Next Issue
Volume 14, September
Previous Issue
Volume 14, March
 
 

BioTech, Volume 14, Issue 2 (June 2025) – 26 articles

Cover Story (view full-size image): Ferulic acid (FA) is a plentiful phenyl-propanoid with antioxidant, anti-inflammatory and neuro-protective activities, yet its use is limited by poor solubility. We disclose a green, enzyme-driven synthesis of its xylitol mono-ester (XMF), a bifunctional prodrug that merges FA pharmacology with the biocompatibility of xylitol. Using immobilised Candida antarctica lipase B (CaLB) in non-conventional green solvent t-amyl alcohol, >90 % selective conversion was achieved after optimisation of temperature, substrate ratio, and enzyme load. XMF was purified and fully characterised by ¹H/¹³C NMR (COSY, HSQC, HMBC), confirming regio-selective esterification. The process highlights sustainable biocatalysis as a scalable route to value-added phenolic derivatives with enhanced stability, solubility, and therapeutic potential. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
22 pages, 3330 KiB  
Article
Novel Halotolerant Bacteria from Saline Environments: Isolation and Biomolecule Production
by Simona Neagu and Mihaela Marilena Stancu
BioTech 2025, 14(2), 49; https://doi.org/10.3390/biotech14020049 - 19 Jun 2025
Viewed by 460
Abstract
Microorganisms from saline environments have garnered significant interest due to their unique adaptations, which enable them to thrive under high-salt conditions and synthesize valuable biomolecules. This study investigates the biosynthesis of biomolecules, such as extracellular hydrolytic enzymes, biosurfactants, and carotenoid pigments, by four [...] Read more.
Microorganisms from saline environments have garnered significant interest due to their unique adaptations, which enable them to thrive under high-salt conditions and synthesize valuable biomolecules. This study investigates the biosynthesis of biomolecules, such as extracellular hydrolytic enzymes, biosurfactants, and carotenoid pigments, by four newly halotolerant bacterial strains isolated from saline environments in the Băicoi (soil, water) and Curmătura (mud) area (Prahova County, Romania). Isolation was performed on two selective culture media with different NaCl concentrations (1.7 M, 3.4 M). Based on their phenotypic and molecular characteristics, the four halotolerant bacteria were identified as Halomonas elongata SB8, Bacillus altitudinis CN6, Planococcus rifietoensis CN8, and Halomonas stenophila IB5. The two bacterial strains from the Halomonas genus exhibited growth in MH medium containing elevated NaCl concentrations (0–5 M), in contrast to the other two strains from Bacillus (0–2 M) and Planococcus (0–3 M). The growth of these bacteria under different salinity conditions, hydrocarbon tolerance, and biomolecule production were assessed through biochemical assays, spectrophotometry, and high-performance thin-layer chromatography. The antimicrobial properties of biosurfactants and carotenoids produced by H. elongata SB8, B. altitudinis CN6, P. rifietoensis CN8, and H. stenophila IB5 were evaluated against four reference pathogenic microorganisms from the genera Escherichia, Pseudomonas, Staphylococcus, and Candida. H. elongata SB8 showed the highest hydrocarbon tolerance. B. altitudinis CN6 exhibited multiple hydrolase activities and, along with H. elongata SB8, demonstrated biosurfactant production. P. rifietoensis CN8 produced the highest carotenoid concentration with antifungal and antimicrobial activity. Exploring these organisms opens new pathways for bioremediation, industrial bioprocessing, and sustainable biomolecule production. Full article
Show Figures

Figure 1

13 pages, 1975 KiB  
Article
Leaf Organogenesis Improves Recovery of Solid Polyploid Shoots from Chimeric Southern Highbush Blueberry
by Emily Walter, Akshaya Biswal, Peggy Ozias-Akins and Ye Chu
BioTech 2025, 14(2), 48; https://doi.org/10.3390/biotech14020048 - 12 Jun 2025
Viewed by 540
Abstract
Interspecific and intersectional crosses have introduced valuable genetic traits for blueberry (Vaccinium sect. Cyanococcus) cultivar improvement. Introgression from Vaccinium species at the diploid, tetraploid, and hexaploid levels has been found in cultivated blueberries. Continued efforts to integrate wild blueberry genetic resources [...] Read more.
Interspecific and intersectional crosses have introduced valuable genetic traits for blueberry (Vaccinium sect. Cyanococcus) cultivar improvement. Introgression from Vaccinium species at the diploid, tetraploid, and hexaploid levels has been found in cultivated blueberries. Continued efforts to integrate wild blueberry genetic resources into blueberry breeding are essential to broaden the genetic diversity of cultivated blueberries. However, performing heteroploid crosses among Vaccinium species is challenging. Polyploid induction through tissue culture has been useful in bridging ploidy barriers. Mixoploid or chimeric shoots often are produced, along with solid polyploid mutants. These chimeras are mostly discarded because of their genome instability and the difficulty in identifying periclinal mutants carrying germline mutations. Since induced polyploidy in blueberries often results in a low frequency of solid mutant lines, it is important to recover solid polyploids through chimera dissociation. In this study, two vegetative propagation methods, i.e., axillary and adventitious shoot induction, were evaluated for their efficiency in chimera dissociation. Significantly higher rates of chimera dissociation were found in adventitious shoot induction compared to axillary shoot induction. Approximately 89% and 82% of the adventitious shoots induced from mixoploid lines 145.11 and 169.40 were solid polyploids, respectively, whereas only 25% and 53% of solid polyploids were recovered through axillary shoot induction in these lines. Effective chimera dissociation provides useful and stable genetic materials to enhance blueberry breeding. Full article
Show Figures

Figure 1

22 pages, 3244 KiB  
Article
Anti-Inflammatory Function Analysis of Lacticaseibacillus rhamnosus CP-1 Strain Based on Whole-Genome Sequencing
by Hanyu Chu, Lijie Zhou, Yanzhen Mao, Ren Liu, Jiaojiao Han, Xiurong Su and Jun Zhou
BioTech 2025, 14(2), 47; https://doi.org/10.3390/biotech14020047 - 7 Jun 2025
Viewed by 1028
Abstract
Lacticaseibacillus rhamnosus (L. rhamnosus) is a safe probiotic with no side effects, providing benefits such as gut microbiota regulation and immune enhancement, making it highly valuable with strong potential. However, strains from different sources have unique traits, and whole-genome sequencing (WGS) [...] Read more.
Lacticaseibacillus rhamnosus (L. rhamnosus) is a safe probiotic with no side effects, providing benefits such as gut microbiota regulation and immune enhancement, making it highly valuable with strong potential. However, strains from different sources have unique traits, and whole-genome sequencing (WGS) helps analyse these differences. In this study, we used WGS to examine L. rhamnosus strains from mice with fish oil-treated smoking-induced pneumonia to better understand their biological functions and explore possible anti-inflammatory mechanisms. Methods: We isolated a strain, Lacticaseibacillus rhamnosus CP-1 (L. rhamnosus CP-1), from mice intestines where fish oil alleviated smoking-induced pneumonia. Identification of probiotic-related genes by WGS and characterised the strain’s probiotic properties. Results: L. rhamnosus CP-1 has a single circular chromosome (2,989,570 bp, 46.76% GC content) and no plasmids. COG, GO, and KEGG databases revealed genes linked to carbohydrate metabolism. The CAZy database identified GH25 lysozyme and PL8 polysaccharide lyase genes. KEGG highlighted an antimicrobial peptide ABC transporter permease, while TCDB noted the ABC-type antimicrobial peptide transporter (the main active transport component). KEGG also showed 10 genes for terpenoid skeleton biosynthesis and 5 for keto-glycan unit biosynthesis. Additionally, L. rhamnosus CP-1 carries metabolic regulators and bacteriocin-related genes. Conclusions: Whole-genome sequencing analysis revealed that L. rhamnosus CP-1 has carbohydrate utilisation and potential anti-inflammatory effects at the molecular level. Potential functional genes include carbohydrate transport and hydrolase, antimicrobial peptide ABC transporter and its osmotic enzyme components, bacteriocin immune protein, terpenoid skeleton, and keto-glycan synthesis. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Figure 1

15 pages, 1175 KiB  
Article
In Vitro Antioxidant Potential, Antidiabetic Activities, and GC–MS Analysis of Lipid Extracts of Chlorella Microalgae
by Somruthai Kaeoboon, Rattanaporn Songserm, Rungcharn Suksungworn, Sutsawat Duangsrisai and Nuttha Sanevas
BioTech 2025, 14(2), 46; https://doi.org/10.3390/biotech14020046 - 6 Jun 2025
Viewed by 983
Abstract
Microalgae represent promising biotechnological platforms for bioactive compound production with pharmaceutical applications. This study investigated the phytochemical composition and biological activities of lipid extracts from three Chlorella species to evaluate their potential as antioxidant and antidiabetic sources. Lipid extraction using chloroform–methanol (2:1) followed [...] Read more.
Microalgae represent promising biotechnological platforms for bioactive compound production with pharmaceutical applications. This study investigated the phytochemical composition and biological activities of lipid extracts from three Chlorella species to evaluate their potential as antioxidant and antidiabetic sources. Lipid extraction using chloroform–methanol (2:1) followed by GC–MS analysis revealed distinct compound distributions: 29 compounds in C. ellipsoidea, 33 in C. sorokiniana, and 19 in C. vulgaris. Major bioactive compounds included 2-hexanol, 1,3,6-heptatriene, 4-(2,3-dimethyl-2-cyclopenten-1-yl)-4-methylpentanal, n-hexadecanoic acid, and octadecanoic acid. Biological activity screening encompassed antioxidant assessment through DPPH• and •NO radical scavenging assays and FRAP analysis, while antidiabetic potential was evaluated using α-glucosidase and α-amylase inhibition assays. C. sorokiniana exhibited superior bioactivity with the highest antioxidant capacity (DPPH• IC50 = 329.03 ± 4.30 µg/mL; •NO IC50 = 435.53 ± 10.20 µg/mL; FRAP = 94.74 ± 5.72 mg TE/g) and strongest enzyme inhibition (α-glucosidase IC50 = 752.75 ± 57.95 µg/mL; α-amylase IC50 = 3458.50 ± 104.01 µg/mL). This is the first report on C. sorokiniana strain KU.B2′s biological properties and phytochemical profile. These findings establish C. sorokiniana as a valuable biotechnological platform for pharmaceutical bioactive compound development. Full article
Show Figures

Graphical abstract

12 pages, 2195 KiB  
Article
Green-Synthesized Silver Nanoparticles (AgNPs) Enhance In Vitro Multiplication and Rooting of Strawberries (Fragaria × ananassa Duchesne)
by José Luis Aguirre-Noyola, Marco A. Ramírez-Mosqueda, Jorge David Cadena-Zamudio, José Humberto Caamal-Velázquez, Esmeralda J. Cruz-Gutiérrez and Alma Armenta-Medina
BioTech 2025, 14(2), 45; https://doi.org/10.3390/biotech14020045 - 6 Jun 2025
Viewed by 834
Abstract
Nanobiotechnology applications in plant tissue culture have improved the development and physiology of explants, resulting in plants with high genetic homogeneity and phytosanitary quality. Silver nanoparticles (AgNPs) are well-known for their microbicidal properties, but their biochemical effects on plants require further exploration. In [...] Read more.
Nanobiotechnology applications in plant tissue culture have improved the development and physiology of explants, resulting in plants with high genetic homogeneity and phytosanitary quality. Silver nanoparticles (AgNPs) are well-known for their microbicidal properties, but their biochemical effects on plants require further exploration. In this work, green-synthesized AgNPs were evaluated in strawberry in vitro culture, photosynthetic pigment production, and acclimatization. AgNPs produced by Lysinibacillus fusiformis were characterized. Strawberry explants were grown in vitro on MS medium with 0, 100, 200, and 300 mg L−1 AgNPs at 24 ± 2 °C and a photoperiod of 16:8 h light/dark. Shoot height and number, number of leaves, number of roots, and root length were evaluated, and chlorophyll (a, b, and total) was quantified. Rooted shoots were acclimatized ex vitro on substrates containing 0 and 200 mg L−1 AgNPs. The results showed that low AgNPs concentrations had a positive impact on shoot multiplication, development, and rooting, but at higher concentrations, the effects decayed. However, chlorophyll production improved with increasing AgNP concentration. Shoots treated with AgNPs showed higher ex vitro survival. Our study has direct implications for the profitability and sustainability of commercial strawberry production. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

20 pages, 6795 KiB  
Article
Spatial and Temporal Aspects of Fungicide Resistance in Venturia inaequalis (Apple Scab) Populations in Northern Germany
by Roland W. S. Weber, Rebekka Busch and Johanna Wesche
BioTech 2025, 14(2), 44; https://doi.org/10.3390/biotech14020044 - 5 Jun 2025
Viewed by 1011
Abstract
Venturia inaequalis, the cause of apple scab, readily develops resistance to fungicides with specific modes of action. Knowledge of the spatial and temporal pattern of resistance development is therefore relevant to fruit producers and their consultants. In the Lower Elbe region of [...] Read more.
Venturia inaequalis, the cause of apple scab, readily develops resistance to fungicides with specific modes of action. Knowledge of the spatial and temporal pattern of resistance development is therefore relevant to fruit producers and their consultants. In the Lower Elbe region of Northern Germany, a two-year survey based on a conidial germination test was conducted, examining fungicide resistance in 35 orchards under Integrated Pest Management (IPM), 16 orchards of susceptible cultivars as well as a further 12 orchards of scab-resistant (Vf) cultivars under organic management, and 34 abandoned or unmanaged sites. No evidence of resistance to SDHI compounds (fluopyram, fluxapyroxad) was found after >5 yr of their regular use. Resistance to anilinopyrimidines (cyprodinil, pyrimethanil) had disappeared 15 yr after its widespread occurrence. Isolates from a few IPM orchards showed a reduced sensitivity to dodine. Double resistance to the MBC compound thiophanate-methyl and the QoI trifloxystrobin was rare in V. inaequalis strains that had achieved breakage of Vf-resistance, but very common (>50%) on scab-susceptible cultivars in IPM, organic and abandoned orchards in the ‘Altes Land’ core area of the Lower Elbe region, and in IPM orchards in the periphery. We conclude that resistance to QoI and MBC fungicides is persistent even decades after their last use, and that the core area harbours a uniform population adapted to intensive crop protection, whereas isolated orchards in the periphery are colonised by discrete populations of V. inaequalis. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Graphical abstract

18 pages, 3022 KiB  
Article
Interaction Between Rumen Microbiota and Epithelial Mitochondrial Dynamics in Tibetan Sheep: Elucidating the Mechanism of Rumen Epithelial Energy Metabolism
by Ying Xu, Yuzhu Sha, Xiaowei Chen, Qianling Chen, Xiu Liu, Yanyu He, Wei Huang, Yapeng He and Xu Gao
BioTech 2025, 14(2), 43; https://doi.org/10.3390/biotech14020043 - 5 Jun 2025
Viewed by 796
Abstract
Investigating the functional interactions between rumen microbial fermentation and epithelial mitochondrial dynamics/energy metabolism in Tibetan sheep at different altitudes, this study examined ultrastructural changes in rumen epithelial tissues, expression levels of mitochondrial dynamics-related genes (fusion: Mfn1, Mfn2, OPA1, Mic60; [...] Read more.
Investigating the functional interactions between rumen microbial fermentation and epithelial mitochondrial dynamics/energy metabolism in Tibetan sheep at different altitudes, this study examined ultrastructural changes in rumen epithelial tissues, expression levels of mitochondrial dynamics-related genes (fusion: Mfn1, Mfn2, OPA1, Mic60; fission: Drp1, Fis1, MFF), and ketogenesis pathway genes (HMGS2, HMGCL) in Tibetan sheep raised at three altitudes (TS 2500m, TS 3500m, TS 4500m). Correlation analysis was performed between rumen microbiota/metabolites and mitochondrial energy metabolism. Results: Ultrastructural variations were observed across altitudes. With increasing altitude, keratinized layer became more compact; desmosome connections between granular layer cells increased; mitochondrial quantity and distribution in spinous and basal layers increased. Mitochondrial dynamics regulation: Fission genes (FIS1, DRP1, MFF) showed significantly higher expression at TS 4500m (p < 0.01); fusion genes (Mfn1, OPA1) exhibited altitude-dependent upregulation. Energy metabolism markers: Pyruvate (PA) decreased significantly at TS 3500m/TS 4500m (p < 0.01); citrate (CA) increased with altitude; NAD+ peaked at TS 3500m but decreased significantly at TS 4500m (p < 0.01); Complex II (SDH) and Complex IV (CO) activities decreased at TS 4500m (p < 0.01). Ketogenesis pathway: β-hydroxybutyrate increased significantly with altitude (p < 0.01); acetoacetate peaked at TS 2500 m/TS 4500 m; HMGCS2 expression exceeded HMGCL, showing altitude-dependent upregulation at TS 4500m (p < 0.01). Microbiome–metabolism correlations: Butyrivibrio_2 and Fibrobacter negatively correlated with Mic60 (p < 0.01); Ruminococcaceae_NK4A214_Group positively correlated with Mfn1/OPA1 (p < 0.05); WGCNA identified 17 metabolite modules, with MEturquoise module positively correlated with DRP1/Mfn2/MFF (p < 0.05). Conclusion: Altitude-induced ultrastructural adaptations in rumen epithelium correlate with mitochondrial dynamics stability and ketogenesis upregulation. Mitochondrial fission predominates at extreme altitudes, while microbiota–metabolite interactions suggest compensatory energy regulation mechanisms. Full article
Show Figures

Figure 1

11 pages, 1621 KiB  
Article
Genomic Characterization of Linezolid-Resistant Clostridioides difficile Harboring cfr Variants
by Aikaterini Panou, Andigoni Malousi and Melina Kachrimanidou
BioTech 2025, 14(2), 42; https://doi.org/10.3390/biotech14020042 - 31 May 2025
Viewed by 666
Abstract
The emergence of antimicrobial resistance (AMR) in Clostridium difficile (C. difficile), particularly to last-line antibiotics such as linezolid, represents a critical challenge in clinical settings. This study investigates the genomic epidemiology of linezolid-resistant C. difficile, focusing on the distribution and [...] Read more.
The emergence of antimicrobial resistance (AMR) in Clostridium difficile (C. difficile), particularly to last-line antibiotics such as linezolid, represents a critical challenge in clinical settings. This study investigates the genomic epidemiology of linezolid-resistant C. difficile, focusing on the distribution and mutational patterns of the chloramphenicol–florfenicol resistance (cfr) gene and its association with multidrug resistance. We analyzed 514 clinical isolates (354 from NCBI Pathogen Detection, 160 from EnteroBase), revealing distinct prevalence patterns among cfr subtypes: cfr(C) was dominant (156/354 NCBI strains; 101/160 EnteroBase strains), whereas cfr(B) frequently harbored missense mutations (p.R247K, p.V294I, and less commonly p.A334T). The cfr(E) subtype was exclusively identified in ribotype 027 (RT027) strains. Notably, cfr(C) exhibited a strong association with RT017, correlating with a conserved 99 bp genomic deletion. Phylogenetic analysis linked cfr-carriage to predominant sequence types (ST1 in NCBI strains, ST37 in EnteroBase isolates). Furthermore, the co-occurrence of cfr with additional AMR genes conferred resistance to macrolides (erythromycin, azithromycin) and tetracyclines, indicating a convergent evolution toward multidrug resistance. These findings underscore the interplay between cfr mutations, hypervirulent ribotypes, and AMR dissemination, necessitating enhanced surveillance to mitigate the spread of resistant C. difficile lineages. Full article
(This article belongs to the Special Issue BioTech: 5th Anniversary)
Show Figures

Figure 1

21 pages, 1220 KiB  
Review
Spirulina as a Key Ingredient in the Evolution of Eco-Friendly Cosmetics
by Sergiana dos Passos Ramos, Monize Bürck, Stephanie Fabrícia Francisco da Costa, Marcelo Assis and Anna Rafaela Cavalcante Braga
BioTech 2025, 14(2), 41; https://doi.org/10.3390/biotech14020041 - 30 May 2025
Viewed by 1498
Abstract
Limnospira spp., commercially known as spirulina, is widely recognized for its remarkable benefits due to its rich composition of bioactive compounds like phycobiliproteins, carotenoids, and phenolic compounds. These natural bioactive compounds not only serve as colorants but also offer potent antioxidant, anti-inflammatory, immunomodulatory, [...] Read more.
Limnospira spp., commercially known as spirulina, is widely recognized for its remarkable benefits due to its rich composition of bioactive compounds like phycobiliproteins, carotenoids, and phenolic compounds. These natural bioactive compounds not only serve as colorants but also offer potent antioxidant, anti-inflammatory, immunomodulatory, anticancer, antimicrobial, and anti-aging properties. As a result, spirulina and its components are increasingly used in cosmetic formulations to promote skin hydration, reduce wrinkles, and protect against UV radiation damage. Its bioactive components enhance fibroblast growth, boost collagen production, and prevent premature skin aging by inhibiting enzymes responsible for elastin degradation. Additionally, spirulina-based cosmetics have demonstrated wound-healing properties without genotoxic effects, with formulations containing C-phycocyanin particularly effective in shielding skin cells from UV-induced apoptosis. Despite these well-established benefits, there remains significant potential for the cosmetic industry to harness spirulina’s capabilities further. Research into the molecular mechanisms underlying its bioactive compounds in cosmetic formulations is still in its early stages, offering many opportunities for innovation. Emerging fields of biotechnology, such as nanotechnology and biocosmetics, could enhance the stability, efficacy, and delivery of spirulina-based ingredients, unlocking new possibilities for skin protection and rejuvenation. Furthermore, its proven biological properties align perfectly with the increasing consumer demand for safe, sustainable, and nature-inspired skincare solutions. Full article
Show Figures

Figure 1

32 pages, 957 KiB  
Review
Broomrapes in Major Mediterranean Crops: From Management Strategies to Novel Approaches for Next-Generation Control
by Demosthenis Chachalis, Eleni Tani, Aliki Kapazoglou, Maria Gerakari, Angeliki Petraki, Francisco Pérez-Alfocea, Purificación A. Martínez-Melgarejo, Markus Albert, Khalil Khamassi and Mohamed Kharrat
BioTech 2025, 14(2), 40; https://doi.org/10.3390/biotech14020040 - 25 May 2025
Viewed by 1253
Abstract
Broomrapes (Orobanche and Phelipanche spp.) are parasitic weeds that significantly impact the productivity of major crops in the Mediterranean region, like tomato (Solanum spp.) and faba bean (Vicia faba) species. This review article extensively discusses management strategies to control [...] Read more.
Broomrapes (Orobanche and Phelipanche spp.) are parasitic weeds that significantly impact the productivity of major crops in the Mediterranean region, like tomato (Solanum spp.) and faba bean (Vicia faba) species. This review article extensively discusses management strategies to control broomrapes, which range from preventive measures to curative approaches. Additionally, it includes meaningful information on the intricate molecular mechanisms underlying the broomrape–host interaction, focusing on the host recognition of parasitic plant molecular patterns and the hormonal crosstalk that regulates the establishment of parasitism. Moreover, this article highlights the potential of breeding for resistance in cultivated crops, such as tomato and faba bean, as a sustainable, long-term solution to combat broomrape infestation. This review serves as a valuable resource for both researchers and farmers, offering insights for developing, implementing, and adapting effective and environmentally sustainable management practices for broomrape in Mediterranean agricultural systems. Full article
(This article belongs to the Special Issue BioTech: 5th Anniversary)
Show Figures

Figure 1

18 pages, 282 KiB  
Essay
The Origins and Proliferation of Unfounded Comparisons Regarding the Safety of Mifepristone
by Cameron Louttit
BioTech 2025, 14(2), 39; https://doi.org/10.3390/biotech14020039 - 24 May 2025
Viewed by 3571
Abstract
As part of the substantial public discourse surrounding the distribution and use of mifepristone, which is used with misoprostol to facilitate drug-induced abortions, claims comparing the safety of this regimen to that of common pharmaceuticals have emerged and proliferated. Offered in forums ranging [...] Read more.
As part of the substantial public discourse surrounding the distribution and use of mifepristone, which is used with misoprostol to facilitate drug-induced abortions, claims comparing the safety of this regimen to that of common pharmaceuticals have emerged and proliferated. Offered in forums ranging from social media to the Supreme Court, these claims have so gained public acceptance that they are now echoed without scrutiny and, at times, reference. Yet the simplistic slogan that “mifepristone is safer than Tylenol”, though easily disseminated, defies both an intuitive understanding of how we evaluate drug safety and our norms and regulations for doing so. Indeed, if such an assertion was attributable to the manufacturer, it would precipitate a reprimand by the FDA given the lack of specific, controlled, and head-to-head evidence rightly required for its support. To the extent that these claims persist, however, including among the outputs of medical societies, abortion centers, clinical researchers, and government officials, and to the extent that they aim to inform both individual and public decision-making, it is critical that the evidence offered for their support be thoroughly explored. Such examination reveals these claims to be wholly unfounded, offering deficient and disingenuous representations of safety for any of the drugs compared. Full article
(This article belongs to the Section Biotechnology Regulation)
13 pages, 2348 KiB  
Article
Strategy for the Construction of SARS-CoV-2 S and N Recombinant Proteins and Their Immunogenicity Evaluation
by Paulo Henrique Guilherme Borges, Barbara Gregio, Helena Tiemi Suzukawa, Gislaine Silva-Rodrigues, Emanuella de Castro Andreassa, Isabela Madeira de Castro, Guilherme Bartolomeu-Gonçalves, Emerson José Venancio, Phileno Pinge-Filho, Viviane Monteiro Góes, Celso Vataru Nakamura, Eliandro Reis Tavares, Tatiana de Arruda Campos Brasil de Souza, Sueli Fumie Yamada-Ogatta and Lucy Megumi Yamauchi
BioTech 2025, 14(2), 38; https://doi.org/10.3390/biotech14020038 - 23 May 2025
Viewed by 1074
Abstract
This study reports the construction, expression, and purification of synthetic SARS-CoV-2 spike (S) and nucleoprotein (N) containing immunodominant epitopes. The pET28aS_epit construct included epitopes 287–317, 402, 507, 524–598, and 601–640, while the pET28aN_epit construct included residues 42–62, 153–172, and 355–401. Commercial sequences of [...] Read more.
This study reports the construction, expression, and purification of synthetic SARS-CoV-2 spike (S) and nucleoprotein (N) containing immunodominant epitopes. The pET28aS_epit construct included epitopes 287–317, 402, 507, 524–598, and 601–640, while the pET28aN_epit construct included residues 42–62, 153–172, and 355–401. Commercial sequences of both proteins were used as controls. The four constructs were expressed using the Escherichia coli BL21(DE3) star strain at 37 °C. The results show that the S protein constructs were insoluble, unlike the N protein constructs. Both recombinant proteins induced immune responses in mice and were recognized by antibodies present in sera from COVID-19-positive and/or SARS-CoV-2-vaccinated humans. No significant differences in immune recognition were observed between our constructs and the commercially available proteins. In conclusion, S_epit and N_epit could be promising starting points for the development of new strategies based on immunological reactions for the control of SARS-CoV-2 infections. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Figure 1

16 pages, 1795 KiB  
Article
Exploring Genetic Diversity and Population Structure of Australian Passion Fruit Germplasm
by Xinhang Sun, Peter Bundock, Patrick Mason, Pragya Dhakal Poudel, Rajeev Varshney, Bruce Topp and Mobashwer Alam
BioTech 2025, 14(2), 37; https://doi.org/10.3390/biotech14020037 - 16 May 2025
Viewed by 927
Abstract
Evaluating the genetic variability of germplasms is essential for enhancing and developing superior cultivars. However, there is limited information on cultivated germplasm diversity for Australian passion fruit breeding programs. The genetic diversity of Australian passion fruit (Passiflora spp.), including 94 rootstocks and [...] Read more.
Evaluating the genetic variability of germplasms is essential for enhancing and developing superior cultivars. However, there is limited information on cultivated germplasm diversity for Australian passion fruit breeding programs. The genetic diversity of Australian passion fruit (Passiflora spp.), including 94 rootstocks and 95 scions, was evaluated to support breeding programs aimed at enhancing productivity, fruit quality, and overall crop resilience. Rootstocks were genotyped using high-density 24k Diversity Arrays Technology (DArT)-based single-nucleotide polymorphism (SNP) markers, while genetic characterization of scions was conducted using eight simple sequence repeat (SSR) markers. The resulting genetic relationships revealed significant variation within rootstock populations. Bayesian cluster analysis in STRUCTURE showed that the rootstock population was divided into six distinct genetic groups, whereas only two subpopulations were identified among the scion accessions. SNP-based genotyping further highlighted the allelic diversity of Australian rootstocks, suggesting a rich reservoir of genetic traits for rootstock improvement. These findings underscore the importance of preserving and utilizing genetic diversity in Australian passion fruit germplasm to drive the development of superior cultivars with enhanced adaptability and performance under diverse environmental conditions. Full article
Show Figures

Figure 1

16 pages, 2825 KiB  
Article
Bioremediation Potential of a Non-Axenic Cyanobacterium Synechococcus sp. for Municipal Wastewater Treatment in the Peruvian Amazon: Growth Kinetics, Ammonium Removal, and Biochemical Characterization Within a Circular Bioeconomy Framework
by Remy G. Cabezudo, Juan C. Castro, Carlos G. Castro, Hicler N. Rodriguez, Gabriela L. García, Paul M. Vizcarra, Carmen Ruiz-Huamán and Marianela Cobos
BioTech 2025, 14(2), 36; https://doi.org/10.3390/biotech14020036 - 13 May 2025
Viewed by 1427
Abstract
Effective wastewater management is critical for mitigating environmental and health impacts in ecologically sensitive regions like the Peruvian Amazon, where rapid urbanization has led to increased discharge of nutrient-rich effluents into freshwater systems. Conventional treatment methods often fail to address nutrient imbalances while [...] Read more.
Effective wastewater management is critical for mitigating environmental and health impacts in ecologically sensitive regions like the Peruvian Amazon, where rapid urbanization has led to increased discharge of nutrient-rich effluents into freshwater systems. Conventional treatment methods often fail to address nutrient imbalances while generating secondary pollutants. This study aims to evaluate the bioremediation potential of a non-axenic cyanobacterium, Synechococcus sp., isolated from the Amazon Basin, for municipal wastewater treatment within a circular bioeconomy framework. The strain was cultivated in different concentrations of municipal wastewater (25%, 50%, 75%, 100%) from Moronacocha Lake in the Peruvian Amazon to assess growth kinetics, ammonium removal efficiency, and biochemical composition. The cyanobacterium exhibited optimal performance in 25% wastewater, achieving the highest specific growth rate (22.8 × 10−2 μ·day−1) and biomass increase (393.2%), exceeding even the standard BG-11 medium. This treatment also demonstrated exceptional ammonium removal efficiency (95.4%) and enhanced phycocyanin production (33.6 μg/mg, 56% higher than the control). As wastewater concentration increased, both growth parameters and removal efficiency progressively declined. Biochemical analysis revealed that higher wastewater concentrations resulted in decreased protein content and increased lipid accumulation in the biomass. These findings demonstrate the dual potential of Synechococcus sp. for effective wastewater remediation and production of valuable biomass with modifiable biochemical characteristics, offering a sustainable approach for wastewater management in the Peruvian Amazon region. Full article
Show Figures

Figure 1

32 pages, 2714 KiB  
Article
Comparative Potential of Chitinase and Chitosanase from the Strain Bacillus thuringiensis B-387 for the Production of Antifungal Chitosan Oligomers
by Gleb Aktuganov, Alexander Lobov, Nailya Galimzianova, Elena Gilvanova, Lyudmila Kuzmina, Polina Milman, Alena Ryabova, Alexander Melentiev, Sergey Chetverikov, Sergey Starikov and Sergey Lopatin
BioTech 2025, 14(2), 35; https://doi.org/10.3390/biotech14020035 - 8 May 2025
Viewed by 3671
Abstract
The depolymerization of chitosan using chitinolytic enzymes is one of the most promising approaches for the production of bioactive soluble chitooligosaccharides (COS) due to its high specificity, environmental safety, mild reaction conditions, and potential for development. However, the comparative efficacy of bacterial chitinases [...] Read more.
The depolymerization of chitosan using chitinolytic enzymes is one of the most promising approaches for the production of bioactive soluble chitooligosaccharides (COS) due to its high specificity, environmental safety, mild reaction conditions, and potential for development. However, the comparative efficacy of bacterial chitinases and chitosanases in terms of yield, solubility, and antimicrobial activity of produced COS remains understudied. In this work, chitinase (73 kDa) and chitosanase (40 kDa) from the strain Bacillus thuringiensis B-387 (Bt-387) were purified using various chromatographic techniques and compared by their action on chitosan (DD 85%). The molecular mass and structure of generated COS was determined using TLC, LC-ESI-MS, HP-SEC, and C13-NMR techniques. Chitosanase converted the polymer more rapidly to short COS (GlcN2-GlcN4), than chitinase, and was more specific in its action on mixed bonds between GlcN and GlcNAc. Chitosanase needed a noticeably shorter incubation time and enzyme–substrate ratio than chitinase for production of larger oligomeric molecules (Mw 2.4–66.5 and 15.4–77.7 kDa, respectively) during controlled depolymerization of chitosan. Moreover, chitosanase-generated oligomers demonstrate better solubility and a higher antifungal activity in vitro against the tested plant pathogenic fungi. These features, as well as the high enzyme production and its simplified purification protocol, make chitosanase B-387 more suitable for the production of antifungal chitooligomers than chitinase. Full article
Show Figures

Graphical abstract

17 pages, 2839 KiB  
Article
Combined Effect of Spent Mushroom Substrate and Agro-Industrial Residues on Pleurotus columbinus Production and Intra-Cellular Polysaccharide Synthesis
by Marianna Dedousi, Chrysavgi Gardeli, Seraphim Papanikolaou and Panagiota Diamantopoulou
BioTech 2025, 14(2), 34; https://doi.org/10.3390/biotech14020034 - 2 May 2025
Viewed by 1144
Abstract
Spent mushroom substrate (SMS), spent coffee grounds from espresso production (SCG), faba bean harvest residues (FBR), pistachio shells (PS) wheat straw (WS) (control) agro-industrial waste were combined in different ratios, with or without supplements (wheat bran, soybean flour), to create novel substrates for [...] Read more.
Spent mushroom substrate (SMS), spent coffee grounds from espresso production (SCG), faba bean harvest residues (FBR), pistachio shells (PS) wheat straw (WS) (control) agro-industrial waste were combined in different ratios, with or without supplements (wheat bran, soybean flour), to create novel substrates for Pleurotus columbinus growth. The impact of the substrates on the mycelial growth rate (Kr), biomass production, laccase, total cellulases and carbohydrate synthesis, along with the C and N consumption by P. columbinus, were examined in fully colonized substrates. The incubation period, earliness and biological efficiency (B.E.) (%) were also determined. Then, the intracellular polysaccharide (ICP) contents of the P. columbinus produced mushrooms were evaluated in the most promising substrates. P. columbinus was grown successfully in a wide range of C/N ratios of substrates and the fastest Kr (7.6 mm/d) was detected on the 70 SMS-30 FBR, without supplements, whereas substrates consisting of SCG enhanced biomass production (700.0–803.7 mg/g d.w.). SMS and PS or SCG led to the shortest incubation and earliness period of P. columbinus. The C content was reduced and the N content was substantially increased in all the colonized substrates. The 70 SMS-30 FBR and 80 SMS considerably enhanced the laccase production (up to 59,933.4 U/g d.w.) and substrates consisting of PS promoted total cellulases activities. Greater amounts of carbohydrates (3.8–17.4 mg/g d.w.) than that in the control were recorded for all the substrates. The combination of SMS and SCG or WS led to the highest B.E. values (59.3–87.1%) and ICP amounts (34.7–45.9%, w/w), regardless of the supplement addition. These findings support the effective utilization of agro-industrial waste in P. columbinus cultivation, producing high-value-added compounds and supporting mushroom growth. Full article
Show Figures

Figure 1

27 pages, 10074 KiB  
Article
Innovations in Proteomic Technologies and Artificial Neural Networks: Unlocking Milk Origin Identification
by Achilleas Karamoutsios, Emmanouil D. Oikonomou, Chrysoula (Chrysa) Voidarou, Lampros Hatzizisis, Konstantina Fotou, Konstantina Nikolaou, Evangelia Gouva, Evangelia Gkiza, Nikolaos Giannakeas, Ioannis Skoufos and Athina Tzora
BioTech 2025, 14(2), 33; https://doi.org/10.3390/biotech14020033 - 28 Apr 2025
Viewed by 1459
Abstract
Milk’s biological origin determination, including its adulteration and authenticity, presents serious limitations, highlighting the need for innovative advanced solutions. The utilisation of proteomic technologies combined with personalised algorithms creates great potential for a more comprehensive approach to analysing milk samples effectively. The current [...] Read more.
Milk’s biological origin determination, including its adulteration and authenticity, presents serious limitations, highlighting the need for innovative advanced solutions. The utilisation of proteomic technologies combined with personalised algorithms creates great potential for a more comprehensive approach to analysing milk samples effectively. The current study presents an innovative approach utilising proteomics and neural networks to classify and distinguish bovine, ovine and caprine milk samples by employing advanced machine learning techniques; we developed a precise and reliable model capable of distinguishing the unique mass spectral signatures associated with each species. Our dataset includes a diverse range of mass spectra collected from milk samples after MALDI-TOF MS (Matrix-assisted laser desorption/ionization-time of flight mass spectrometry) analysis, which were used to train, validate, and test the neural network model. The results indicate a high level of accuracy in species identification, underscoring the model’s potential applications in dairy product authentication, quality assurance, and food safety. The current research offers a significant contribution to agricultural science, providing a cutting-edge method for species-specific classification through mass spectrometry. The dataset comprises 648, 1554, and 2392 spectra, represented by 16,018, 38,394, and 55,055 eight-dimensional vectors from bovine, caprine, and ovine milk, respectively. Full article
Show Figures

Figure 1

21 pages, 2688 KiB  
Article
Production of Multifunctional Hydrolysates from the Lupinus mutabilis Protein Using a Micrococcus sp. PC7 Protease
by Keyla Sofía Llontop-Bernabé, Arturo Intiquilla, Carlos Ramirez-Veliz, Marco Santos, Karim Jiménez-Aliaga, Amparo Iris Zavaleta, Samuel Paterson and Blanca Hernández-Ledesma
BioTech 2025, 14(2), 32; https://doi.org/10.3390/biotech14020032 - 27 Apr 2025
Cited by 1 | Viewed by 1023
Abstract
The growing demand for functional foods has driven the search for bioactive compounds derived from plant proteins. Lupinus mutabilis “Tarwi”, a legume native to the Peruvian Andes, stands out for its high protein content and potential as a source of bioactive peptides (BPs). [...] Read more.
The growing demand for functional foods has driven the search for bioactive compounds derived from plant proteins. Lupinus mutabilis “Tarwi”, a legume native to the Peruvian Andes, stands out for its high protein content and potential as a source of bioactive peptides (BPs). In this study, the functionality of the proteins contained in the albumin fraction (AF) isolated by tangential ultrafiltration (TFF) was investigated by using the OmicsBox software. The identified proteins were functionally classified into three groups: cellular component (35.57%), molecular function (33.45%), and biological process (30.97%). The isolated AF was hydrolysed with the native protease PC7 (HAP), optimizing the E/S ratio and time parameters. Additionally, sequential hydrolysis of the PC7 protease and alcalase (HAPA) was performed. In vitro multifunctionality assays, HAP and HAPA demonstrated the ability to scavenge radicals (ABTS and ORAC) and inhibit angiotensin-converting enzyme (ACE)-I and dipeptidyl peptidase IV (DPP-IV). The findings of this study highlight the potential of L. mutabilis albumin hydrolysate as a multifunctional ingredient for functional foods aimed at managing chronic conditions associated with oxidative stress, hypertension, and/or metabolic disorders. Full article
Show Figures

Figure 1

14 pages, 5306 KiB  
Article
Vaginal Microbiota Patterns Associated with Yeast Infection in Mexican Women, a Pilot Study
by Janet Pineda-Díaz, Carolina Miranda-Brito, Carmen Josefina Juárez-Castelán, Alberto Piña-Escobedo, Noemí del Socorro Lázaro-Pérez, Alejandra de la Cruz-Munguía, Daniela Ramírez-Sánchez, Yuliana Gómez-Meraz, Juan Manuel Vélez-Ixta and Jaime García-Mena
BioTech 2025, 14(2), 31; https://doi.org/10.3390/biotech14020031 - 26 Apr 2025
Viewed by 1248
Abstract
Recurrent vulvovaginal candidiasis (RVVC) is a common condition that affects women of reproductive age. The etiology of RVVC remains largely unknown, but it is believed to be associated with changes in vaginal microbiota composition. This study investigates the vaginal microbiota in 57 women [...] Read more.
Recurrent vulvovaginal candidiasis (RVVC) is a common condition that affects women of reproductive age. The etiology of RVVC remains largely unknown, but it is believed to be associated with changes in vaginal microbiota composition. This study investigates the vaginal microbiota in 57 women with RVVC and 38 healthy controls. Bacterial DNA was analyzed using high-throughput 16S rRNA gene sequencing, and Candida and Saccharomyces species were determined by PCR. RVVC cases had a higher prevalence of Nakaseomyses glabratus (former Candida glabrata) compared to controls. Alpha diversity metrics were similar between groups, but beta diversity analysis revealed significant differences in vaginal microbiota composition. The Firmicutes abundance was altered in RVVC cases, with genus Bifidobacterium and phylum Actinobacteriota being more abundant than in the controls. At the genus level, Lactobacillus dominated controls using antibiotics, while Bifidobacterium was higher in cases with no antibiotic intake. Our study provides evidence that Nakaseomyses glabratus (former Candida glabrata) is a significant pathogen in RVVC, while Candida albicans was more prevalent in healthy women. The vaginal microbiota composition differs significantly between the two groups, with distinct patterns of bacterial abundance and changes in Firmicutes abundance. Full article
Show Figures

Figure 1

13 pages, 2641 KiB  
Article
Characterization and Biotechnology of Three New Strains of Basidial Fungi as Promising Sources of Biologically Active Substances
by Maria Alexandrovna Sysoeva, Ilyuza Shamilevna Prozorova, Elena Vladislavovna Sysoeva, Tatyana Vladimirovna Grigoryeva and Ruzilya Kamilevna Ismagilova
BioTech 2025, 14(2), 30; https://doi.org/10.3390/biotech14020030 - 25 Apr 2025
Viewed by 1036
Abstract
The study of new strains of basidiomycetes as sources of biologically active substances is a promising direction in modern biotechnology. This work aims to isolate new cultures of the fungi Daedaleopsis tricolor, Pycnoporellus fulgens and Trichaptum abietinum from natural fruiting bodies and [...] Read more.
The study of new strains of basidiomycetes as sources of biologically active substances is a promising direction in modern biotechnology. This work aims to isolate new cultures of the fungi Daedaleopsis tricolor, Pycnoporellus fulgens and Trichaptum abietinum from natural fruiting bodies and to improve their growth conditions on solid nutrient media. The identification of fungi was performed based on their morphological features and using the Sanger sequencing method. Cultivation was carried out by placing inoculum in the middle of a Petri dish and at the edge, which provided a more comprehensive definition of the characteristics of colonies and fungus hyphae. New strains were registered in Genbank Overview. The optimal cultivation temperature was 27 °C for all studied strains. The highest radial growth was observed on synthetic medium for D. tricolor (5.26 mm/day) and T. abietinum (7.5 mm/day), and on synthetic medium with lignin for P. fulgens (2.98 mm/day). The biomass amount of D. tricolor KS11 was 133.25 mg at 9 days of cultivation, that of P. fulgens KS12 was 86.73 mg at 16 days, and that of T. abietinum KS10 was 227.33 mg at 6 days. New strains of fungi can be used to obtain biologically active substances for the food, pharmaceutical and cosmetic industries. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

12 pages, 3005 KiB  
Article
Direct Shoot Regeneration from the Finger Millet’s In Vitro-Derived Shoot Apex and Genetic Fidelity Study with ISSR Markers
by Theivanayagam Maharajan, Veeramuthu Duraipandiyan and Thumadath Palayullaparambil Ajeesh Krishna
BioTech 2025, 14(2), 29; https://doi.org/10.3390/biotech14020029 - 18 Apr 2025
Viewed by 883
Abstract
Globally, people are cultivating finger millet, an important cereal, to improve food availability and health benefits for humans. However, the biotechnological research on this millet is limited and insufficient in this field. The primary focus of this study is to optimize an efficient [...] Read more.
Globally, people are cultivating finger millet, an important cereal, to improve food availability and health benefits for humans. However, the biotechnological research on this millet is limited and insufficient in this field. The primary focus of this study is to optimize an efficient regenerated protocol for initiating further plant transformation studies, using the shoot apex as an explant and various growth regulators. For example, three cytokinins (BAP, TDZ, and Kin) at different concentrations were used to induce multiple shoots of finger millet. Among these, TDZ (4.5 µM) provided the maximum number (17.3) of shoots as compared to BAP and Kin. IBA (2.46 µM), along with MS medium, was used for the induction of roots, where 5.6 roots were produced in an individual shoot and the length of the root was longer with a size of 8.2 cm after two weeks of incubation. The clonal fidelity of the in vitro regenerated plantlets of finger millet was confirmed by ISSR primers. Overall, the present work developed a robust and reliable procedure for the establishment of efficient and reproducible regeneration through the shoot apex that will be useful for the genetic improvement of this crop. The genetic enhancement of these millets as well as the successful creation of transgenic plant varieties modified for resistance to biotic and abiotic challenges in the near future would be aided by this study. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

26 pages, 1171 KiB  
Review
Matrix Metalloproteinases in Glioma: Drivers of Invasion and Therapeutic Targets
by Ella E. Aitchison, Alexandra M. Dimesa and Alireza Shoari
BioTech 2025, 14(2), 28; https://doi.org/10.3390/biotech14020028 - 15 Apr 2025
Viewed by 1305
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteolytic enzymes that are crucial for the remodeling of the extracellular matrix, a process that is often co-opted by cancers, including brain tumors, to facilitate growth, invasion, and metastasis. In gliomas, MMPs contribute to a [...] Read more.
Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteolytic enzymes that are crucial for the remodeling of the extracellular matrix, a process that is often co-opted by cancers, including brain tumors, to facilitate growth, invasion, and metastasis. In gliomas, MMPs contribute to a complex interplay involving tumor proliferation, angiogenesis, and immune modulation, thereby influencing tumor progression and patient prognosis. This review provides a comprehensive analysis of the roles of various MMPs in different types of gliomas, from highly malignant gliomas to metastatic lesions. Emphasis is placed on how the dysregulation of MMPs impacts tumor behavior, the association between specific MMPs and the tumor grade, and their potential as biomarkers for diagnosis and prognosis. Additionally, the current therapeutic approaches targeting MMP activity are discussed, exploring both their challenges and future potential. By synthesizing recent findings, this paper aims to clarify the broad significance of MMPs in gliomas and propose avenues for translational research that could enhance treatment strategies and clinical outcomes. Full article
(This article belongs to the Section Medical Biotechnology)
Show Figures

Figure 1

18 pages, 2479 KiB  
Article
AsNAC Genes: Response to High Mercury Concentrations in Allium sativum Seed Clove
by Brenda Mendoza-Almanza, María de la Luz Guerrero-González, Marcos Loredo-Tovias, María Elena García-Arreola, Catarina Loredo-Osti, Erika Padilla-Ortega and Pablo Delgado-Sánchez
BioTech 2025, 14(2), 27; https://doi.org/10.3390/biotech14020027 - 8 Apr 2025
Viewed by 556
Abstract
Heavy metal contamination in soils is a growing concern due to anthropogenic activities, and Allium sativum (garlic) has shown tolerance to mercury pollution. We analyzed the physiological and molecular responses of garlic cloves exposed to HgCl2 at 0, 5000, 23,000, and 46,000 [...] Read more.
Heavy metal contamination in soils is a growing concern due to anthropogenic activities, and Allium sativum (garlic) has shown tolerance to mercury pollution. We analyzed the physiological and molecular responses of garlic cloves exposed to HgCl2 at 0, 5000, 23,000, and 46,000 mg/kg for 2, 3, and 4 h. The germination percentage was lower than 46,000 mg/kg Hg for 4 h. We also analyzed the expression levels of NAC transcription factors and found that AsNAC11 had higher expression at 46,000 mg/kg at 2 h; AsNAC17 was underexpressed and the maximum was at 2 h at 23,000 mg/kg. AsNAC20 had the highest expression (30 times more than the control) at 3 and 4 h with 23,000 mg/Kg. AsNAC27 showed the highest expression at 3 h with 23,000 mg/kg. The tissues exhibited a maximum Hg bioconcentration factor of 0.037 at 23,000 mg/kg, indicating moderate mercury absorption. However, at a concentration of 46,000 mg/kg, the BCF decreased to 0.023. Our in-silico analysis revealed that the analyzed AsNACs are associated with various abiotic stress responses. This study provides valuable insights into genes that could be utilized for genetic improvement to enhance crop resistance to mercury soil contamination. Full article
(This article belongs to the Section Environmental Biotechnology)
Show Figures

Graphical abstract

13 pages, 1406 KiB  
Review
A Review of Classical and Rising Approaches the Extraction and Utilization of Marine Collagen
by Cesia Deyanira Gutierrez-Canul, Luis Alfonso Can-Herrera, Emmanuel de Jesús Ramírez-Rivera, Witoon Prinyawiwatkul, Enrique Sauri-Duch, Victor Manuel Moo-Huchin and Emanuel Hernández-Núñez
BioTech 2025, 14(2), 26; https://doi.org/10.3390/biotech14020026 - 3 Apr 2025
Viewed by 1112
Abstract
This comprehensive review explores the extraction and utilization of marine collagen, a sustainable alternative to traditional mammalian sources. The review covers conventional extraction methods like acid and pepsin solubilization, highlighting their limitations and contributing to the search for improved efficiency and sustainability. It [...] Read more.
This comprehensive review explores the extraction and utilization of marine collagen, a sustainable alternative to traditional mammalian sources. The review covers conventional extraction methods like acid and pepsin solubilization, highlighting their limitations and contributing to the search for improved efficiency and sustainability. It also delves into innovative extraction technologies, such as ultrasound-assisted extraction, deep eutectic solvents, and supercritical carbon dioxide, showing their potential to revolutionize the field. The significance of collagen hydrolysis in generating bioactive peptides with diverse functionalities is also discussed, emphasizing their potential applications in various sectors. By providing an analysis of marine collagen extraction and its implications, this review presents a perspective for leveraging this valuable bioresource, promoting a circular economy, and satisfying the increasing demand for high-quality collagen in diverse industries. Full article
Show Figures

Figure 1

17 pages, 1547 KiB  
Article
Green Biocatalysis of Xylitol Monoferulate: Candida antarctica Lipase B-Mediated Synthesis and Characterization of Novel Bifunctional Prodrug
by Federico Zappaterra, Francesco Presini, Domenico Meola, Chaimae Chaibi, Simona Aprile, Lindomar Alberto Lerin and Pier Paolo Giovannini
BioTech 2025, 14(2), 25; https://doi.org/10.3390/biotech14020025 - 2 Apr 2025
Viewed by 703
Abstract
Natural compounds with significant bioactive properties can be found in abundance within biomasses. Especially prominent for their anti-inflammatory, neuroprotective, antibacterial, and antioxidant activities are cinnamic acid derivatives (CAs). Ferulic acid (FA), a widely studied phenylpropanoid, exhibits a broad range of therapeutic and nutraceutical [...] Read more.
Natural compounds with significant bioactive properties can be found in abundance within biomasses. Especially prominent for their anti-inflammatory, neuroprotective, antibacterial, and antioxidant activities are cinnamic acid derivatives (CAs). Ferulic acid (FA), a widely studied phenylpropanoid, exhibits a broad range of therapeutic and nutraceutical applications, demonstrating antidiabetic, anticancer, antimicrobial, and hepato- and neuroprotective activities. This research investigates the green enzymatic synthesis of innovative and potentially bifunctional prodrug derivatives of FA, designed to enhance solubility and stability profiles. Selective esterification was employed to conjugate FA with xylitol, a biobased polyol recognized for its bioactive antioxidant properties and safety profile. Furthermore, by exploiting t-amyl alcohol as a green solvent, the enzymatic synthesis of the derivative was optimized for reaction parameters including temperature, reaction time, enzyme concentration, and molar ratio. The synthesized derivative, xylitol monoferulate (XMF), represents a novel contribution to the literature. The comprehensive characterization of this compound was achieved using advanced spectroscopic methods, including 1H-NMR, 13C-NMR, COSY, HSQC, and HMBC. This study represents a significant advancement in the enzymatic synthesis of high-value biobased derivatives, demonstrating increased biological activities and setting the stage for future applications in green chemistry and the sustainable production of bioactive compounds. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

23 pages, 581 KiB  
Article
Screening of Non-Conventional Yeasts on Low-Cost Carbon Sources and Valorization of Mizithra Secondary Cheese Whey for Metabolite Production
by Gabriel Vasilakis, Rezart Tefa, Antonios Georgoulakis, Dimitris Karayannis, Ioannis Politis and Seraphim Papanikolaou
BioTech 2025, 14(2), 24; https://doi.org/10.3390/biotech14020024 - 1 Apr 2025
Viewed by 604
Abstract
The production of microbial metabolites such as (exo)polysaccharides, lipids, or mannitol through the cultivation of microorganisms on sustainable, low-cost carbon sources is of high interest within the framework of a circular economy. In the current study, two non-extensively studied, non-conventional yeast strains, namely, [...] Read more.
The production of microbial metabolites such as (exo)polysaccharides, lipids, or mannitol through the cultivation of microorganisms on sustainable, low-cost carbon sources is of high interest within the framework of a circular economy. In the current study, two non-extensively studied, non-conventional yeast strains, namely, Cutaneotrichosporon curvatus NRRL YB-775 and Papiliotrema laurentii NRRL Y-3594, were evaluated for their capability to grow on semi-defined lactose-, glycerol-, or glucose-based substrates and produce value-added metabolites. Three different nitrogen-to-carbon ratios (i.e., 20, 80, 160 mol/mol) were tested in shake-flask batch experiments. Pretreated secondary cheese whey (SCW) was used for fed-batch bioreactor cultivation of P. laurentii NRRL Y-3594, under nitrogen limitation. Based on the screening results, both strains can grow on low-cost substrates, yielding high concentrations of microbial biomass (>20 g/L) under nitrogen-excess conditions, with polysaccharides comprising the predominant component (>40%, w/w, of dry biomass). Glucose- and glycerol-based cultures of C. curvatus promote the secretion of mannitol (13.0 g/L in the case of glucose, under nitrogen-limited conditions). The lipids (maximum 2.2 g/L) produced by both strains were rich in oleic acid (≥40%, w/w) and could potentially be utilized to produce second-generation biodiesel. SCW was nutritionally sufficient to grow P. laurentii strain, resulting in exopolysaccharides secretion (25.6 g/L), along with dry biomass (37.9 g/L) and lipid (4.6 g/L) production. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop