Gallbladder cancer (GBC), an aggressive malignancy of the biliary tract, is characterized by pronounced geographical variation and a poor prognosis, with a five-year survival rate below 20%. Despite its low global incidence, it ranks as the fifth most prevalent gastrointestinal cancer. The aim
[...] Read more.
Gallbladder cancer (GBC), an aggressive malignancy of the biliary tract, is characterized by pronounced geographical variation and a poor prognosis, with a five-year survival rate below 20%. Despite its low global incidence, it ranks as the fifth most prevalent gastrointestinal cancer. The aim of this review is to provide a comprehensive understanding of the molecular mechanisms underpinning GBC progression, with a particular focus on the pivotal role of transcription factors (TFs) in its pathogenesis. This review delineates how aberrant regulation of TFs contributes to tumor initiation, progression, and therapeutic resistance, and to discuss the translational potential of targeting these factors for clinical benefit. Tumor suppressor TFs such as p53 and p16 frequently undergo genetic alterations, including mutations, deletions, or epigenetic silencing, leading to impaired cell cycle control, DNA repair, and apoptosis. Conversely, oncogenic TFs including TCF4, MYBL2, NF-kB, AP-1, Snail, c-MYC, SP1, FOXK1, KLF-5, STAT3 and BIRC7 are often upregulated in GBC, promoting unchecked proliferation, epithelial–mesenchymal transition (EMT), metastasis, and therapeutic resistance. This review aims to bridge current molecular insights with emerging therapeutic approaches, with particular emphasis on innovative interventions such as proteolysis-targeting chimeras (PROTACs), RNA-based therapeutics, CRISPR-driven genome editing, and epigenetic modulators, which collectively represent promising strategies for achieving more effective and personalized treatment outcomes in patients with GBC.
Full article