ammonia volatilization, and nutrient cycling. Sci. Rep. 2023, 13, 3572. [Google Scholar] [CrossRef]
- Follett, R.F.; Reed, D.A. Soil carbon sequestration in grazing lands: Societal benefits and policy implications. Rangel. Ecol. Manag. 2010, 63, 4–15. [Google Scholar] [CrossRef]
- Reay, D.S.; Davidson, E.A.; Smith, K.A.; Smith, P.; Melillo, J.M.; Dentener, F.; Crutzen, P.J. Global agriculture and nitrous oxide emissions. Nat. Clim. Change 2012, 2, 410–416. [Google Scholar] [CrossRef]
- Wright, A.L.; Hons, F.M.; Rouquette, F.M. Long-term management impacts on soil carbon and nitrogen dynamics of grazed bermudagrass pastures. Soil Biol. Biochem. 2004, 36, 1809–1816. [Google Scholar] [CrossRef]
- Deramus, H.A.; Clement, T.C.; Giampola, D.D.; Dickison, P.C. Methane emissions of beef cattle on forages. J. Environ. Qual. 2003, 32, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Mazzetto, A.M.; Barneze, A.S.; Feigl, B.J.; Van Groenigen, J.W.; Oenema, O.; Cerri, C.C. Temperature and moisture affect methane and nitrous oxide emission from bovine manure patches in tropical conditions. Soil Biol. Biochem. 2014, 76, 242–248. [Google Scholar] [CrossRef]
- Bell, M.J.; Cloy, J.M.; Topp, C.F.E.; Ball, B.C.; Bagnall, A.; Rees, R.M.; Chadwick, D.R. Quantifying N2O emissions from intensive grassland production: The role of synthetic fertilizer type, application rate, timing and nitrification inhibitors. J. Agric. Sci. 2016, 154, 812–827. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Boddey, R.M.; Gresshoff, P.M.; Hauggaard-Nielsen, H.; Alves, B.J.; Morrison, M.J. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron. Sustain. Dev. 2012, 32, 329–364. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited review: Current enteric methane mitigation options. J. Dairy Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef]
- Oli, D.; Gyawali, B.; Acharya, S.; Oshikoya, S. Factors influencing learning attitude of farmers regarding adoption of farming technologies in farms of Kentucky, USA. Smart Agric. Technol. 2025, 10, 100801. [Google Scholar] [CrossRef]
- Kamrath, C.; Wesana, J.; Bröring, S.; De Steur, H. What do we know about chain actors’ evaluation of new food technologies? A systematic review of consumer and farmer studies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 798–816. [Google Scholar] [CrossRef] [PubMed]
- Olum, S.; Gellynck, X.; Juvinal, J.; Ongeng, D.; De Steur, H. Farmers’ adoption of agricultural innovations: A systematic review on willingness to pay studies. Outlook Agric. 2019, 49, 187–203. [Google Scholar] [CrossRef]
- Silva, L.S.; Mullenix, M.K.; Prevatt, C.; Tucker, J.J. Perceptions of adoption of alfalfa plantings by forage–livestock producers in the southern United States. Appl. Anim. Sci. 2021, 37, 665–669. [Google Scholar] [CrossRef]
- Dubeux, J.C.B., Jr.; Sollenberger, L.E.; Muir, J.P.; Tedeschi, L.O.; dos Santos, M.V.; da Cunha, M.V.; de Mello, A.C.; DiLorenzo, N. Sustainable intensification of livestock production on pastures. Arch. Latinoam. De Prod. Anim. 2017, 25, 97–111. [Google Scholar]
- Silva, L.S.; Dillard, S.L.; Mullenix, M.K.; Wallau, M.O.; Vasco, C.; Tucker, J.J.; Keishmer, K.; Russell, D.; Kelley, K.; Runge, M.; et al. Concepts and Research-Based Guidelines for Forage-Livestock Systems in the Southeast Region; Silva, L.S., Ed.; Sustainable Agriculture Research and Education: Auburn, AL, Austrilia, 2022; Volume 1, p. 127. [Google Scholar]
- van Bussel, L.M.; Kuijsten, A.; Mars, M.; van ‘t Veer, P. Consumers’ perceptions on food-related sustainability: A systematic review. J. Clean. Prod. 2022, 341, 130904. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Severino da Silva, L. Enhancing Climate Resilience of Forage Ecosystems Through Sustainable Intensification and Educational Knowledge Transfer in the Southeastern USA. Crops 2025, 5, 42. https://doi.org/10.3390/crops5040042
Severino da Silva L. Enhancing Climate Resilience of Forage Ecosystems Through Sustainable Intensification and Educational Knowledge Transfer in the Southeastern USA. Crops. 2025; 5(4):42. https://doi.org/10.3390/crops5040042
Chicago/Turabian StyleSeverino da Silva, Liliane. 2025. "Enhancing Climate Resilience of Forage Ecosystems Through Sustainable Intensification and Educational Knowledge Transfer in the Southeastern USA" Crops 5, no. 4: 42. https://doi.org/10.3390/crops5040042
APA StyleSeverino da Silva, L. (2025). Enhancing Climate Resilience of Forage Ecosystems Through Sustainable Intensification and Educational Knowledge Transfer in the Southeastern USA. Crops, 5(4), 42. https://doi.org/10.3390/crops5040042