Previous Issue
Volume 4, June
 
 

Onco, Volume 4, Issue 3 (September 2024) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
9 pages, 681 KiB  
Review
State of the Art on CAR T-Cell Therapies for Onco-Haematological Disorders and Other Conditions
by Jose Alejandro Madrigal and José C. Crispín
Onco 2024, 4(3), 232-240; https://doi.org/10.3390/onco4030017 - 8 Sep 2024
Viewed by 484
Abstract
The use of chimeric antigen receptors (CAR T-cells) for the treatment of patients with malignant haematological diseases has become a well-established application for conditions such as refractory or relapsed B-cell acute lymphoblastic leukaemia (B-ALL), B-cell lymphomas (BCL), and multiple myeloma (MM). Nearly 35,000 [...] Read more.
The use of chimeric antigen receptors (CAR T-cells) for the treatment of patients with malignant haematological diseases has become a well-established application for conditions such as refractory or relapsed B-cell acute lymphoblastic leukaemia (B-ALL), B-cell lymphomas (BCL), and multiple myeloma (MM). Nearly 35,000 patients have received autologous CAR T-cells for the treatment of these conditions only in the USA. Since their approval by the Food and Drug Administration (FDA) in 2017, over 1200 clinical trials have been initiated globally and there are at least 10 different CAR T-cells with approval by different regulatory agencies around the globe. In the USA, the FDA has approved six commercial CAR T-cells that are widely distributed worldwide. At the time of writing, several clinical trials have been performed in patients with solid tumours such as glioblastoma, renal and pancreatic cancer, as well as in patients with autoimmune conditions such as systemic lupus erythematosus (SLE), idiopathic inflammatory myositis (IIM), and systemic sclerosis (SS). There are also several studies showing the potential benefit of CAR T-cells for other non-malignant diseases such as asthma and even fungal infections. In this review, without pretending to cover all current areas of treatments with CAR T-cells, we offer a brief summary of some of the most relevant aspects of the use of CAR T-cells for some of these conditions. Full article
Show Figures

Figure 1

15 pages, 790 KiB  
Review
Targeting the Hippo- Yes-Associated Protein/Transcriptional Coactivator with PDZ-Binding Motif Signaling Pathway in Primary Liver Cancer Therapy
by Yina Wang and Liangyou Rui
Onco 2024, 4(3), 217-231; https://doi.org/10.3390/onco4030016 - 22 Aug 2024
Viewed by 406
Abstract
Liver cancer imposes a pervasive global health challenge, ranking among the most prevalent cancers worldwide. Its prevalence and mortality rates are on a concerning upward trajectory and exacerbated by the dearth of efficacious treatment options. The Hippo signaling pathway, originally discovered in Drosophila, [...] Read more.
Liver cancer imposes a pervasive global health challenge, ranking among the most prevalent cancers worldwide. Its prevalence and mortality rates are on a concerning upward trajectory and exacerbated by the dearth of efficacious treatment options. The Hippo signaling pathway, originally discovered in Drosophila, comprises the following four core components: MST1/2, WW45, MOB1A/B, and LATS1/2. This pathway regulates the cellular localization of the transcriptional coactivator Yes-associated protein/transcriptional coactivator with PDZ-binding motif (YAP/TAZ) through a series of enzymatic reactions. The Hippo-YAP/TAZ pathway maintains a balance between cell proliferation and apoptosis, regulates tissue and organ sizes, and stabilizes the internal environment. Abnormalities of any genes within the Hippo signaling pathway, such as deletion or mutation, disturb the delicate balance between cell proliferation and apoptosis, creating a favorable condition for tumor initiation and progression. Mutations or epigenetic alterations in the Hippo signaling pathway components can lead to its inactivation. Consequently, YAP/TAZ becomes overexpressed and activated, promoting excessive cell proliferation and inhibiting apoptosis. This dysregulation is closely associated with the development of liver cancer. This review discusses the pivotal role of the Hippo signaling pathway in the pathogenesis and progression of liver cancer. By elucidating its mechanisms, we aim to offer new insights into potential therapeutic targets for effectively combating liver cancer. Full article
Show Figures

Figure 1

10 pages, 752 KiB  
Article
Impact of Physical Exercise on Quality of Life, Self-Esteem, and Depression in Breast Cancer Survivors: A Pilot Study
by Eduarda Maria Rocha Teles de Castro Coelho, Helena Isabel Azevedo Mendes, Carla Afonso Varajidás and Sandra Celina Fernandes Fonseca
Onco 2024, 4(3), 207-216; https://doi.org/10.3390/onco4030015 - 22 Aug 2024
Viewed by 473
Abstract
Controlled study designs usually report that physical exercise improves the health of women living with breast cancer. However, many of these women are not sufficiently active to experience the benefits of exercise. The main objective was to analyze the effect of a physical [...] Read more.
Controlled study designs usually report that physical exercise improves the health of women living with breast cancer. However, many of these women are not sufficiently active to experience the benefits of exercise. The main objective was to analyze the effect of a physical exercise program on quality of life, self-esteem, and depression in breast cancer survivors. Thirteen participants (46.54 ± 6.31 years old) completed the exercise intervention. Three patient-reported questionnaires were used: Supplementary Questionnaire Breast Cancer Module (QLQ-BR23), Beck Depression Inventory (BDI), and Rosenberg Self-Esteem Scale (RSES). All participants had significantly improved self-esteem (p = 0.004). Although there were no statistically significant changes in depression, there was a notable decrease in scores (6.39 ± 4.75 vs. 5.00 ± 4.75; p = 0.080). Regarding quality of life, significant improvements were observed in “future perspectives” (p = 0.047) and “arm symptoms” (p = 0.015). No significant changes were noted in the other variables. Our results suggest that physical exercise is an effective strategy that positively affects breast cancer survivors’ quality of life and self-esteem. The results reinforce the need for community-based exercise programs for breast cancer survivors. Healthcare professionals should promote physical exercise to improve health outcomes before, during, and after treatment. Full article
(This article belongs to the Special Issue The Evolving Landscape of Contemporary Cancer Therapies)
Show Figures

Figure 1

15 pages, 2204 KiB  
Article
Predicting Resistance to Immunotherapy in Melanoma, Glioblastoma, Renal, Stomach and Bladder Cancers by Machine Learning on Immune Profiles
by Guillaume Mestrallet
Onco 2024, 4(3), 192-206; https://doi.org/10.3390/onco4030014 - 20 Aug 2024
Viewed by 612
Abstract
Strategies for tackling cancer involve surgery, radiotherapy, chemotherapy, and immune checkpoint inhibitors (ICB). However, the effectiveness of ICB remains constrained, prompting the need for a proactive strategy to foresee treatment responses and resistances. This study undertook an analysis across diverse cancer patient cohorts [...] Read more.
Strategies for tackling cancer involve surgery, radiotherapy, chemotherapy, and immune checkpoint inhibitors (ICB). However, the effectiveness of ICB remains constrained, prompting the need for a proactive strategy to foresee treatment responses and resistances. This study undertook an analysis across diverse cancer patient cohorts (including melanoma, clear cell renal carcinoma, glioblastoma, bladder, and stomach cancers) subjected to various immune checkpoint blockade treatments. Surprisingly, our findings unveiled that over 38% of patients demonstrated resistance and persistent disease progression despite undergoing ICB intervention. To unravel the intricacies of resistance, we scrutinized the immune profiles of cancer patients experiencing ongoing disease progression and resistance post-ICB therapy. These profiles delineated multifaceted defects, including compromised macrophage, monocyte, and T cell responses, impaired antigen presentation, aberrant regulatory T cell (Tregs) responses, and an elevated expression of immunosuppressive and G protein-coupled receptor molecules (TGFB1, IL2RA, IL1B, EDNRB, ADORA2A, SELP, and CD276). Building upon these insights into resistance profiles, we harnessed machine learning algorithms to construct models predicting the response and resistance to ICB and developed the accompanying software. While previous work on glioblastoma with only one type of algorithm had an accuracy of 0.82, we managed to develop 20 models that provided estimates of future events of resistance or response in five cancer types, with accuracies ranging between 0.79 and 1, based on their distinct immune characteristics. In conclusion, our approach advocates for the personalized application of immunotherapy in cancer patients based on patient-specific attributes and computational models. Full article
Show Figures

Figure 1

29 pages, 8853 KiB  
Article
A Systems Biology Analysis of Chronic Lymphocytic Leukemia
by Giulia Pozzati, Jinrui Zhou, Hananel Hazan, Giannoula Lakka Klement, Hava T. Siegelmann, Jack A. Tuszynski and Edward A. Rietman
Onco 2024, 4(3), 163-191; https://doi.org/10.3390/onco4030013 - 6 Aug 2024
Viewed by 534
Abstract
Whole-genome sequencing has revealed that TP53, NOTCH1, ATM, SF3B1, BIRC3, ABL, NXF1, BCR, and ZAP70 are often mutated in CLL, but not consistently across all CLL patients. This paper employs a statistical thermodynamics approach in combination with the systems biology of the CLL [...] Read more.
Whole-genome sequencing has revealed that TP53, NOTCH1, ATM, SF3B1, BIRC3, ABL, NXF1, BCR, and ZAP70 are often mutated in CLL, but not consistently across all CLL patients. This paper employs a statistical thermodynamics approach in combination with the systems biology of the CLL protein–protein interaction networks to identify the most significant participant proteins in the cancerous transformation. Betti number (a topology of complexity) estimates highlight a protein hierarchy, primarily in the Wnt pathway known for aberrant CLL activation. These individually identified proteins suggest a network-targeted strategy over single-target drug development. The findings advocate for a multi-target inhibition approach, limited to several key proteins to minimize side effects, thereby providing a foundation for designing therapies. This study emphasizes a shift towards a comprehensive, multi-scale analysis to enhance personalized treatment strategies for CLL, which could be experimentally validated using siRNA or small-molecule inhibitors. The result is not just the identification of these proteins but their rank-order, offering a potent signal amplification in the context of the 20,000 proteins produced by the human body, thus providing a strategic basis for therapeutic intervention in CLL, underscoring the necessity for a more holistic, cellular, chromosomal, and genome-wide study to develop tailored treatments for CLL patients. Full article
Show Figures

Figure 1

20 pages, 3102 KiB  
Article
A Transformative Technology Linking Patient’s mRNA Expression Profile to Anticancer Drug Efficacy
by Chen Yeh, Shu-Ti Lin and Hung-Chih Lai
Onco 2024, 4(3), 143-162; https://doi.org/10.3390/onco4030012 - 14 Jul 2024
Viewed by 1073
Abstract
As precision medicine such as targeted therapy and immunotherapy often have limited accessibility, low response rate, and evolved resistance, it is urgent to develop simple, low-cost, and quick-turnaround personalized diagnostic technologies for drug response prediction with high sensitivity, speed, and accuracy. The major [...] Read more.
As precision medicine such as targeted therapy and immunotherapy often have limited accessibility, low response rate, and evolved resistance, it is urgent to develop simple, low-cost, and quick-turnaround personalized diagnostic technologies for drug response prediction with high sensitivity, speed, and accuracy. The major challenges of drug response prediction strategies employing digital database modeling are the scarcity of labeled clinical data, applicability only to a few classes of drugs, and losing the resolution at the individual patient level. Although these challenges have been partially addressed by large-scale cancer cell line datasets and more patient-relevant cell-based systems, the integration of different data types and data translation from pre-clinical to clinical utilities are still far-fetched. To overcome the current limitations of precision medicine with a clinically proven drug response prediction assay, we have developed an innovative and proprietary technology based on in vitro patient testing and in silico data analytics. First, a patient-derived gene expression signature was established via the transcriptomic profiling of cell-free mRNA (cfmRNA) from the patient’s blood. Second, a gene-to-drug data fusion and overlaying mechanism to transfer data were performed. Finally, a semi-supervised method was used for the database searching, matching, annotation, and ranking of drug efficacies from a pool of ~700 approved, investigational, or clinical trial drug candidates. A personalized drug response report can be delivered to inform clinical decisions within a week. The PGA (patient-derived gene expression-informed anticancer drug efficacy) test has significantly improved patient outcomes when compared to the treatment plans without PGA support. The implementation of PGA, which combines patient-unique cfmRNA fingerprints with drug mapping power, has the potential to identify treatment options when patients are no longer responding to therapy and when standard-of-care is exhausted. Full article
Show Figures

Figure 1

12 pages, 1664 KiB  
Article
Revisiting the Role of PD-L1 Overexpression in Prognosis and Clinicopathological Features in Patients with Oral Squamous Cell Carcinoma
by Fernando Leporace-Jiménez, Isabel Portillo-Hernandez, Justino Jiménez-Almonacid, Ignacio Zubillaga Rodriguez, María Mejía-Nieto, Pablo Caballero Pedrero and Gregorio Sanchez Aniceto
Onco 2024, 4(3), 131-142; https://doi.org/10.3390/onco4030011 - 12 Jul 2024
Viewed by 642
Abstract
Background: PD1 and its ligand PD-L1 are related to prognosis in many solid tumors; however, their role in oral squamous cell carcinoma (OSCC) remains unclear. Methods: A retrospective monocentric study including all patients with OSCC diagnosed and treated between January 2020 and May [...] Read more.
Background: PD1 and its ligand PD-L1 are related to prognosis in many solid tumors; however, their role in oral squamous cell carcinoma (OSCC) remains unclear. Methods: A retrospective monocentric study including all patients with OSCC diagnosed and treated between January 2020 and May 2022 was performed. PD-L1 expression was assessed per a combined positive score (CPS), considering a CPS of > or equal to 1 as positive (1–20 indicating “low expression” and ≥20 indicating “high”). A descriptive analysis of the patient cohort and tumors was performed, including tumor size, stage, lymph node involvement, recurrence, and survival. Results: In total, 65 patients (65 tumors) were analyzed. A total of 66.15% of the tumors were in advanced stages (III-IV), of which 97.67% expressed PD-L1+, compared with 71.42% in the early stages (I–II). T4 tumors expressed PD-L1 in 100% of cases, compared with 54% in T1 tumors. A total of 50.79% of the tumors showed lymph node involvement (pN+), with 100% of the pN+ showing PD-L1+. The prevalence of pN+ was 59.38% vs. 40.63% for high vs. low PD-L1 expression, respectively. Patients’ follow-ups ranged from 2 to 34.5 months. No significant difference was seen between overall survival (OS) and PD-L1 +/− (CPS ≥ 1 vs. CPS < 1) or high (CPS ≥ 20) and low (CPS < 20) PD-L1 expression (p < 0.97 and 0.64, respectively). Conclusions: The method used to measure PD-L1 (a laboratory test with Dako 22C3 anti-PD-L1 primary antibodies) was reliable and accurate, with a correlation coefficient between PD-L1 expression in the biopsy and the surgical piece of 0.83 (p < 0.0001). A CPS of ≥1 was observed in large tumors (p < 0.001) and was correlated with that of lymph node metastases (p < 0.004). Further analysis of PD-L1 expression in OSCC and studies to determine its relevance in tumor biology and prognosis is needed. Full article
Show Figures

Figure 1

15 pages, 2991 KiB  
Review
The World of Immunotherapy Needs More Than PD-1/PD-L1—Two of the New Kids on the Block: LAG-3 and TIGIT
by João Martins Gama, Paulo Teixeira and Rui Caetano Oliveira
Onco 2024, 4(3), 116-130; https://doi.org/10.3390/onco4030010 - 1 Jul 2024
Viewed by 633
Abstract
Immunotherapy has paved the way for the development of solid tumor new treatments in the last decade. The approval of immune checkpoint inhibitors such as anti PD-1/PD-L1 provided a revolution with optimal results. However, a considerable proportion of patients experience adverse therapeutic effects, [...] Read more.
Immunotherapy has paved the way for the development of solid tumor new treatments in the last decade. The approval of immune checkpoint inhibitors such as anti PD-1/PD-L1 provided a revolution with optimal results. However, a considerable proportion of patients experience adverse therapeutic effects, and up to 50% may develop secondary resistance in the first three to five years. This has prompted the need for identifying new targets for immunotherapy that have good tolerance and biosafety and, of course, good tumoral response, either alone or in combination. Two of these new targets are the Lymphocyte-activation gene 3 (LAG-3) and the T cell immunoglobulin and ITIM domain (TIGIT). They are responsible for several interactions with the immune system, prompting an immunosuppressive phenotype in the tumor microenvironment. Both LAG-3 and TIGIT can be druggable, alone or in combination with anti-PD-1/PD-L1, with rather safe profiles making them attractive. In this review, we highlight some of the immune mechanisms of TIGIT and LAG-3 and their detection by immunohistochemistry, providing some insight into their use in the clinical setting. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop