Physicochemical and Microbiological Properties of Hazelnuts from Three Varieties Cultivated in Portugal
Abstract
1. Introduction
2. Materials and Methods
2.1. Biometric Analysis
2.2. Colour Analysis
2.3. Chemical Analysis
2.4. Microbiological Analysis
2.5. Statistical Analysis
3. Results
3.1. Biometric Parameters
3.2. Colour
3.3. Chemical Properties
3.4. Microbiology
3.5. Factor Analysis
4. Discussion
5. Conclusions and Limitations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nunzio, M.D. Hazelnuts as Source of Bioactive Compounds and Health Value Underestimated Food. Curr. Res. Nutr. Food Sci. J. 2019, 7, 17–28. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Products—Hazelnut. Available online: https://www.fao.org/faostat/en/#data/QCL/metadata (accessed on 15 March 2022).
- Wani, I.A.; Ayoub, A.; Bhat, N.A.; Dar, A.H.; Gull, A. Hazelnut. In Antioxidants in Vegetables and Nuts—Properties and Health Benefits; Nayik, G.A., Gull, A., Eds.; Springer: Singapore, 2020; pp. 559–572. ISBN 978-981-15-7470-2. [Google Scholar]
- Król, K.; Gantner, M. Morphological Traits and Chemical Composition of Hazelnut from Different Geographical Origins: A Review. Agriculture 2020, 10, 375. [Google Scholar] [CrossRef]
- Amini-Noori, F.; Ziarati, P. Chemical Composition of Native Hazelnut (Corylus avellana L.) Varieties in Iran, Association with Ecological Conditions. Biosci. Biotechnol. Res. Asia 2015, 12, 2053–2060. [Google Scholar] [CrossRef]
- Ferrão, A.C.; Guiné, R.; Ramalhosa, E.; Lopes, A.; Rodrigues, C.; Martins, H.; Correia, P. Influence of Different Parameters on the Characteristics of Hazelnut (var. Grada de Viseu) Grown in Portugal. Open Agric. 2022, 7, 8–20. [Google Scholar] [CrossRef]
- Çetin, N.; Yaman, M.; Karaman, K.; Demir, B. Determination of Some Physicomechanical and Biochemical Parameters of Hazelnut (Corylus avellana L.) Cultivars. Turk. J. Agric. For. 2020, 44, 439–450. [Google Scholar] [CrossRef]
- Correia, P.; Rodrigues, C.; Filipe, A.; Guiné, R. Evaluation of Biometric Characteristics of Hazelnuts. In Proceedings of the 4th International Conference on Food and Biosystems Engineering, Crete Island, Greece, 30 May–2 June 2019. [Google Scholar]
- Ferrão, A.C.; Guiné, R.P.F.; Ramalhosa, E.; Lopes, A.; Rodrigues, C.; Martins, H.; Gonçalves, R.; Correia, P.M.R. Chemical and Physical Properties of Some Hazelnut Varieties Grown in Portugal. Agronomy 2021, 11, 1476. [Google Scholar] [CrossRef]
- Romero-Aroca, A.; Rovira, M.; Cristofori, V.; Silvestri, C. Hazelnut Kernel Size and Industrial Aptitude. Agriculture 2021, 11, 1115. [Google Scholar] [CrossRef]
- Delprete, C.; Sesana, R. Mechanical Characterization of Kernel and Shell of Hazelnuts: Proposal of an Experimental Procedure. J. Food Eng. 2014, 124, 28–34. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Almeida, C.F.F.; Correia, P.M.R. Influence of Packaging and Storage on Some Properties of Hazelnuts. J. Food Meas. Charact. 2015, 9, 11–19. [Google Scholar] [CrossRef]
- Silvestri, C.; Bacchetta, L.; Bellincontro, A.; Cristofori, V. Advances in Cultivar Choice, Hazelnut Orchard Management, and Nut Storage to Enhance Product Quality and Safety: An Overview. J. Sci. Food Agric. 2021, 101, 27–43. [Google Scholar] [CrossRef]
- Rodrigues, P.; Jelassi, A.; Kanoun, E.; Sulyok, M.; Correia, P.; Ramalhosa, E.; Pereira, E.L. Effect of Different Storage Conditions on the Stability and Safety of Almonds. J. Food Sci. 2023, 88, 848–859. [Google Scholar] [CrossRef]
- Truong, N.N.; Tesfamariam, K.; Visintin, L.; Goessens, T.; De Saeger, S.; Lachat, C.; De Boevre, M. Associating Multiple Mycotoxin Exposure and Health Outcomes: Current Statistical Approaches and Challenges. World Mycotoxin J. 2023, 16, 25–32. [Google Scholar] [CrossRef]
- Köksal, A.İ.; Artik, N.; Şimşek, A.; Güneş, N. Nutrient Composition of Hazelnut (Corylus avellana L.) Varieties Cultivated in Turkey. Food Chem. 2006, 99, 509–515. [Google Scholar] [CrossRef]
- Pelvan, E.; Olgun, E.Ö.; Karadağ, A.; Alasalvar, C. Phenolic Profiles and Antioxidant Activity of Turkish Tombul Hazelnut Samples (Natural, Roasted, and Roasted Hazelnut Skin). Food Chem. 2018, 244, 102–108. [Google Scholar] [CrossRef]
- Taş, N.G.; Gökmen, V. Phenolic Compounds in Natural and Roasted Nuts and Their Skins: A Brief Review. Curr. Opin. Food Sci. 2017, 14, 103–109. [Google Scholar] [CrossRef]
- Cristofori, V.; Bertazza, G.; Bignami, C. Changes in Kernel Chemical Composition During Nut Development of Three Italian Hazelnut Cultivars. Fruits 2015, 70, 311–322. [Google Scholar] [CrossRef]
- Ghirardello, D.; Contessa, C.; Valentini, N.; Zeppa, G.; Rollè, L.; Gerbi, V.; Botta, R. Effect of Storage Conditions on Chemical and Physical Characteristics of Hazelnut (Corylus avellana L.). Postharvest Biol. Technol. 2013, 81, 37–43. [Google Scholar] [CrossRef]
- Lucchetti, S.; Ambra, R.; Pastore, G. Effects of Peeling and/or Toasting on the Presence of Tocopherols and Phenolic Compounds in Four Italian Hazelnut Cultivars. Eur. Food Res. Technol. 2018, 244, 1057–1064. [Google Scholar] [CrossRef]
- Oddone, M.; Aceto, M.; Baldizzone, M.; Musso, D.; Osella, D. Authentication and Traceability Study of Hazelnuts from Piedmont, Italy. J. Agric. Food Chem. 2009, 57, 3404–3408. [Google Scholar] [CrossRef] [PubMed]
- Ferrão, A.C.; Guiné, R.; Rodrigues, M.; Droga, R.; Correia, P. Post-Harvest Characterization of the Hazelnut Sector. Millenium 2020, 2, 11–20. [Google Scholar] [CrossRef]
- Ozturk, S.C.; Ozturk, S.E.; Celik, I.; Stampar, F.; Veberic, R.; Doganlar, S.; Solar, A.; Frary, A. Molecular Genetic Diversity and Association Mapping of Nut and Kernel Traits in Slovenian Hazelnut (Corylus avellana) Germplasm. Tree Genet. Genomes 2017, 13, 16. [Google Scholar] [CrossRef]
- Guiné, R.; Rodrigues, C.; Correia, P.; Ramalhosa, E. Evaluation of Some Physical and Chemical Properties of Hazelnuts. In Proceedings of the 4th International Conference on Food and Biosystems Engineering, Crete Island, Greece, 30 May–2 June 2019. [Google Scholar]
- Gómez-Polo, C.; Muñoz, M.P.; Lorenzo Luengo, M.C.; Vicente, P.; Galindo, P.; Martín Casado, A.M. Comparison of the CIELab and CIEDE2000 Color Difference Formulas. J. Prosthet. Dent. 2016, 115, 65–70. [Google Scholar] [CrossRef]
- Lopes, A.; Matos, A.; Guiné, R. Evaluation of morphological and physical characteristics of hazelnut varieties. Millenium 2016, 1, 13–24. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists: Rockville, MD, USA, 2019. [Google Scholar]
- ISO 4833-2; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 2: Colony Count at 30 °C by the Surface Plating Technique. The International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 7218:2007; Microbiology of Food and Animal Feeding Stuffs—General Requirements and Guidance for Microbiological Examinations. The International Organization for Standardization: Geneva, Switzerland, 2007.
- Broen, M.P.G.; Moonen, A.J.H.; Kuijf, M.L.; Dujardin, K.; Marsh, L.; Richard, I.H.; Starkstein, S.E.; Martinez-Martin, P.; Leentjens, A.F.G. Factor Analysis of the Hamilton Depression Rating Scale in Parkinson’s Disease. Park. Relat. Disord. 2015, 21, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.P. Applied Multivariate Statistics for the Social Sciences, 5th ed.; Routledge: New York, NY, USA, 2009; ISBN 978-0-8058-5903-4. [Google Scholar]
- Rohm, A.J.; Swaminathan, V. A Typology of Online Shoppers Based on Shopping Motivations. J. Bus. Res. 2004, 57, 748–757. [Google Scholar] [CrossRef]
- Hair, J.F.H.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Prentice Hall: Hoboken, NJ, USA, 2009; ISBN 978-0-13-813263-7. [Google Scholar]
- Maroco, J.; Garcia-Marques, T. Qual a fiabilidade do alfa de Cronbach? Questões antigas e soluções modernas? Laboratório Psicol. 2006, 4, 65–90. [Google Scholar] [CrossRef]
- Davis, F.B. Educational Measurements Their Interpretation; Wadsworth Pub. Co.: Devizes, UK, 1964. [Google Scholar]
- Milošević, T.; Milošević, N. Determination of Size And Shape Features of Hazelnuts Using Multivariate Analysis. Acta Sci. Pol. Hortorum Cultus 2017, 16, 49–61. [Google Scholar] [CrossRef]
- Pacchiarelli, A.; Lupo, M.; Ferrucci, A.; Giovanelli, F.; Priori, S.; Pica, A.L.; Silvestri, C.; Cristofori, V. Phenology, Yield and Nut Traits Evaluation of Twelve European Hazelnut Cultivars Grown in Central Italy. Forests 2024, 15, 833. [Google Scholar] [CrossRef]
- Valentini, N.; Moraglio, S.T.; Rolle, L.; Tavella, L.; Botta, R. Nut and Kernel Growth and Shell Hardening in Eighteen Hazelnut Cultivars (Corylus avellana L.). Hortic. Sci. 2015, 42, 149–158. [Google Scholar] [CrossRef]
- Altmann, B.A.; Trinks, A.; Mörlein, D. Consumer Preferences for the Color of Unprocessed Animal Foods. J. Food Sci. 2023, 88, 909–925. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Lee, S.-M.; Lee, K.-T.; Lee, S.-H.; Song, J.-K. Origin of Human Colour Preference for Food. J. Food Eng. 2013, 119, 508–515. [Google Scholar] [CrossRef]
- Bak, T.; Karadeniz, T. Effects of Branch Number on Quality Traits and Yield Properties of European Hazelnut (Corylus avellana L.). Agriculture 2021, 11, 437. [Google Scholar] [CrossRef]
- Ahmadov, A. The Impact of Climate Change on Hazelnut Cultivation. Turk. J. Food Agric. Sci. 2024, 6, 106–115. [Google Scholar] [CrossRef]
- An, N.; Turp, M.T.; Türkeş, M.; Kurnaz, M.L. Mid-Term Impact of Climate Change on Hazelnut Yield. Agriculture 2020, 10, 159. [Google Scholar] [CrossRef]
- Cabo, S.; Morais, M.C.; Aires, A.; Carvalho, R.; Pascual-Seva, N.; Silva, A.P.; Gonçalves, B. Kaolin and Seaweed-Based Extracts can Be Used as Middle and Long-Term Strategy to Mitigate Negative Effects of Climate Change in Physiological Performance of Hazelnut Tree. J. Agron. Crop Sci. 2020, 206, 28–42. [Google Scholar] [CrossRef]
- Ozdemir, F.; Akinci, I. Physical and Nutritional Properties of Four Major Commercial Turkish Hazelnut Varieties. J. Food Eng. 2004, 63, 341–347. [Google Scholar] [CrossRef]
- Karaosmanoğlu, H. Lipid Characteristics, Bioactive Properties, and Mineral Content in Hazelnut Grown Under Different Cultivation Systems. J. Food Process. Preserv. 2022, 46, e16717. [Google Scholar] [CrossRef]
- Alasalvar, C.; Shahidi, F.; Liyanapathirana, C.M.; Ohshima, T. Turkish Tombul Hazelnut (Corylus avellana L.). 1. Compositional Characteristics. J. Agric. Food Chem. 2003, 51, 3790–3796. [Google Scholar] [CrossRef]
- Cui, N.; Zhao, T.; Han, Z.; Yang, Z.; Wang, G.; Ma, Q.; Liang, L. Characterisation of Oil Oxidation, Fatty Acid, Carotenoid, Squalene and Tocopherol Components of Hazelnut Oils Obtained from Three Varieties Undergoing Oxidation. Int. J. Food Sci. Technol. 2022, 57, 3456–3466. [Google Scholar] [CrossRef]
- DDP-04; Concerning the Marketing and Commercial Quality Control of Hazelnut Kernels. United Nations Economic Commission for Europe: Geneva, Switzerland, 2010.
- Guiné, R. Unit Operations for the Food Industry: Thermal Processing & Nonconventional Technologies; LAP Lambert Academic Publishing GmbH & Co.: Saarbrücken, Germany, 2013. [Google Scholar]
- Oliveira, I.; Sousa, A.; Morais, J.S.; Ferreira, I.C.F.R.; Bento, A.; Estevinho, L.; Pereira, J.A. Chemical Composition, and Antioxidant and Antimicrobial Activities of Three Hazelnut (Corylus avellana L.) Cultivars. Food Chem. Toxicol. 2008, 46, 1801–1807. [Google Scholar] [CrossRef]
- Mohammed, D.; Freije, A.; Abdulhussain, H.; Khonji, A.; Hasan, M.; Ferraris, C.; Gasparri, C.; Aziz Aljar, M.A.; Ali Redha, A.; Giacosa, A.; et al. Analysis of the Antioxidant Activity, Lipid Profile, and Minerals of the Skin and Seed of Hazelnuts (Corylus avellana L.), Pistachios (Pistacia vera) and Almonds (Prunus dulcis)—A Comparative Analysis. AppliedChem 2023, 3, 110–118. [Google Scholar] [CrossRef]
- Amaral, J.S.; Oliveira, M.B.P.P. Bioactive Compounds of Hazelnuts as Health Promoters. In Natural Bioactive Compounds from Fruits and Vegetables; Luís, R.S., Branca, M.S., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2016; pp. 155–179. ISBN 978-1-68108-244-8. [Google Scholar]
- Amaral, J.S.; Casal, S.; Citová, I.; Santos, A.; Seabra, R.M.; Oliveira, B.P.P. Characterization of Several Hazelnut (Corylus avellana L.) Cultivars Based in Chemical, Fatty Acid and Sterol Composition. Eur. Food Res. Technol. 2006, 222, 274–280. [Google Scholar] [CrossRef]
- Król, K.; Gantner, M.; Piotrowska, A. Morphological Traits, Kernel Composition and Sensory Evaluation of Hazelnut (Corylus avellana L.) Cultivars Grown in Poland. Agronomy 2019, 9, 703. [Google Scholar] [CrossRef]
- Bacchetta, L.; Aramini, M.; Zini, A.; Di Giammatteo, V.; Spera, D.; Drogoudi, P.; Rovira, M.; Silva, A.P.; Solar, A.; Botta, R. Fatty acids and alpha-tocopherol composition in hazelnut (Corylus avellana L.): A chemometric approach to emphasize the quality of European germplasm. Euphytica 2013, 191, 57–73. [Google Scholar] [CrossRef]
- Fuso, A.; Risso, D.; Rosso, G.; Rosso, F.; Manini, F.; Manera, I.; Caligiani, A. Potential Valorization of Hazelnut Shells through Extraction, Purification and Structural Characterization of Prebiotic Compounds: A Critical Review. Foods 2021, 10, 1197. [Google Scholar] [CrossRef]
- Dobhal, K.; Singh, N.; Semwal, A.; Negi, A. A brief review on: Hazelnuts. Int. J. Recent Sci. Res. 2018, 9, 23680–23684. [Google Scholar] [CrossRef]
- Amaral, J.S.; Oliveira, M.B.P.P. Avelã: Composição química e efeitos benéficos associados ao seu consumo. Riscos Aliment. 2016, 11, 17–21. [Google Scholar]
- Rezaei, F.; Bakhshi, D.; Fotouhi Ghazvini, R.; Javadi, D.; Pourghayoumi, M. Evaluation of Fatty Acid Content and Nutritional Properties of Selected Native and Imported Hazelnut (Corylus avellana L.) Varieties Grown in Iran. J. Appl. Bot. Food Qual. 2014, 87, 104–107. [Google Scholar] [CrossRef]
- Instituto Nacional de Saúde Doutor Ricardo Jorge. Interpretação de Resultados de Ensaios Microbiológicos em Alimentos Prontos para Consumo e em Superfícies do Ambiente de Preparação e Distribuição Alimentar: Valores-Guia; INSA: Lisbon, Portugal, 2019. [Google Scholar]
- Mir, S.A.; Shah, M.A.; Mir, M.M.; Sidiq, T.; Sunooj, K.V.; Siddiqui, M.W.; Marszałek, K.; Mousavi Khaneghah, A. Recent Developments for Controlling Microbial Contamination of Nuts. Crit. Rev. Food Sci. Nutr. 2023, 63, 6710–6722. [Google Scholar] [CrossRef]
- Kluczkovski, A.M. Fungal and Mycotoxin Problems in the Nut Industry. Curr. Opin. Food Sci. 2019, 29, 56–63. [Google Scholar] [CrossRef]
- Molyneux, R.J.; Mahoney, N.; Kim, J.H.; Campbell, B.C. Mycotoxins in Edible Tree Nuts. Int. J. Food Microbiol. 2007, 119, 72–78. [Google Scholar] [CrossRef] [PubMed]
Sample | Nut Weight 1 (g) | Kernel Weight 1 (g) | Kernel Percentage 1 (%) |
---|---|---|---|
Grada de Viseu-2021 | 3.90 ± 0.92 bA | 1.62 ± 0.28 bA | 44.11 ± 14.44 aA |
Tonda di Giffoni-2021 | 2.94 ± 0.39 aA | 1.26 ± 0.22 aA | 42.98 ± 5.09 aA |
Butler-2021 | 3.81 ± 0.35 bA | 1.70 ± 0.20 bA | 44.81 ± 6.08 aA |
p-value | <0.0005 | <0.0005 | 0.629 |
Grada de Viseu-2022 | 3.69 ± 0.74 bB | 1.60 ± 0.27 abA | 45.48 ± 15.88 aA |
Tonda de Giffoni-2022 | 3.21 ± 0.56 aA | 1.46 ± 0.23 aA | 46.88 ± 11.76 aB |
Butler-2022 | 3.68 ± 0.71 bB | 1.60 ± 0.37 abB | 44.70 ± 12.80 aB |
p-value | <0.0005 | <0.0005 | 0.719 |
Sample | Length 1 (cm) | Width 1 (cm) | Thickness 1 (cm) | Shape Ratio 1 | Compression Ratio 1 |
---|---|---|---|---|---|
Grada de Viseu-2021 | 15.88 ± 1.12 cA | 14.87 ± 1.55 bA | 13.11 ± 1.83 aA | 0.88 ± 0.11 aA | 0.88 ± 0.11 abA |
Tonda di Giffoni-2021 | 13.23 ± 1.02 aA | 13.87 ± 1.45 aA | 12.95 ± 1.42 aA | 1.02 ± 0.10 cA | 1.02 ± 0.10 bA |
Butler-2021 | 17.44 ± 0.89 dA | 14.29 ± 1.22 abA | 12.53 ± 1.11 aA | 0.77 ± 0.06 aA | 0.77 ± 0.06 aA |
p-value | <0.0005 | <0.0002 | 0.137 | <0.0005 | 0.002 |
Grada de Viseu-2022 | 15.77 ± 1.27 bA | 14.75 ± 1.20 aA | 13.25 ± 1.29 bA | 0.89 ± 0.08 aA | 0.89 ± 0.08 aB |
Tonda di Giffoni-2022 | 14.24 ± 1.15 aA | 14.50 ± 1.35 aA | 13.41 ± 1.43 bA | 0.98 ± 0.10 aA | 0.98 ± 0.10 aA |
Butler-2022 | 17.26 ± 1.47 cB | 17.84 ± 28.43 aA | 11.25 ± 1.75 aB | 0.84 ± 0.79 aA | 0.84 ± 0.79 aA |
p-value | <0.0005 | 0.530 | <0.0005 | 0.277 | 0.109 |
Hazelnut Part | Sample | L* | a* | b* |
---|---|---|---|---|
Shell | Grada de Viseu-2021 | 36.45 ± 2.41 aA | 11.63 ± 2.99 aA | 10.40 ± 1.60 aA |
Tonda di Giffoni-2021 | 49.67 ± 2.92 bA | 15.93 ± 2.07 bA | 26.83 ± 3.52 bA | |
Butler-2021 | 49.39 ± 2.52 bA | 17.97 ± 2.28 cA | 27.55 ± 2.93 bA | |
p-value | <0.0005 | <0.0005 | <0.0005 | |
Grada de Viseu-2022 | 37.84 ± 1.92 aA | 14.55 ± 2.03 aB | 11.34 ± 1.88 aA | |
Tonda di Giffoni-2022 | 43.09 ± 3.26 bA | 15.40 ± 2.31 abA | 14.80 ± 2.44 bB | |
Butler-2022 | 43.23 ± 3.61 bB | 16.64 ± 4.42 bA | 16.34 ± 1.97 cB | |
p-value | <0.0005 | <0.0005 | <0.0005 | |
Hilum | Grada de Viseu-2021 | 38.11 ± 3.82 aA | 9.00 ± 1.01 bA | 12.69 ± 1.43 aA |
Tonda di Giffoni -2021 | 55.31 ± 5.84 eA | 8.38 ± 1.64 aA | 21.42 ± 2.69 bA | |
Butler-2021 | 47.27 ± 2.54 bA | 12.25 ± 1.41 cA | 22.89 ± 1.99 cA | |
p-value | <0.0005 | <0.0005 | <0.0005 | |
Grada de Viseu-2022 | 46.50 ± 3.26 bA | 10.75 ± 0.79 bA | 14.67 ± 1.02 cB | |
Tonda di Giffoni-2022 | 51.54 ± 4.47 cB | 9.92 ± 1.25 aA | 14.22 ± 0.99 abB | |
Butler-2022 | 43.76 ± 4.19 aA | 11.58 ± 1.49 cA | 14.13 ± 1.41 aB | |
p-value | <0.0005 | <0.0005 | 0.025 | |
Skin | Grada de Viseu-2021 | 36.11 ± 3.30 aA | 13.92 ± 1.91 aA | 13.37 ± 1.49 aA |
Tonda-2021 | 50.61 ± 5.98 bA | 15.35 ± 1.97 bA | 25.69 ± 2.68 bA | |
Butler-2021 | 51.14 ± 2.68 bA | 18.78 ± 1.67 cA | 28.61 ± 1.62 eA | |
p-value | <0.0005 | <0.0005 | <0.0005 | |
Grada de Viseu-2022 | 35.43 ± 3.69 aA | 14.72 ± 1.91 bA | 14.69 ± 1.02 aB | |
Tonda di Giffoni-2022 | 42.10 ± 4.77 bA | 13.86 ± 1.38 aB | 14.21 ± 1.39 aB | |
Butler-2022 | 42.60 ± 7.55 bB | 15.44 ± 1.38 cB | 15.55 ± 2.13 cA | |
p-value | <0.0005 | <0.0005 | <0.0005 | |
Kernel | Grada de Viseu-2021 | 69.64 ± 4.64 aA | 1.78 ± 0.45 bA | 18.43 ± 1.66 aA |
Tonda di Giffoni-2021 | 78.86 ± 3.14 bA | 1.59 ± 0.32 aA | 24.88 ± 2.83 bA | |
Butler-2021 | 76.70 ± 8.85 bA | 1.62 ± 0.33 aA | 25.00 ± 2.50 bA | |
p-value | <0.0005 | <0.0005 | <0.0005 | |
Grada de Viseu-2022 | 72.64 ± 4.18 bA | 4.50 ± 0.58 bA | 17.11 ± 2.53 aB | |
Tonda di Giffoni-2022 | 69.81 ± 4.87 aB | 4.74 ± 0.67 bB | 16.24 ± 1.36 aB | |
Butler-2022 | 77.73 ± 4.57 cA | 2.42 ± 0.88 aB | 26.99 ± 2.51 bA | |
p-value | <0.0005 | 0.013 | <0.0005 |
Sample | Moisture 1 (g/100 g) | Water Activity 1 | Fat 1 (g/100 g) | Ash 1 (g/100 g) | Fibre 1 (g/100 g) | Protein 1 (g/100 g) |
---|---|---|---|---|---|---|
Grada de Viseu-2021 | 6.01 ± 0.26 bA | 0.56 ± 0.01 aA | 67.82 ± 1.68 aA | 2.73 ± 0.08 bA | 6.35 ± 0.25 bA | 17.98 ± 0.34 cA |
Tonda di Giffoni-2021 | 4.78 ± 0.40 aA | 0.54 ± 0.01 aA | 66.46 ± 5.33 aA | 2.28 ± 0.04 aA | 5.70 ± 0.27 abA | 12.50 ± 0.36 aA |
Butler-2021 | 5.79 ± 0.13 bA | 0.55 ± 0.01 aA | 70.14 ± 1.75 aA | 2.34 ± 0.01 aA | 5.15 ± 0.28 aA | 15.31 ± 0.15 bA |
p-value | <0.0005 | 0.090 | 0.452 | <0.0005 | <0.0005 | <0.0005 |
Grada de Viseu-2022 | 5.65 ± 0.27 bA | 0.56 ± 0.01 aA | 64.38 ± 1.67 aA | 1.69 ± 0.16 aA | 6.12 ± 0.03 bcB | 22.84 ± 0.18 dA |
Tonda di Giffoni-2022 | 4.86 ± 0.33 aA | 0.54 ± 0.01 aA | 78.18 ± 1.71 bA | 2.22 ± 0.20 bB | 5.92 ± 0.28 bA | 16.11 ± 0.55 bA |
Butler-2022 | 6.02 ± 0.37 bA | 0.55 ± 0.01 aA | 77.77 ± 0.59 bA | 2.31 ± 0.18 bA | 5.37 ± 0.42 abA | 18.03 ± 0.24 cA |
p-value | 0.013 | 0.090 | <0.0005 | 0.012 | 0.045 | <0.0005 |
Sample | Microorganisms at 30 °C 1 | Moulds and Yeast 1 |
---|---|---|
Grada de Viseu-2021 | 2.86 ± 0.03 cA | 2.42 ± 0.07 bA |
Tonda di Giffoni-2021 | 2.62 ± 0.03 bA | 2.37 ± 0.06 bA |
Butler-2021 | 2.28 ± 0.07 aA | 1.67 ± 0.13 aA |
p-value | <0.0005 | <0.0005 |
Grada de Viseu-2022 | 2.84 ± 0.03 bA | 2.40 ± 0.07 aA |
Tonda di Giffoni-2022 | 2.61 ± 0.03 aA | 2.46 ± 0.04 aA |
Butler-2022 | 2.90 ± 0.01 cB | 2.47 ± 0.03 aB |
p-value | <0.0005 | 0.059 |
Factor | %VE 1 | Items | Loadings |
---|---|---|---|
F1 | 24.35 | a* value of the hilum | 0.515 |
Nut width | 0.731 | ||
Nut thickness | 0.865 | ||
Nut weight | 0.842 | ||
Kernel width | 0.860 | ||
Kernel thickness | 0.908 | ||
Kernel weight | 0.898 | ||
Kernel volume | 0.917 | ||
Hilum length | 0.763 | ||
Hilum width | 0.831 | ||
F2 | 19.67 | L* value of the shell | 0.577 |
b* of the shell | 0.774 | ||
b* of the hilum | 0.682 | ||
L* of the skin | 0.839 | ||
a* of the skin | 0.842 | ||
b* of the skin | 0.933 | ||
Microorganisms at 30 °C | 0.901 | ||
Moulds and yeasts | 0.869 | ||
Protein | 0.571 | ||
Fibre | 0.655 | ||
F3 | 13.12 | Nut length | 0.823 |
Nut shape ratio | 0.811 | ||
Kernel length | 0.853 | ||
Kernel shape ratio | 0.828 | ||
Moisture | 0.809 | ||
F4 | 6.92 | L* of the kernel | 0.845 |
Fat | 0.836 | ||
F5 | 6.65 | L* of the hilum | 0.768 |
Shell thickness | 0.810 | ||
Nut volume | 0.688 | ||
F6 | 6.36 | a* of the kernel | 0.719 |
b* of the kernel | 0.527 | ||
Ash | 0.760 | ||
F7 | 5.93 | Nut compression ratio | 0.893 |
Water activity | 0.517 | ||
F8 | 5.77 | a* of the shell | 0.615 |
Kernel percentage | 0.856 | ||
F9 | 4.06 | Kernel compression ratio | 0.853 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrão, A.C.; Guiné, R.P.F.; Silva, M.; Lopes, A.; Correia, P.M.R. Physicochemical and Microbiological Properties of Hazelnuts from Three Varieties Cultivated in Portugal. Crops 2025, 5, 53. https://doi.org/10.3390/crops5040053
Ferrão AC, Guiné RPF, Silva M, Lopes A, Correia PMR. Physicochemical and Microbiological Properties of Hazelnuts from Three Varieties Cultivated in Portugal. Crops. 2025; 5(4):53. https://doi.org/10.3390/crops5040053
Chicago/Turabian StyleFerrão, Ana Cristina, Raquel P. F. Guiné, Marco Silva, Arminda Lopes, and Paula M. R. Correia. 2025. "Physicochemical and Microbiological Properties of Hazelnuts from Three Varieties Cultivated in Portugal" Crops 5, no. 4: 53. https://doi.org/10.3390/crops5040053
APA StyleFerrão, A. C., Guiné, R. P. F., Silva, M., Lopes, A., & Correia, P. M. R. (2025). Physicochemical and Microbiological Properties of Hazelnuts from Three Varieties Cultivated in Portugal. Crops, 5(4), 53. https://doi.org/10.3390/crops5040053