Green Biocatalysis of Xylitol Monoferulate: Candida antarctica Lipase B-Mediated Synthesis and Characterization of Novel Bifunctional Prodrug
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Biocatalytic Synthesis of Xylitol Monoferulate (XMF, 3)
2.3. Thin-Layer Chromatography (TLC)
2.4. Purification and Spectroscopic Characterization of Esters
2.5. NMR Spectroscopy
3. Results and Discussion
3.1. The Effect of Temperature on the Biocatalyzed Synthesis of Xylitol Monoferulate
3.2. The Effect of Molar Ratio on the Conversion of 1 to 3
3.3. The Effect of CaLB Concentration on the Conversion of 1 to 3
3.4. The Effect of Ferulic Acid (1) and Xylitol (2) Concentration on the Conversion of 1 to 3
3.5. The Effect of Water on the Conversion of 1 to 3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FA | Ferulic acid |
CaLB | Candida antarctica Lipase Type B |
XMF | Xylitol monoferulate |
References
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Andrés Juan, C.; Manuel Pérez de la Lastra, J.; Plou, F.J.; Pérez-Lebeña, E.; Reinbothe, S. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Waris, G.; Ahsan, H. Reactive Oxygen Species: Role in the Development of Cancer and Various Chronic Conditions. J. Carcinog. 2006, 5, 14. [Google Scholar]
- Sova, M. Antioxidant and Antimicrobial Activities of Cinnamic Acid Derivatives. Mini Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef]
- Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic Acid: Therapeutic Potential Through Its Antioxidant Property. J. Clin. Biochem. Nutr. 2007, 40, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P. Cinnamic Acid Derivatives: A New Chapter of Various Pharmacological Activities. J. Chem. Pharm. Res. 2011, 3, 403–423. [Google Scholar]
- Dasagrandhi, C.; Park, S.; Jung, W.K.; Kim, Y.M. Antibacterial and Biofilm Modulating Potential of Ferulic Acid-Grafted Chitosan against Human Pathogenic Bacteria. Int. J. Mol. Sci. 2018, 19, 2157. [Google Scholar] [CrossRef]
- Li, D.; Rui, Y.x.; Guo, S.d.; Luan, F.; Liu, R.; Zeng, N. Ferulic Acid: A Review of Its Pharmacology, Pharmacokinetics and Derivatives. Life Sci. 2021, 284, 119921. [Google Scholar]
- Gan, X.; Zhang, W.; Lan, S.; Hu, D. Novel Cyclized Derivatives of Ferulic Acid as Potential Antiviral Agents through Activation of Photosynthesis. J. Agric. Food Chem. 2023, 71, 1369–1380. [Google Scholar] [CrossRef]
- Adefegha, S.A.; Omojokun, O.S.; Oboh, G.; Fasakin, O.; Ogunsuyi, O. Modulatory Effects of Ferulic Acid on Cadmium-Induced Brain Damage. J. Evid. Based Complement. Altern. Med. 2016, 21, NP56–NP61. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Sood, A.; Lang, D.K.; Arora, R.; Kumar, N.; Diwan, V.; Saini, B. Natural Products as Sources of Multitarget Compounds: Advances in the Development of Ferulic Acid as Multitarget Therapeutic. Curr. Top. Med. Chem. 2022, 22, 347–365. [Google Scholar] [CrossRef] [PubMed]
- Micard, V.; Renard, C.M.G.C.; Thibault, J.F. Studies on Enzymic Release of Ferulic Acid from Sugar-Beet Pulp. Food Sci. Technol. 1994, 27, 59–66. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, D.; Jiang, R.; Li, H.; Wan, J.; Li, H. Ferulic Acid Exerts Antitumor Activity and Inhibits Metastasis in Breast Cancer Cells by Regulating Epithelial to Mesenchymal Transition. Oncol. Rep. 2016, 36, 271–278. [Google Scholar] [CrossRef]
- Balasubashini, M.S.; Rukkumani, R.; Viswanathan, P.; Menon, V.P. Ferulic Acid Alleviates Lipid Peroxidation in Diabetic Rats. Phytother. Res. 2004, 18, 310–314. [Google Scholar] [CrossRef]
- Zhang, X.X.; Zhao, D.S.; Wang, J.; Zhou, H.; Wang, L.; Mao, J.L.; He, J.X. The Treatment of Cardiovascular Diseases: A Review of Ferulic Acid and Its Derivatives. Pharmazie 2021, 76, 55–60. [Google Scholar] [PubMed]
- Singh, S.; Arthur, R.; Upadhayay, S.; Kumar, P. Ferulic Acid Ameliorates Neurodegeneration via the Nrf2/ARE Signalling Pathway: A Review. Pharmacol. Res. Mod. Chin. Med. 2022, 5, 100190. [Google Scholar] [CrossRef]
- Trombino, S.; Serini, S.; Di Nicuolo, F.; Celleno, L.; Andò, S.; Picci, N.; Calviello, G.; Palozza, P. Antioxidant Effect of Ferulic Acid in Isolated Membranes and Intact Cells: Synergistic Interactions with α-Tocopherol, β-Carotene, and Ascorbic Acid. J. Agric. Food Chem. 2004, 52, 2411–2420. [Google Scholar] [CrossRef]
- Ogiwara, T.; Satoh, K.; Kadoma, Y.; Murakami, Y.; Unten, S.; Atsumi, T.; Sakagami, H.; Fujisawa, S. Radical Scavenging Activity and Cytotoxicity of Ferulic Acid. Anticancer. Res. 2002, 22, 2711–2717. [Google Scholar]
- Zappaterra, F.; Meola, D.; Presini, F.; Aprile, S.; Venturi, V.; Nosengo, C.; De Luca, C.; Catani, M.; Lerin, L.A.; Giovannini, P.P. Differential Effect of Nine Cinnamic Acid Derivatives on the Biocatalytic Activity of Candida Antarctica Lipase Type B. Curr. Res. Biotechnol. 2024, 8, 100231. [Google Scholar] [CrossRef]
- Rezaei, A.; Varshosaz, J.; Fesharaki, M.; Farhang, A.; Jafari, S.M. Improving the Solubility and in Vitro Cytotoxicity (Anticancer Activity) of Ferulic Acid by Loading It into Cyclodextrin Nanosponges. Int. J. Nanomed. 2019, 14, 4589–4599. [Google Scholar] [CrossRef]
- Stompor-Gorący, M.; Machaczka, M. Recent Advances in Biological Activity, New Formulations and Prodrugs of Ferulic Acid. Int. J. Mol. Sci. 2021, 22, 12889. [Google Scholar] [CrossRef]
- Wölnerhanssen, B.K.; Meyer-Gerspach, A.C.; Beglinger, C.; Islam, M.S. Metabolic Effects of the Natural Sweeteners Xylitol and Erythritol: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1986–1998. [Google Scholar] [CrossRef]
- Ahuja, V.; Macho, M.; Ewe, D.; Singh, M.; Saha, S.; Saurav, K. Biological and Pharmacological Potential of Xylitol: A Molecular Insight of Unique Metabolism. Foods 2020, 9, 1592. [Google Scholar] [CrossRef] [PubMed]
- Janket, S.J.; Benwait, J.; Isaac, P.; Ackerson, L.K.; Meurman, J.H. Oral and Systemic Effects of Xylitol Consumption. Caries Res. 2019, 53, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Na, H.S.; Kim, S.M.; Wallet, S.; Cha, S.; Chung, J. Xylitol, an Anticaries Agent, Exhibits Potent Inhibition of Inflammatory Responses in Human THP-1-Derived Macrophages Infected With Porphyromonas Gingivalis. J. Periodontol. 2014, 85, e212–e223. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.G.C.d.; Freires, D.M.T.; Oliveira, S.G.d.; Guaraldi, A.L.D.M.; Weyne, S.D.C.; Hirata Júnior, R. Antibacterial and Anticariogenic Properties of Xylitol: A Literature Review. Rev. Bras. Odontol. 2018, 75, 1. [Google Scholar] [CrossRef]
- Zappaterra, F.; Tupini, C.; Summa, D.; Cristofori, V.; Costa, S.; Trapella, C.; Lampronti, I.; Tamburini, E. Xylitol as a Hydrophilization Moiety for a Biocatalytically Synthesized Ibuprofen Prodrug. Int. J. Mol. Sci. 2022, 23, 2026. [Google Scholar] [CrossRef]
- Di Fidio, N.; Carmassi, L.; Kasmiarti, G.; Fulignati, S.; Licursi, D.; Raspolli Galletti, A.M.; Antonetti, C. Chemical and Enzymatic Hydrolysis of Waste Wheat Bran to Sugars and Their Simultaneous Biocatalytic Conversion to Valuable Carotenoids and Lipids. Catal. Today 2024, 442, 114941. [Google Scholar] [CrossRef]
- Di Fidio, N.; Tozzi, F.; Martinelli, M.; Licursi, D.; Fulignati, S.; Antonetti, C.; Raspolli Galletti, A.M. Sustainable Valorisation and Efficient Downstream Processing of Giant Reed by High-Pressure Carbon Dioxide Pretreatment. Chempluschem 2022, 87, e202200189. [Google Scholar] [CrossRef]
- Magliocca, S.; Sodano, F.; Nieddu, M.; Burrai, L.; Boatto, G.; Rimoli, M.G. New galactosylated nsaids prodrugs in a green context: Synthesis and stability. Int. J. Pharm. Sci. Res. 2017, 8, 1575–1581. [Google Scholar] [CrossRef]
- Jagtap, P.N.; Sirsat, G.V.; Nalegaonkar, S.S.; Somwanshi, P.P.; Shinde, S.J.; Mungale, S.J.; Palkar, H.N.; Shiralkar, P.S.; Suryawanshi, P.R.; Suryawanshi, N.P. Biocatalysis for Green Synthesis: Exploring the Use of Enzymes and Microorganisms as Catalysts for Organic Synthesis, Highlighting Their Advantages over Traditional Chemical Catalysts in Terms of Selectivity, Efficiency, and Environmental Impact. Int. J. For. Multidiscip. Res. 2024, 6. [Google Scholar] [CrossRef]
- Zappaterra, F.; Presini, F.; Venturi, V.; Lerin, L.A.; Giovannini, P.P.; Costa, S. Biocatalytic Insights for The Synthesis of New Potential Prodrugs: Design of Two Ibuprofen Derivatives. Appl. Sci. 2023, 13, 9852. [Google Scholar] [CrossRef]
- Rajendran, A.; Palanisamy, A.; Thangavelu, V. Lipase Catalyzed Ester Synthesis for Food Processing Industries. Arch. Biol. Technol. 2009, 52, 207–219. [Google Scholar]
- Zappaterra, F.; Costa, S.; Summa, D.; Semeraro, B.; Cristofori, V.; Trapella, C.; Tamburini, E. Glyceric Prodrug of Ursodeoxycholic Acid (UDCA): Novozym 435-Catalyzed Synthesis of UDCA-Monoglyceride. Molecules 2021, 25, 5966. [Google Scholar] [CrossRef]
- Wehtje, E.; Adlercreutz, P. Water Activity and Substrate Concentration Effects on Lipase Activity. Biotechnol. Bioeng. 1997, 55, 798–806. [Google Scholar] [CrossRef]
- Zappaterra, F.; Renzi, M.; Piccardo, M.; Spennato, M.; Asaro, F.; Serio, M.D.; Vitiello, R.; Turco, R.; Todea, A.; Gardossi, L. Understanding Marine Biodegradation of Bio-Based Oligoesters and Plasticizers. Polymers 2023, 15, 1536. [Google Scholar] [CrossRef]
- Kundys, A.; Białecka-Florjańczyk, E.; Fabiszewska, A.; Małajowicz, J. Candida Antarctica Lipase B as Catalyst for Cyclic Esters Synthesis, Their Polymerization and Degradation of Aliphatic Polyesters. J. Polym. Environ. 2018, 26, 396–407. [Google Scholar] [CrossRef]
- Rotticci, D.; Ottosson, J.; Norin, T.; Hult, K. Candida Antarctica Lipase B: A Tool for the Preparation of Optically Active Alcohols. In Enzymes in Nonaqueous Solvents; Humana Press: Totowa, NJ, USA, 2001; pp. 261–276. [Google Scholar]
- Vicinanza, S.; Mombelli, L.; Annunziata, F.; Donzella, S.; Contente, M.L.; Borsari, C.; Conti, P.; Meroni, G.; Molinari, F.; Martino, P.A.; et al. Chemo-Enzymatic Flow Synthesis of Nature-Inspired Phenolic Carbonates and Carbamates as Antiradical and Antimicrobial Agents. Sustain. Chem. Pharm. 2024, 39, 4–11. [Google Scholar] [CrossRef]
- Lerin, L.A.; Botti, G.; Dalpiaz, A.; Bianchi, A.; Ferraro, L.; Chaibi, C.; Zappaterra, F.; Meola, D.; Giovannini, P.P.; Pavan, B. Characterization and Hydrolysis Studies of a Prodrug Obtained as Ester Conjugate of Geraniol and Ferulic Acid by Enzymatic Way. Int. J. Mol. Sci. 2024, 25, 6263. [Google Scholar] [CrossRef]
- do Nascimento, J.F.C.; dos Reis, B.D.; de Baptista Neto, Á.; Lerin, L.A.; Oliveira, J.V.d.; de Paula, A.V.; Remonatto, D. Comparing a Polynomial DOE Model and an ANN Model for Enhanced Geranyl Cinnamate Biosynthesis with Novozym® 435 Lipase. Biocatal. Agric. Biotechnol. 2024, 58, 103240. [Google Scholar] [CrossRef]
- Kong, H.; Fu, X.; Chang, X.; Ding, Z.; Yu, Y.; Xu, H.; Wang, R.; Shan, Y.; Ding, S. The Ester Derivatives of Ferulic Acid Exhibit Strong Inhibitory Effect on the Growth of Alternaria Alternata in Vitro and in Vivo. Postharvest Biol. Technol. 2023, 196, 112158. [Google Scholar] [CrossRef]
- Wang, F.; Yang, L.; Huang, K.; Li, X.; Hao, X.; Stöckigt, J.; Zhao, Y. Preparation of Ferulic Acid Derivatives and Evaluation of Their Xanthine Oxidase Inhibition Activity. Nat. Prod. Res. 2007, 21, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Spelmezan, C.G.; Bacoș, A.; Katona, G. Stable and efficient biopolymeric nanocompozite of candida antarctica lipase B. Stud. Univ. Babes-Bolyai Chem. 2023, 2023, 53–71. [Google Scholar] [CrossRef]
- Réjasse, B.; BessonEn, T.; Legoy, M.D.; Lamare, S. Influence of Microwave Radiation on Free Candida Antarctica Lipase B Activity and Stability. Org. Biomol. Chem. 2006, 4, 3703–3707. [Google Scholar] [CrossRef]
- Cui, S.; Ge, J. High Thermal Stability of Enzyme-MOF Composites at 180 °C. Chem. 2023, 5, 2025–2037. [Google Scholar] [CrossRef]
- Zaks, A.; Klibanov, A.M. Enzymatic Catalysis in Organic Media at 100 °C. Science 1984, 224, 1249–1251. [Google Scholar] [CrossRef]
- Kim, B.S.; Chang, J.Y.; Kim, Y.Y.; Kho, H.S. The Effects of Xylitol and Sorbitol on Lysozyme- and Peroxidase-Related Enzymatic and Candidacidal Activities. Arch. Oral. Biol. 2015, 60, 998–1006. [Google Scholar] [CrossRef]
- Zappaterra, F.; Elena, M.; Rodriguez, M.; Summa, D.; Semeraro, B.; Costa, S.; Tamburini, E. Biocatalytic Approach for Direct Esterification of Ibuprofen with Sorbitol in Biphasic Media. Int. J. Mol. Sci. 2021, 22, 3066. [Google Scholar] [CrossRef]
- Kovalevsky, A.; Hanson, B.L.; Mason, S.A.; Forsyth, V.T.; Fisher, Z.; Mustyakimov, M.; Blakeley, M.P.; Keen, D.A.; Langan, P. Inhibition of D-Xylose Isomerase by Polyols: Atomic Details by Joint X-Ray/Neutron Crystallography. Acta Crystallogr. D Biol. Crystallogr. 2012, 68, 1201–1206. [Google Scholar] [CrossRef]
- Graber, M.; Combes, D. Effect of Polyols on Fungal Alpha-Amylase Thermostability. Enzym. Microb. Technol. 1989, 11, 673–677. [Google Scholar]
- Chukwuma, C.I.; Islam, M.S. Effects of Xylitol on Carbohydrate Digesting Enzymes Activity, Intestinal Glucose Absorption and Muscle Glucose Uptake: A Multi-Mode Study. Food Funct. 2015, 6, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Tan, T.; Zhang, H.; Feng, W. Analysis of the Conformational Stability and Activity of Candida Antarctica Lipase B in Organic Solvents: Insight from Molecular Dynamics and Quantum Mechanics/Simulations. J. Biol. Chem. 2010, 285, 28434–28441. [Google Scholar] [CrossRef] [PubMed]
- Kossiakoff, A.A.; Shpungin, J.; Sintchak, M.D. Hydroxyl Hydrogen Conformations in Trypsin Determined by the Neutron Diffraction Solvent Difference Map Method: Relative Importance of Steric and Electrostatic Factors in Defining Hydrogen-Bonding Geometries (Neutron Diffraction/2H20-H20 Solvent Difference Maps); Merck, Inc.: Rahway, NJ, USA, 1990; Volume 87. [Google Scholar]
- Trubiano, G.; Borio, D.; Ferreira, M.L. Ethyl Oleate Synthesis Using Candida Rugosa Lipase in a Solvent-Free System. Role of Hydrophobic Interactions. Biomacromolecules 2004, 5, 1832–1840. [Google Scholar] [CrossRef]
- Liu, J.; Bai, S.; Jin, Q.; Zhong, H.; Li, C.; Yang, Q. Improved Catalytic Performance of Lipase Accommodated in the Mesoporous Silicas with Polymer-Modified Microenvironment. Langmuir 2012, 28, 9788–9796. [Google Scholar] [CrossRef]
- Wang, C.-S. Probing of Active Site Structure of Lipoprotein Lipase: Contribution of Activation Entropy in the Catalysis. Biochim. Biophys. Acta (BBA) Lipids Lipid Metab. 1994, 1212, 67–72. [Google Scholar]
- Sunden, F.; Alsadhan, I.; Lyubimov, A.Y.; Ressl, S.; Wiersma-Koch, H.; Borland, J.; Brown, C.L.; Johnson, T.A.; Singh, Z.; Herschlag, D. Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily. J. Am. Chem. Soc. 2016, 138, 14273–14287. [Google Scholar] [CrossRef]
- Savary, P. Action of Rat Pancreatic Juice and of Purified Pig Pancreatic Lipase upon the Esters of Short-Chain Aliphatic Mono-Acids and Long-Chain Primary Monoalcohols. Biochim. Biophys. Acta (BBA) Lipids Lipid Metab. 1972, 270, 463–471. [Google Scholar] [CrossRef]
- Pop, E.; Rachwal, S.; Vlasak, J.; Biegon, A.; Zharikova, A.; Prokai, L. In Vitro and in Vivo Study of Water-Soluble Prodrugs of Dexanabinol. J. Pharm. Sci. 1999, 88, 1156–1160. [Google Scholar] [CrossRef]
- Sohma, Y.; Hayashi, Y.; Ito, T.; Matsumoto, H.; Kimura, T.; Kiso, Y. Development of Water-Soluble Prodrugs of the HIV-1 Protease Inhibitor KNI-727: Importance of the Conversion Time for Higher Gastrointestinal Absorption of Prodrugs Based on Spontaneous Chemical Cleavage. J. Med. Chem. 2003, 46, 4124–4135. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, S. Enzymes in Green Chemistry: The Need for Environment and Sustainability. Int. J. Appl. Res. 2016, 2, 337–341. [Google Scholar]
- Rattanaphra, D.; Tawkaew, S.; Chuichulcherm, S.; Kingkam, W.; Nuchdang, S.; Kitpakornsanti, K.; Suwanmanee, U. Evaluation of Life Cycle Assessment of Jatropha Biodiesel Processed by Esterification of Thai Domestic Rare Earth Oxide Catalysts. Sustainability 2024, 16, 100. [Google Scholar] [CrossRef]
Parameter | Conditions Tested |
---|---|
Reaction vessel | The 10 mL screw-capped flasks in an oil bath with magnetic stirring |
Substrates | Ferulic acid (FA, 1) and xylitol (2) |
Molar ratio (FA:xylitol) | 1:1, 1:3, 1:5, 3:1, 5:1 |
Solvent | t-amyl alcohol |
Solvent volume | 2 mL, 5 mL |
Temperature range | 50 °C, 70 °C, 90 °C |
Biocatalyst | Candida antarctica lipase B (CaLB), immobilized |
Enzyme loading | 10, 50, 100 g/L |
Molecular sieves | 0 mg, 100 mg |
Reaction monitoring | ¹H-NMR spectroscopy at 24 h, 48 h, 72 h, up to 192 h |
Product formed | Xylitol monoferulate (XMF, 3) |
Byproduct | Traces of xylitol bis(ferulate) (4) detected at 1:1 molar ratio and 50 °C |
Product purification | Flash column chromatography |
Conversion calculation | Ratio of ester peak (3) (δ = 6.4 ppm) to the sum of ester (3) and acid (1) (δ = 6.3 ppm), multiplied by 100 |
Yield determination |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zappaterra, F.; Presini, F.; Meola, D.; Chaibi, C.; Aprile, S.; Lerin, L.A.; Giovannini, P.P. Green Biocatalysis of Xylitol Monoferulate: Candida antarctica Lipase B-Mediated Synthesis and Characterization of Novel Bifunctional Prodrug. BioTech 2025, 14, 25. https://doi.org/10.3390/biotech14020025
Zappaterra F, Presini F, Meola D, Chaibi C, Aprile S, Lerin LA, Giovannini PP. Green Biocatalysis of Xylitol Monoferulate: Candida antarctica Lipase B-Mediated Synthesis and Characterization of Novel Bifunctional Prodrug. BioTech. 2025; 14(2):25. https://doi.org/10.3390/biotech14020025
Chicago/Turabian StyleZappaterra, Federico, Francesco Presini, Domenico Meola, Chaimae Chaibi, Simona Aprile, Lindomar Alberto Lerin, and Pier Paolo Giovannini. 2025. "Green Biocatalysis of Xylitol Monoferulate: Candida antarctica Lipase B-Mediated Synthesis and Characterization of Novel Bifunctional Prodrug" BioTech 14, no. 2: 25. https://doi.org/10.3390/biotech14020025
APA StyleZappaterra, F., Presini, F., Meola, D., Chaibi, C., Aprile, S., Lerin, L. A., & Giovannini, P. P. (2025). Green Biocatalysis of Xylitol Monoferulate: Candida antarctica Lipase B-Mediated Synthesis and Characterization of Novel Bifunctional Prodrug. BioTech, 14(2), 25. https://doi.org/10.3390/biotech14020025