A Review of Classical and Rising Approaches the Extraction and Utilization of Marine Collagen
Abstract
:1. Introduction
2. Extracting Fish Collagen
2.1. Pretreatment of Raw Fish Material
2.2. Acid and Pepsin-Based Methods for Obtaining Fish Collagen
2.3. Ultrasound-Assisted Extraction
2.4. Arising Technologies for Fish Collagen Extraction
2.5. Application of Various Forms of Collagen Extraction
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three-letter acronym |
LD | Linear dichroism |
References
- Benjakul, S.; Nalinanon, S.; Shahidi, F. Fish Collagen. In Food Biochemistry and Food Processing, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 365–387. [Google Scholar] [CrossRef]
- Gauza-Włodarczyk, M.; Kubisz, L.; Mielcarek, S.; Włodarczyk, D. Comparison of thermal properties of fish collagen and bovine collagen in the temperature range 298–670 K. Mater. Sci. Eng. C 2017, 80, 468–471. [Google Scholar] [CrossRef]
- Sousa, R.O.; Martins, E.; Carvalho, D.N.; Alves, A.L.; Oliveira, C.; Duarte, A.R.C.; Silva, T.H.; Reis, R.L. Collagen from Atlantic cod (Gadus morhua) skins extracted using CO2 acidified water with potential application in healthcare. J. Polym. Res. 2020, 27, 73. [Google Scholar] [CrossRef]
- Pal, G.K.; Suresh, P. Sustainable valorisation of seafood by-products: Recovery of collagen and development of collagen-based novel functional food ingredients. Innov. Food Sci. Emerg. Technol. 2016, 37, 201–215. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, X.; Li, T.; Yang, H.; Zhang, H.; Regenstein, J.M.; Zhou, P. Extraction and characterization of acid- and pepsin-soluble collagens from the scales, skins and swim-bladders of grass carp (Ctenopharyngodon idella). Food Biosci. 2015, 9, 68–74. [Google Scholar] [CrossRef]
- Jeong, H.S.; Venkatesan, J.; Kim, S.K. Isolation and characterization of collagen from marine fish (Thunnus obesus). Biotechnol. Bioprocess Eng. 2013, 18, 1185–1191. [Google Scholar] [CrossRef]
- Lino-Sánchez, A.; González-Vélez, V.; Vélez, M.; Aguilar-Pliego, J. Extraction and characterization of type i collagen from scales of Mexican Biajaiba fish. Open Chem. 2023, 21, 20230134. [Google Scholar] [CrossRef]
- Petcharat, T.; Benjakul, S.; Karnjanapratum, S.; Nalinanon, S. Ultrasound-assisted extraction of collagen from clown featherback (Chitala ornata) skin: Yield and molecular characteristics. J. Sci. Food Agric. 2021, 101, 648–658. [Google Scholar] [CrossRef]
- Vate, N.K.; Undeland, I.; Abdollahi, M. Resource efficient collagen extraction from common starfish with the aid of high shear mechanical homogenization and ultrasound. Food Chem. 2022, 393, 133426. [Google Scholar] [CrossRef]
- Shaik, M.I.; Chong, J.Y.; Sarbon, N.M. Effect of ultrasound-assisted extraction on the extractability and physicochemical properties of acid and pepsin soluble collagen derived from Sharpnose stingray (Dasyatis zugei) skin. Biocatal. Agric. Biotechnol. 2021, 38, 102218. [Google Scholar] [CrossRef]
- Razali, U.H.M.; Juraimy, A.M.M.; Jusoh, Y.M.M.; Dailin, D.J.; Ya’Akob, H.; Zainool, N.; Zaidel, D.N.A. Effect of Ultrasonic Amplitude on the Yield and Properties of Barramundi (Lates calcarifer) Skin Collagen. J. Trop. Life Sci. 2023, 13, 247–256. [Google Scholar] [CrossRef]
- Cao, L.; Majura, J.J.; Liu, L.; Cao, W.; Chen, Z.; Zhu, G.; Gao, J.; Zheng, H.; Lin, H. The cryoprotective activity of tilapia skin collagen hydrolysate and the structure elucidation of its antifreeze peptide. LWT 2023, 179, 114670. [Google Scholar] [CrossRef]
- Ali, A.M.M.; Kishimura, H.; Benjakul, S. Extraction efficiency and characteristics of acid and pepsin soluble collagens from the skin of golden carp (Probarbus jullieni) as affected by ultrasonication. Process Biochem. 2018, 66, 237–244. [Google Scholar] [CrossRef]
- Cruz-López, H.; Rodríguez-Morales, S.; Enríquez-Paredes, L.M.; Villarreal-Gómez, L.J.; Olivera-Castillo, L.; Cortes-Santiago, Y.; López, L.M. Comparison of collagen characteristic from the skin and swim bladder of Gulf corvina (Cynoscion othonopterus). Tissue Cell 2021, 72, 101593. [Google Scholar] [CrossRef] [PubMed]
- Zamorano-Apodaca, J.C.; García-Sifuentes, C.O.; Carvajal-Millán, E.; Vallejo-Galland, B.; Scheuren-Acevedo, S.M.; Lugo-Sánchez, M.E. Biological and functional properties of peptide fractions obtained from collagen hydrolysate derived from mixed by-products of different fish species. Food Chem. 2020, 331, 127350. [Google Scholar] [CrossRef]
- Zaelani, B.; Safithri, M.; Tarman, K.; Setyaningsih, I.; Meydia. Collagen isolation with acid soluble method from the skin of Red Snapper (lutjanus sp.). IOP Conf. Ser. Earth Environ. Sci. 2019, 241, 012033. [Google Scholar] [CrossRef]
- Pezeshk, S.; Rezaei, M.; Abdollahi, M. Impact of ultrasound on extractability of native collagen from tuna by-product and its ultrastructure and physicochemical attributes. Ultrason. Sonochem. 2022, 89, 106129. [Google Scholar] [CrossRef]
- Abdollahi, M.; Rezaei, M.; Jafarpour, A.; Undeland, I. Sequential extraction of gel-forming proteins, collagen and collagen hydrolysate from gutted silver carp (Hypophthalmichthys molitrix), a biorefinery approach. Food Chem. 2018, 242, 568–578. [Google Scholar] [CrossRef]
- Chen, J.; Li, L.; Yi, R.; Xu, N.; Gao, R.; Hong, B. Extraction and characterization of acid-soluble collagen from scales and skin of tilapia (Oreochromis niloticus). LWT-Food. Sci. Technol. 2016, 66, 453–459. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Kuo, J.-M.; Wu, S.-J.; Tsai, H.-T. Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion–hydro-extraction process. Food Chem. 2016, 190, 997–1006. [Google Scholar] [CrossRef]
- García-Sifuentes, C.O.; Zamorano-Apodaca, J.C.; Martinez-Porchas, M.; Scheuren-Acevedo, S.M.; Mazorra-Manzano, M.A. Aislamiento y propiedades de colágeno extraído de una mezcla de subproductos de diferentes especies de pescado. Biotecnia 2021, 23, 109–116. [Google Scholar] [CrossRef]
- Medina-Medrano, J.R.; Quiñones-Muñoz, T.A.; Arce-Ortíz, A.; Torruco-Uco, J.G.; Hernández-Martínez, R.; Lizardi-Jiménez, M.A.; Varela-Santos, E. Antioxidant Activity of Collagen Extracts Obtained from the Skin and Gills of Oreochromis sp. J. Med. Food 2019, 22, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, G.K.S.; Sharma, D.; Balakrishnan, R.M.; Ettiyappan, J.B.P. Extraction, optimization and characterization of collagen from sole fish skin. Sustain. Chem. Pharm. 2018, 9, 19–26. [Google Scholar] [CrossRef]
- Bhuimbar, M.V.; Bhagwat, P.K.; Dandge, P.B. Extraction and characterization of acid soluble collagen from fish waste: Development of collagen-chitosan blend as food packaging film. J. Environ. Chem. Eng. 2019, 7, 102983. [Google Scholar] [CrossRef]
- Heidari, M.G.; Rezaei, M. Extracted pepsin of trout waste and ultrasound-promoted method for green recovery of fish collagen. Sustain. Chem. Pharm. 2022, 30, 100854. [Google Scholar] [CrossRef]
- Song, K.-M.; Jung, S.K.; Kim, Y.E.; Lee, N.H. Development of industrial ultrasound system for mass production of collagen and biochemical characteristics of extracted collagen. Food Bioprod. Process. 2018, 110, 96–103. [Google Scholar] [CrossRef]
- Gallego-Juárez, J.A. Basic Principles of Ultrasound. In Ultrasound Food Process; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 1–26. [Google Scholar] [CrossRef]
- Bavisetty, S.C.B.; Karnjanapratum, S.; Dave, J.; Purba, D.T.P.; Kudre, T.; Maser, W.H.; Maiyah, N.; Kingwascharapong, P.; Ali, A.M.M. Ultrasonication on Collagen Yield, Physiochemical and Structural Properties from Seabass (Lates calcarifer) Scales as Affected by Pretreatment and Extraction Conditions. Nat. Life Sci. Commun. 2024, 23, e2024003. [Google Scholar] [CrossRef]
- Kim, H.K.; Kim, Y.H.; Kim, Y.J.; Park, H.J.; Lee, N.H. Effects of ultrasonic treatment on collagen extraction from skins of the sea bass Lateolabrax japonicus. Fish. Sci. 2012, 78, 485–490. [Google Scholar] [CrossRef]
- Sun, M.; Wei, X.; Wang, H.; Xu, C.; Wei, B.; Zhang, J.; He, L.; Xu, Y.; Li, S. Structure Restoration of Thermally Denatured Collagen by Ultrahigh Pressure Treatment. Food Bioprocess Technol. 2020, 13, 367–378. [Google Scholar] [CrossRef]
- Kim, H.K.; Kim, Y.H.; Park, H.J.; Lee, N.H. Application of ultrasonic treatment to extraction of collagen from the skins of sea bass Lateolabrax japonicus. Fish. Sci. 2013, 79, 849–856. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef]
- El Maaiden, E.; El Kahia, H.; Nasser, B.; Moustaid, K.; Qarah, N.; Boukcim, H.; Hirich, A.; Kouisni, L.; El Kharrassi, Y. Deep eutectic solvent-ultrasound assisted extraction as a green approach for enhanced extraction of naringenin from Searsia tripartita and retained their bioactivities. Front. Nutr. 2023, 10, 1193509. [Google Scholar] [CrossRef] [PubMed]
- Bisht, M.; Martins, M.; Dias, A.C.R.V.; Ventura, S.P.M.; Coutinho, J.A.P. Uncovering the potential of aqueous solutions of deep eutectic solvents on the extraction and purification of collagen type I from Atlantic codfish (Gadus morhua). Green Chem. 2021, 23, 8940–8948. [Google Scholar] [CrossRef]
- Silva, I.; Vaz, B.M.; Sousa, S.; Pintado, M.M.; Coscueta, E.R.; Ventura, S.P. Gastrointestinal delivery of codfish Skin-Derived collagen Hydrolysates: Deep eutectic solvent extraction and bioactivity analysis. Food Res. Int. 2024, 175, 113729. [Google Scholar] [CrossRef]
- Bai, C.; Wei, Q.; Ren, X. Selective Extraction of Collagen Peptides with High Purity from Cod Skins by Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2017, 5, 7220–7227. [Google Scholar] [CrossRef]
- Brito, I.P.C.; Silva, E.K. Pulsed electric field technology in vegetable and fruit juice processing: A review. Food Res. Int. 2024, 184, 114207. [Google Scholar] [CrossRef]
- He, G.; Yan, X.; Wang, X.; Wang, Y. Extraction and structural characterization of collagen from fishbone by high intensity pulsed electric fields. J. Food Process. Eng. 2019, 42, e13214. [Google Scholar] [CrossRef]
- Gouarderes, S.; Ober, C.; Doumard, L.; Dandurand, J.; Vicendo, P.; Fourquaux, I.; Golberg, A.; Samouillan, V.; Gibot, L. Pulsed Electric Fields Induce Extracellular Matrix Remodeling through Matrix Metalloproteinases Activation and Decreased Collagen Production. J. Investig. Dermatol. 2022, 142, 1326–1337.e9. [Google Scholar] [CrossRef]
- Lin, C.-C.; Wu, P.-T.; Chang, C.-W.; Lin, R.-W.; Wang, G.-J.; Jou, I.-M.; Lai, K.-A. A single-pulsed electromagnetic field enhances collagen synthesis in tendon cells. Med. Eng. Phys. 2020, 77, 130–136. [Google Scholar] [CrossRef]
- Jafari, H.; Lista, A.; Siekapen, M.M.; Ghaffari-Bohlouli, P.; Nie, L.; Alimoradi, H.; Shavandi, A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers 2020, 12, 2230. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Prabhakaran, M.P.; Sireesha, M.; Ramakrishna, S. Collagen in Human Tissues: Structure, Function, and Biomedical Implications from a Tissue Engineering Perspective. Adv. Polym. Sci. 2012, 251, 173–206. [Google Scholar] [CrossRef]
- Jin, S.; Sun, F.; Zou, Q.; Huang, J.; Zuo, Y.; Li, Y.; Wang, S.; Cheng, L.; Man, Y.; Yang, F.; et al. Fish Collagen and Hydroxyapatite Reinforced Poly(lactide-co-glycolide) Fibrous Membrane for Guided Bone Regeneration. Biomacromolecules 2019, 20, 2058–2067. [Google Scholar] [CrossRef]
- Zhu, L.; Xiao, Y.; Zhu, H.; Zuo, L.; Sun, C.; Lei, M.; Zhang, J.; Wei, B.; Qi, C.; Wang, H. Fish-Derived Collagen: A Promising Biomaterial for Regulating the Migration Behavior of MCF-7 Cells. Adv. Eng. Mater. 2024, 26, 2400415. [Google Scholar] [CrossRef]
- Hema, G.S.; Joshy, C.G.; Shyni, K.; Chatterjee, N.S.; Ninan, G.; Mathew, S. Optimization of process parameters for the production of collagen peptides from fish skin (Epinephelus malabaricus) using response surface methodology and its characterization. J. Food Sci. Technol. 2017, 54, 488–496. [Google Scholar] [CrossRef]
- Nguyen, B.C.; Kha, T.C.; Nguyen, K.H.N.; Nguyen, H.M.X. Optimization of enzymatic hydrolysis of collagen from yellowfin tuna skin (Thunnus albacares) by response surface methodology and properties of hydrolyzed collagen. J. Food Process. Preserv. 2021, 45, e15319. [Google Scholar] [CrossRef]
- Chotphruethipong, L.; Binlateh, T.; Hutamekalin, P.; Sukketsiri, W.; Aluko, R.E.; Benjakul, S. In vitro antioxidant and wound-healing activities of hydrolyzed collagen from defatted Asian sea bass skin as influenced by different enzyme types and hydrolysis processes. RSC Adv. 2021, 11, 18144–18151. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.; Chun, B.S. Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen. J. Supercrit. Fluids 2018, 141, 88–96. [Google Scholar] [CrossRef]
- Álvarez-Viñas, M.; Rodríguez-Seoane, P.; Flórez-Fernández, N.; Torres, M.D.; Díaz-Reinoso, B.; Moure, A.; Domínguez, H. Subcritical Water for the Extraction and Hydrolysis of Protein and Other Fractions in Biorefineries from Agro-food Wastes and Algae: A Review. Food Bioprocess Technol. 2020, 14, 373–387. [Google Scholar] [CrossRef]
- Hernández-Ruiz, K.L.; López-Cervantes, J.; Sánchez-Machado, D.I.; Campas-Baypoli, O.N.; Quintero-Guerrero, A.A.; Grijalva-Delgado, M.d.L.; Chávez-Almanza, A.F. Collagen peptide fractions from tilapia (Oreochromis aureus Steindachner, 1864) scales: Chemical characterization and biological activity. Food Biosci. 2023, 53, 102658. [Google Scholar] [CrossRef]
- Fimbres-Romero, M.d.J.; Cabrera-Chávez, F.; Ezquerra-Brauer, J.M.; Márquez-Ríos, E.; Suárez-Jiménez, G.M.; Del Toro-Sanchez, C.L.; Ramírez-Torres, G.I.; Torres-Arreola, W. Utilisation of collagenolytic enzymes from sierra fish (Scomberomorus sierra) and jumbo squid (Dosidicus gigas) viscera to generate bioactive collagen hydrolysates from jumbo squid muscle. J. Food Sci. Technol. 2021, 58, 2725–2733. [Google Scholar] [CrossRef]
- Chel-Guerrero, L.; Cua-Aguayo, D.; Betancur-Ancona, D.; Chuc-Koyoc, A.; Aranda-González, I.; Gallegos-Tintoré, S. Antioxidant and chelating activities from Lion fish (Pterois volitans L.) muscle protein hydrolysates produced by in vitro digestion using pepsin and pancreatin. Emir. J. Food Agric. 2020, 32, 62–72. [Google Scholar] [CrossRef]
Specie | Habitat | Tissue | Collagen Type | Extraction Method | Yield (%) | Ref |
---|---|---|---|---|---|---|
Mixed byproducts | Mexico | Skin Heads Skeleton | I | 0.5 M acetic acid 1:10 w/v 24 h 25 °C | 68.39% protein content | [15] |
Lutjanus synagris | Gulf of Mexico | Scales | I | 0.1% Pepsin 0.5 M Acetic acid 1:10 w/v 72 h | 1% collagen dry weight | [7] |
Cynoscion othonopterus | Gulf of Mexico | Skin Swim bladder | I | 2% w/w Pepsin in 0.5 M Acetic acid 1:40 w/v 24 h 4 °C | 82% (skin) 69% (swim bladder) Collagen Dry weight | [14] |
Discarded fish products | Mexico | Leftovers | I | 0.5 M Acetic acid 0.01% Pepsin 24 h | 4.4% (ASC) 2.2% (PSC) Wet weight | [21] |
Oreochromis sp. | Mexico | Skin Gills | I | Sequentially 0.05 M Tris, pH 7.2 0.5 M Acetic acid 1% w/w pepsin | 1.46% 3.02% 2.52% Collagen Dry weight | [22] |
Sole fish | India | Skin | I | 0.54 M acetic acid 1.9 M NaCl 8.97 mL/g solvent/solid 32.32 h | 19.27 mg/g protein content | [23] |
Centrolophus niger | India | Skin | I | 0.5 M lactic acid 0.5 M acetic acid 4 °C 72 h | 45% wet basis 25% | [24] |
Thunnus albacares | Iran | Fin skin | I | 0.05 M acetic acid 1:30 w/v US 20 kHz, 300 W 25 min 3–5 °C | 57% protein dry weight | [17] |
Thunnus albacares | Iran | Fin skin | I | 1% pepsin extract 0.5 M acetic acid 1:30 w/v US 400 W 15 min | 23% protein dry weight | [25] |
Paralichthys olivaceus | Korea | Skin | I | 0.05 M acetic acid US 20 kHz 4 °C | 31.3% (1.5 h) 46.2% (3 h) Protein dry weight | [26] |
ASC | PSC | Ref | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Source | Gly | Pro | Hyp | Td (°C) | dH (J/g) | Gly | Pro | Hyp | Td (°C) | dH (J/g) | |
Mixed byproducts | 180.5 mg/g | 82.7 mg/g | 43.9 mg/g | [15] | |||||||
Cynoscion othonopterus skin | 316 * | 117 * | 51 * | 29.86 | 0.3 | [14] | |||||
Cynoscion othonopterus Swim bladder | 303 * | 106 * | 81 * | 32.5 | 0.45 | [14] | |||||
Discarded fish products | 27% | 15% | 7% | 38.27 | 0.64 | 26% | 9% | 6% | 38.07 | 0.33 | [21] |
Centrolophus niger (lactic acid) | 4.83 mg/g | [24] | |||||||||
Centrolophus niger (lactic acid) | 2.91 mg/g | [24] | |||||||||
Thunnus albacares | 333 * | 112 * | 70.2 * | [25] | |||||||
Thunnus albacares | 264.5 * | 96.7 * | 101.7 * | 28.2 | [17] | ||||||
Paralichthys olivaceus | 24.51% | 18.8% | 12.7% | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez-Canul, C.D.; Can-Herrera, L.A.; Ramírez-Rivera, E.d.J.; Prinyawiwatkul, W.; Sauri-Duch, E.; Moo-Huchin, V.M.; Hernández-Núñez, E. A Review of Classical and Rising Approaches the Extraction and Utilization of Marine Collagen. BioTech 2025, 14, 26. https://doi.org/10.3390/biotech14020026
Gutierrez-Canul CD, Can-Herrera LA, Ramírez-Rivera EdJ, Prinyawiwatkul W, Sauri-Duch E, Moo-Huchin VM, Hernández-Núñez E. A Review of Classical and Rising Approaches the Extraction and Utilization of Marine Collagen. BioTech. 2025; 14(2):26. https://doi.org/10.3390/biotech14020026
Chicago/Turabian StyleGutierrez-Canul, Cesia Deyanira, Luis Alfonso Can-Herrera, Emmanuel de Jesús Ramírez-Rivera, Witoon Prinyawiwatkul, Enrique Sauri-Duch, Victor Manuel Moo-Huchin, and Emanuel Hernández-Núñez. 2025. "A Review of Classical and Rising Approaches the Extraction and Utilization of Marine Collagen" BioTech 14, no. 2: 26. https://doi.org/10.3390/biotech14020026
APA StyleGutierrez-Canul, C. D., Can-Herrera, L. A., Ramírez-Rivera, E. d. J., Prinyawiwatkul, W., Sauri-Duch, E., Moo-Huchin, V. M., & Hernández-Núñez, E. (2025). A Review of Classical and Rising Approaches the Extraction and Utilization of Marine Collagen. BioTech, 14(2), 26. https://doi.org/10.3390/biotech14020026