Spirulina as a Key Ingredient in the Evolution of Eco-Friendly Cosmetics
Abstract
:1. Introduction
2. Material and Methods: Bibliographic Data Analysis
3. Spirulina Production and Recovery
4. Spirulina and Its Components: Biological Effects
5. Application of Spirulina in Personal Care Products
Cosmetic Product | Organism | Bioproduct | Association | Results | Reference |
---|---|---|---|---|---|
Hair dye | Arthrospira platensis | Phycocyanin (0.15 g) | Ascorbic acid and Arabic gum | Temporary hair dye with good physical stability | [83] |
Cosmetic for skin | Arthrospira platensis; Tetraselmis sp.; Dunaliella sp. | Whole biomass (0.5, 1.5, and 2.5%) | Oil-in-water commercial emulsion | 0.5% spirulina, 1.5% Tetraselmis sp., and 2.5% Dunaliella sp. received significant major sensory evaluation scores. Spirulina cream presented the greatest antioxidant activity | [84] |
Cosmetic cream | Arthrospira platensis | Dried extract | Emulsifiers, essential oils, vitamin E, pomegranate peel, or moringa leaves | Spirulina and pomegranate cream had organoleptic characteristics preserved during the evaluation. The formulation was stable at 4 °C for 3 weeks. | [79] |
Sunscreen | Spirulina | Commercial dried extract (0.1% w/w) | Commercial sunscreen and dimethylmethoxy chromanol | Nonallergenic stable formulation with a significant increase in skin net elasticity and viscoelasticity. The skin-lightening effect was observed. SPF * was nearly 30. | [85] |
A topical formulation for skin and hair | Spirulina maxima | Dried extract (0.1%) | Tapioca starch; corn starch; PEG-75 lanolin | Film forming was successfully obtained for skin and hair protection. The formulation decreased transepidermal water loss and could protect the hair against daily damage. Spirulina did not affect the rheological parameters. | [80] |
Dermocosmetic | Spirulina | Spirulina extract (0.1% w/w) | Gel-cream | Mature skin presented more hydration than younger skin; oil control for both ages; it was not related to dermal thickness alongside 28 days. | [65] |
Cream for the treatment of acne vulgaris | Spirulina platensis | Freeze-dried powder (5 g) | Oil-in-water creams with nonionic emulgents | The formulation containing sucrose ester and spirulina showed antimicrobial properties and the highest antioxidant activity, besides nontoxic effects when used for skin treatment | [86] |
Biodegradable composite for cosmetics | Spirulina | Commercial phycocyanin | Polylactic acid and alginate powder | Nontoxic for human fibroblasts (<1000 µg·mL−1). Phycocyanin/alginate, with a 40/60 ratio, was the best for the active layer of the film, with the best flexibility and release. | [82] |
5.1. Biocosmetics
5.2. Hair Cosmetics and the Composition of Shampoos
6. Market and Consumer Behavior Toward Environmentally Friendly Cosmetics
7. Future Trends in the Application of Nanotechnology and Spirulina in Cosmetic Formulations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FDA | US Food and Drug Administration |
GRAS | Generally Recognized as Safe |
EGFR | epidermal growth factor receptor |
MMP-8 | matrix metallopeptidase 8 |
C-PC | C-phycocyanin |
ROS | reactive oxygen species |
SLS | sodium lauryl sulfate |
SCI | sodium isethionate |
References
- Wang, H.M.D.; Chen, C.C.; Huynh, P.; Chang, J.S. Exploring the Potential of Using Algae in Cosmetics. Bioresour. Technol. 2015, 184, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Michalak, I.; Mironiuk, M.; Godlewska, K.; Trynda, J.; Marycz, K. Arthrospira (Spirulina) platensis: An Effective Biosorbent for Nutrients. Process Biochem. 2020, 88, 129–137. [Google Scholar] [CrossRef]
- Alessandrini, A.; Piraccini, B. Essential of Hair Care Cosmetics. Cosmetics 2016, 3, 34. [Google Scholar] [CrossRef]
- Arora, P.; Nanda, A.; Karan, M. Shampoos Based on Synthetic Ingredients Vis-a-Vis Shampoos Based on Herbal Ingredients: A Review. Int. J. Pharm. Sci. Rev. Res. 2011, 7, 41–46. [Google Scholar]
- Gubitosa, J.; Rizzi, V.; Fini, P.; Cosma, P. Hair Care Cosmetics: From Traditional Shampoo to Solid Clay and Herbal Shampoo, A Review. Cosmetics 2019, 6, 13. [Google Scholar] [CrossRef]
- Tuli, H.S.; Chaudhary, P.; Beniwal, V.; Sharma, A.K. Microbial Pigments as Natural Color Sources: Current Trends and Future Perspectives. J. Food Sci. Technol. 2015, 52, 4669–4678. [Google Scholar] [CrossRef]
- Mellou, F.; Varvaresou, A.; Papageorgiou, S. Renewable Sources: Applications in Personal Care Formulations. Int. J. Cosmet. Sci. 2019, 41, 517–525. [Google Scholar] [CrossRef]
- Morocho-Jácome, A.L.; Ruscinc, N.; Martinez, R.M.; de Carvalho, J.C.M.; Santos de Almeida, T.; Rosado, C.; Costa, J.G.; Velasco, M.V.R.; Baby, A.R. (Bio)Technological Aspects of Microalgae Pigments for Cosmetics. Appl. Microbiol. Biotechnol. 2020, 104, 9513–9522. [Google Scholar] [CrossRef]
- Zhuang, D.; He, N.; Khoo, K.S.; Ng, E.-P.; Chew, K.W.; Ling, T.C. Application Progress of Bioactive Compounds in Microalgae on Pharmaceutical and Cosmetics. Chemosphere 2022, 291, 132932. [Google Scholar] [CrossRef]
- Hernández Muñoz, A.C.; Rodríguez Martínez, I.A.; Serafini, M.R.; Aragón, D.M. Innovative Applications of Marine-Derived Algae in Cosmetics: A Patent Review (2010–2023). Algal Res. 2024, 84, 103806. [Google Scholar] [CrossRef]
- Mourelle, M.; Gómez, C.; Legido, J. The Potential Use of Marine Microalgae and Cyanobacteria in Cosmetics and Thalassotherapy. Cosmetics 2017, 4, 46. [Google Scholar] [CrossRef]
- Fratelli, C.; Burck, M.; Amarante, M.C.A.; Braga, A.R.C. Antioxidant Potential of Nature’s “Something Blue”: Something New in the Marriage of Biological Activity and Extraction Methods Applied to C-Phycocyanin. Trends Food Sci. Technol. 2021, 107, 309–323. [Google Scholar] [CrossRef]
- Lauritano, C.; Andersen, J.H.; Hansen, E.; Albrigtsen, M.; Escalera, L.; Esposito, F.; Helland, K.; Hanssen, K.; Romano, G.; Ianora, A. Bioactivity Screening of Microalgae for Antioxidant, Anti-Inflammatory, Anticancer, Anti-Diabetes, and Antibacterial Activities. Front. Mar. Sci. 2016, 3, 68. [Google Scholar] [CrossRef]
- De Morais, M.G.; da Vaz, B.S.; de Morais, E.G.; Costa, J.A.V. Biological Effects of Spirulina (Arthrospira) Biopolymers and Biomass in the Development of Nanostructured Scaffolds. Biomed. Res. Int. 2014, 2014, 762705. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.A.V.; Freitas, B.C.B.; Rosa, G.M.; Moraes, L.; Morais, M.G.; Mitchell, B.G. Operational and Economic Aspects of Spirulina-Based Biorefinery. Bioresour. Technol. 2019, 292, 121946. [Google Scholar] [CrossRef] [PubMed]
- Arashiro, L.T.; Boto-Ordóñez, M.; Van Hulle, S.W.H.; Ferrer, I.; Garfí, M.; Rousseau, D.P.L. Natural Pigments from Microalgae Grown in Industrial Wastewater. Bioresour. Technol. 2020, 303, 122894. [Google Scholar] [CrossRef]
- Lim, H.R.; Khoo, K.S.; Chew, K.W.; Chang, C.K.; Munawaroh, H.S.H.; Kumar, P.S.; Huy, N.D.; Show, P.L. Perspective of Spirulina Culture with Wastewater into a Sustainable Circular Bioeconomy. Environ. Pollut. 2021, 284, 117492. [Google Scholar] [CrossRef]
- Sinetova, M.A.; Kupriyanova, E.V.; Los, D.A. Spirulina/Arthrospira/Limnospira—Three Names of the Single Organism. Foods 2024, 13, 2762. [Google Scholar] [CrossRef]
- Roussel, T.; Halary, S.; Duval, C.; Piquet, B.; Cadoret, J.-P.; Vernès, L.; Bernard, C.; Marie, B. Monospecific Renaming within the Cyanobacterial Genus Limnospira (Spirulina) and Consequences for Food Authorization. J. Appl. Microbiol. 2023, 134, lxad159. [Google Scholar] [CrossRef]
- Nowicka-Krawczyk, P.; Mühlsteinová, R.; Hauer, T. Detailed Characterization of the Arthrospira Type Species Separating Commercially Grown Taxa into the New Genus Limnospira (Cyanobacteria). Sci. Rep. 2019, 9, 694. [Google Scholar] [CrossRef]
- De Santos, K.R.S.; Hentschke, G.S.; Ferrari, G.; Andreote, A.P.D.; de Fiore, M.F.; Vasconcelos, V.; Sant’Anna, C.L. Molecular, Morphological and Ecological Studies of Limnospira Platensis (Cyanobacteria), from Saline and Alkaline Lakes, Pantanal Biome, Brazil. Front. Env. Sci. 2023, 11, 1204787. [Google Scholar] [CrossRef]
- Misztak, A.E.; Waleron, M.; Furmaniak, M.; Waleron, M.M.; Bazhenova, O.; Daroch, M.; Waleron, K.F. Comparative Genomics and Physiological Investigation of a New Arthrospira/Limnospira Strain O9.13F Isolated from an Alkaline, Winter Freezing, Siberian Lake. Cells 2021, 10, 3411. [Google Scholar] [CrossRef] [PubMed]
- Duangsee, R.; Phoopat, N.; Ningsanond, S.; Duangsi, R.; Ningsanond, S. Phycocyanin Extraction from Spirulina platensis and Extract Stability under Various PH and Temperature. Food Innov. Asia 2009, 2, 819–826. [Google Scholar]
- Iamtham, S.; Sornchai, P. Biofixation of CO2 from a Power Plant through Large-Scale Cultivation of Spirulina maxima. S. Afr. J. Bot. 2022, 147, 840–851. [Google Scholar] [CrossRef]
- de Amarante, M.C.A.; Braga, A.R.C.; Sala, L.; Moraes, C.C.; Kalil, S.J. Design Strategies for C-Phycocyanin Purification: Process Influence on Purity Grade. Sep. Purif. Technol. 2020, 252, 117453. [Google Scholar] [CrossRef]
- Fratelli, C.; Bürck, M.; Silva-Neto, A.F.; Oyama, L.M.; De Rosso, V.V.; Braga, A.R.C. Green Extraction Process of Food Grade C-Phycocyanin: Biological Effects and Metabolic Study in Mice. Processes 2022, 10, 1793. [Google Scholar] [CrossRef]
- Salgado, M.T.S.F.; Fernandes e Silva, E.; Matsumoto, A.M.; Mattozo, F.H.; de Amarante, M.C.A.; Kalil, S.J.; de Souza Votto, A.P. C-Phycocyanin Decreases Proliferation and Migration of Melanoma Cells: In Silico and in Vitro Evidences. Bioorg. Chem. 2022, 122, 105757. [Google Scholar] [CrossRef]
- Varia, J.; Kamaleson, C.; Lerer, L. Biostimulation with Phycocyanin-Rich Spirulina Extract in Hydroponic Vertical Farming. Sci. Hortic. 2022, 299, 111042. [Google Scholar] [CrossRef]
- Campos Assumpção de Amarante, M.; Cavalcante Braga, A.R.; Sala, L.; Juliano Kalil, S. Colour Stability and Antioxidant Activity of C-Phycocyanin-Added Ice Creams after in Vitro Digestion. Food Res. Int. 2020, 137, 109602. [Google Scholar] [CrossRef]
- Braga, A.R.C.; Nunes, M.C.; Raymundo, A. The Experimental Development of Emulsions Enriched and Stabilized by Recovering Matter from Spirulina Biomass: Valorization of Residue into a Sustainable Protein Source. Molecules 2023, 28, 6179. [Google Scholar] [CrossRef]
- Fratelli, C.; Nunes, M.C.; De Rosso, V.V.; Raymundo, A.; Braga, A.R.C. Spirulina and Its Residual Biomass as Alternative Sustainable Ingredients: Impact on the Rheological and Nutritional Features of Wheat Bread Manufacture. Front. Food Sci. Technol. 2023, 3, 1258219. [Google Scholar] [CrossRef]
- Da Costa, S.F.F.; dos Passos Ramos, S.; Bürck, M.; Braga, A.R.C.; da Costa, S.F.F.; dos Ramos, S.P.; Bürck, M.; Braga, A.R.C. Development of Eco-Friendly Solid Shampoo Containing Natural Pigments: Physical-Chemical, Microbiological Characterization and Analysis of Antioxidant Activity. Ind. Biotechnol. 2023, 19, 337–346. [Google Scholar] [CrossRef]
- Ragusa, I.; Nardone, G.N.; Zanatta, S.; Bertin, W.; Amadio, E. Spirulina for Skin Care: A Bright Blue Future. Cosmetics 2021, 8, 7. [Google Scholar] [CrossRef]
- Lim, H.R.; Khoo, K.S.; Chew, K.W.; Tao, Y.; Xia, A.; Ma, Z.; Munawaroh, H.S.H.; Huy, N.D.; Show, P.L. Upstream Bioprocessing of Spirulina platensis Microalgae Using Rainwater and Recycle Medium from Post-Cultivation for C-Phycocyanin Production. J. Taiwan. Inst. Chem. Eng. 2023, 166, 104986. [Google Scholar] [CrossRef]
- Daneshvar, E.; Sik Ok, Y.; Tavakoli, S.; Sarkar, B.; Shaheen, S.M.; Hong, H.; Luo, Y.; Rinklebe, J.; Song, H.; Bhatnagar, A. Insights into Upstream Processing of Microalgae: A Review. Bioresour. Technol. 2021, 329, 124870. [Google Scholar] [CrossRef]
- Delrue, F.; Alaux, E.; Moudjaoui, L.; Gaignard, C.; Fleury, G.; Perilhou, A.; Richaud, P.; Petitjean, M.; Sassi, J.-F. Optimization of Arthrospira platensis (Spirulina) Growth: From Laboratory Scale to Pilot Scale. Fermentation 2017, 3, 59. [Google Scholar] [CrossRef]
- Brião, V.B.; Sbeghen, A.L.; Colla, L.M.; Castoldi, V.; Seguenka, B.; de Schimidt, G.O.; Costa, J.A.V. Is Downstream Ultrafiltration Enough for Production of Food-Grade Phycocyanin from Arthrospira platensis? J. Appl. Phycol. 2020, 32, 1129–1140. [Google Scholar] [CrossRef]
- Chethana, S.; Nayak, C.A.; Madhusudhan, M.C.; Raghavarao, K.S.M.S. Single Step Aqueous Two-Phase Extraction for Downstream Processing of C-Phycocyanin from Spirulina platensis. J. Food Sci. Technol. 2015, 52, 2415–2421. [Google Scholar] [CrossRef]
- Prabhath, G.P.W.A.; Shukla, S.P.; Srivastava, P.P.; Kumar, K.; Sawant, P.B.; Verma, A.K.; Chouksey, M.K.; Nuwansi, K.K.T. Downstream Processing of Biomass Produced in Aquaculture Wastewater for Valuable Pigments from the Cyanobacterium Spirulina (Arthrospira) platensis: A Green and Sustainable Approach. Aquac. Int. 2022, 30, 3081–3106. [Google Scholar] [CrossRef]
- Khoo, K.S.; Chew, K.W.; Yew, G.Y.; Leong, W.H.; Chai, Y.H.; Show, P.L.; Chen, W.-H. Recent Advances in Downstream Processing of Microalgae Lipid Recovery for Biofuel Production. Bioresour. Technol. 2020, 304, 122996. [Google Scholar] [CrossRef]
- Longtin, N.; Oliveira, D.; Mahadevan, A.; Gejji, V.; Gomes, C.; Fernando, S. Analysis of Spirulina Platensis Microalgal Fuel Cell. J. Power Sources 2021, 486, 229290. [Google Scholar] [CrossRef]
- Wicker, R.; Bhatnagar, A. Application of Nordic Microalgal-Bacterial Consortia for Nutrient Removal from Wastewater. Chem. Eng. J. 2020, 398, 125567. [Google Scholar] [CrossRef]
- Zrimec, M.B.; Sforza, E.; Pattaro, L.; Carecci, D.; Ficara, E.; Idà, A.; Ferrer-Ledo, N.; Canziani, S.; Mangini, S.; Lazar, B.; et al. Advances in Spirulina Cultivation: Techniques, Challenges, and Applications. In Insights Into Algae—Fundamentals, Culture Techniques and Biotechnological Uses of Microalgae and Cyanobacteria; InTech Open: London, UK, 2024. [Google Scholar] [CrossRef]
- Li, P.; Hu, Z.; Yin, Q.; Song, C. Improving the Growth of Spirulina in CO2 Absorption and Microalgae Conversion (CAMC) System through Mixotrophic Cultivation: Reveal of Metabolomics. Sci. Total Environ. 2023, 858, 159920. [Google Scholar] [CrossRef]
- Tzachor, A.; Smidt-Jensen, A.; Ramel, A.; Geirsdóttir, M. Environmental Impacts of Large-Scale Spirulina (Arthrospira platensis) Production in Hellisheidi Geothermal Park Iceland: Life Cycle Assessment. Mar. Biotechnol. 2022, 24, 1177. [Google Scholar] [CrossRef]
- Moraes, L.; da Rosa, G.M.; de Souza, M.d.R.A.Z.; Costa, J.A.V. Carbon Dioxide Biofixation and Production of Spirulina sp. LEB 18 Biomass with Different Concentrations of NaNO3 and NaCl. Braz. Arch. Biol. Technol. 2018, 61, e18150711. [Google Scholar] [CrossRef]
- Levasseur, W.; Perré, P.; Pozzobon, V. A Review of High Value-Added Molecules Production by Microalgae in Light of the Classification. Biotechnol. Adv. 2020, 41, 107545. [Google Scholar] [CrossRef]
- De Morais, E.G.; Cassuriag, A.P.A.; Callejas, N.; Martinez, N.; Vieitez, I.; Jachmanián, I.; Santos, L.O.; de Morais, M.G.; Costa, J.A.V. Evaluation of CO2 Biofixation and Biodiesel Production by Spirulina (Arthospira) Cultivated In Air-Lift Photobioreactor. Braz. Arch. Biol. Technol. 2018, 61, e18161339. [Google Scholar] [CrossRef]
- Terra, A.L.M.; Moreira, J.B.; Costa, J.A.V.; de Morais, M.G. Development of PH Indicators from Nanofibers Containing Microalgal Pigment for Monitoring of Food Quality. Food Biosci. 2021, 44, 101387. [Google Scholar] [CrossRef]
- Terra, A.L.M.; Moreira, J.B.; Costa, J.A.V.; de Morais, M.G. Development of Time-PH Indicator Nanofibers from Natural Pigments: An Emerging Processing Technology to Monitor the Quality of Foods. LWT 2021, 142, 111020. [Google Scholar] [CrossRef]
- Nakamoto, M.M.; Assis, M.; de Oliveira Filho, J.G.; Braga, A.R.C. Spirulina Application in Food Packaging: Gaps of Knowledge and Future Trends. Trends Food Sci. Technol. 2023, 133, 138–147. [Google Scholar] [CrossRef]
- Shioji, Y.; Kobayashi, T.; Yoshida, T.; Otagiri, T.; Onoda, K.; Yoshioka, Y.; Sasada, T.; Miyoshi, N. Nitrogen Balance and Bioavailability of Amino Acids in Spirulina Diet-Fed Wistar Rats. J. Agric. Food Chem. 2021, 69, 13780–13786. [Google Scholar] [CrossRef]
- Hussein, A.; Ibrahim, G.; Kamil, M.; El-Shamarka, M.; Mostafa, S.; Mohamed, D. Spirulina-Enriched Pasta as Functional Food Rich in Protein and Antioxidant. Biointerface Res. Appl. Chem. 2021, 11, 14736–14750. [Google Scholar] [CrossRef]
- Grahl, S.; Strack, M.; Mensching, A.; Mörlein, D. Alternative Protein Sources in Western Diets: Food Product Development and Consumer Acceptance of Spirulina-Filled Pasta. Food Qual. Prefer. 2020, 84, 103933. [Google Scholar] [CrossRef]
- Spínola, M.P.; Mendes, A.R.; Prates, J.A.M. Chemical Composition, Bioactivities, and Applications of Spirulina (Limnospira platensis) in Food, Feed, and Medicine. Foods 2024, 13, 3656. [Google Scholar] [CrossRef]
- Martelli, F.; Cirlini, M.; Lazzi, C.; Neviani, E.; Bernini, V. Edible Seaweeds and Spirulina Extracts for Food Application: In Vitro and In Situ Evaluation of Antimicrobial Activity towards Foodborne Pathogenic Bacteria. Foods 2020, 9, 1442. [Google Scholar] [CrossRef]
- Palanisamy, M.; Töpfl, S.; Berger, R.G.; Hertel, C. Physico-Chemical and Nutritional Properties of Meat Analogues Based on Spirulina/Lupin Protein Mixtures. Eur. Food Res. Technol. 2019, 245, 1889–1898. [Google Scholar] [CrossRef]
- Ansari, F.A.; Singh, P.; Guldhe, A.; Bux, F. Microalgal Cultivation Using Aquaculture Wastewater: Integrated Biomass Generation and Nutrient Remediation. Algal Res. 2017, 21, 169–177. [Google Scholar] [CrossRef]
- Singh, K.; Ansari, F.A.; Ingle, K.N.; Gupta, S.K.; Ahirwal, J.; Dhyani, S.; Singh, S.; Abhilash, P.C.; Rawat, I.; Byun, C.; et al. Microalgae from Wastewaters to Wastelands: Leveraging Microalgal Research Conducive to Achieve the UN Sustainable Development Goals. Renew. Sustain. Energy Rev. 2023, 188, 113773. [Google Scholar] [CrossRef]
- USDA, U.S.D. of Agriculture. A.R.S. FoodData Central. Seaweed, Spirulina, Dried. Available online: https://fdc.nal.usda.gov/food-details/170495/nutrients2019 (accessed on 1 January 2024).
- Silva, L.A.; Kuhn, K.R.; Moraes, C.C.; Burkert, C.A.V.; Kalil, S.J. Experimental Design as a Tool for Optimization of C-Phycocyanin Purification by Precipitation from Spirulina platensis. J. Braz. Chem. Soc. 2009, 20, 5–12. [Google Scholar] [CrossRef]
- Salgado, M.T.S.F.; Silva, M.C.S.; Fratelli, C.; Braga, A.R.C.; Lopes, T.B.G.; Ferreira, E.; da Silva, I.L.D.; de Paiva, L.S.; de Votto, A.P.S. Bioactive C-Phycocyanin Exerts Immunomodulatory and Antitumor Activity in Mice with Induced Melanoma. Toxicol. Appl. Pharmacol. 2024, 484, 116874. [Google Scholar] [CrossRef]
- Finamore, A.; Palmery, M.; Bensehaila, S.; Peluso, I. Antioxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Ecofriendly Spirulina. Oxidative Med. Cell. Longev. 2017, 2017, 3247528. [Google Scholar] [CrossRef]
- Saini, D.K.; Pabbi, S.; Shukla, P. Cyanobacterial Pigments: Perspectives and Biotechnological Approaches. Food Chem. Toxicol. 2018, 120, 616–624. [Google Scholar] [CrossRef]
- Delsin, S.D.; Mercurio, D.G.; Fossa, M.M.; Maia Campos, P.M.B.G. Clinical Efficacy of Dermocosmetic Formulations Containing Spirulina Extract on Young and Mature Skin: Effects on the Skin Hydrolipidic Barrier and Structural Properties. Clin. Pharmacol. Biopharm. 2015, 4, 2. [Google Scholar] [CrossRef]
- Ariede, M.B.; Candido, T.M.; Jacome, A.L.M.; Velasco, M.V.R.; de Carvalho, J.C.M.; Baby, A.R. Cosmetic Attributes of Algae–A Review. Algal Res. 2017, 25, 483–487. [Google Scholar] [CrossRef]
- Nowruzi, B.; Sarvari, G.; Blanco, S. The Cosmetic Application of Cyanobacterial Secondary Metabolites. Algal Res. 2020, 49, 101959. [Google Scholar] [CrossRef]
- Yarkent, Ç.; Gürlek, C.; Oncel, S.S. Potential of Microalgal Compounds in Trending Natural Cosmetics: A Review. Sustain. Chem. Pharm. 2020, 17, 100304. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Incharoensakdi, A. Analysis of UV-Absorbing Photoprotectant Mycosporine-like Amino Acid (MAA) in the Cyanobacterium Arthrospira sp. CU2556. Photochem. Photobiol. Sci. 2014, 13, 1016–1024. [Google Scholar] [CrossRef]
- Gu, Y.; Han, J.; Jiang, C.; Zhang, Y. Biomarkers, Oxidative Stress and Autophagy in Skin Aging. Ageing Res. Rev. 2020, 59, 101036. [Google Scholar] [CrossRef]
- Maria D’, G.; Costa, A.; Maria, P.; Gonçalves, B.; Campos, M. Development of Cosmetic Formulations Containing Olive Extract and Spirulina sp.: Stability and Clinical Efficacy Studies. Cosmetics 2024, 11, 68. [Google Scholar] [CrossRef]
- Liu, P.; Lee, M.; Choi, J.; Choi, Y.; Nam, T. Crude Protein from Spirulina Increases the Viability of CCD-986sk Cells via the EGFR/MAPK Signaling Pathway. Int. J. Mol. Med. 2018, 43, 771–778. [Google Scholar] [CrossRef]
- Lee, J.-J.; Kim, K.B.; Heo, J.; Cho, D.-H.; Kim, H.-S.; Han, S.H.; Ahn, K.J.; An, I.-S.; An, S.; Bae, S. Protective Effect of Arthrospira platensis Extracts against Ultraviolet B-Induced Cellular Senescence through Inhibition of DNA Damage and Matrix Metalloproteinase-1 Expression in Human Dermal Fibroblasts. J. Photochem. Photobiol. B 2017, 173, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Mapoung, S.; Arjsri, P.; Thippraphan, P.; Semmarath, W.; Yodkeeree, S.; Chiewchanvit, S.; Piyamongkol, W.; Limtrakul, P. Photochemoprotective Effects of Spirulina platensis Extract against UVB Irradiated Human Skin Fibroblasts. South. Afr. J. Bot. 2020, 130, 198–207. [Google Scholar] [CrossRef]
- Kim, K.M.; Lee, J.Y.; Im, A.-R.; Chae, S. Phycocyanin Protects Against UVB-Induced Apoptosis Through the PKC α/ΒII-Nrf-2/HO-1 Dependent Pathway in Human Primary Skin Cells. Molecules 2018, 23, 478. [Google Scholar] [CrossRef]
- Gunes, S.; Tamburaci, S.; Dalay, M.C.; Deliloglu Gurhan, I. In Vitro Evaluation of Spirulina platensis Extract Incorporated Skin Cream with Its Wound Healing and Antioxidant Activities. Pharm. Biol. 2017, 55, 1824–1832. [Google Scholar] [CrossRef]
- Novoveská, L.; Nielsen, S.L.; Eroldoğan, O.T.; Haznedaroglu, B.Z.; Rinkevich, B.; Fazi, S.; Robbens, J.; Vasquez, M.; Einarsson, H. Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria. Mar. Drugs 2023, 21, 445. [Google Scholar] [CrossRef]
- Pagnussatt, F.A.; de Lima, V.R.; Dora, C.L.; Costa, J.A.V.; Putaux, J.-L.; Badiale-Furlong, E. Assessment of the Encapsulation Effect of Phenolic Compounds from Spirulina sp. LEB-18 on Their Antifusarium Activities. Food Chem. 2016, 211, 616–623. [Google Scholar] [CrossRef]
- Karray, A.; Krayem, N.; Saad, H.B.; Sayari, A. Spirulina platensis, Punica Granatum Peel, and Moringa Leaves Extracts in Cosmetic Formulations: An Integrated Approach of in Vitro Biological Activities and Acceptability Studies. Environ. Sci. Pollut. Res. 2020, 28, 8802–8811. [Google Scholar] [CrossRef] [PubMed]
- Infante, V.H.P.; Leite, M.G.A.; Maia Campos, P.M.B.G. Film-Forming Properties of Topical Formulations for Skin and Hair: In Vivo and In Vitro Studies Using Biophysical and Imaging Techniques. AAPS PharmSciTech 2022, 24, 29. [Google Scholar] [CrossRef]
- Silva, L.N.; Leite, M.G.A.; Maia Campos, P.M.B.G. Development of Hair Care Formulations Containing Spirulina platensis and Ascophyllum nodosum Extracts. Int. J. Phytocos. Nat. Ingred. 2019, 6, 13. [Google Scholar] [CrossRef]
- Adli, S.A.; Ali, F.; Azmi, A.S.; Anuar, H.; Nasir, N.A.M.; Hasham, R.; Idris, M.K.H. Development of Biodegradable Cosmetic Patch Using a Polylactic Acid/Phycocyanin-Alginate Composite. Polymers 2020, 12, 1669. [Google Scholar] [CrossRef]
- Kraseasintra, O.; Tragoolpua, Y.; Pandith, H.; Khonkarn, R.; Pathom-aree, W.; Pekkoh, J.; Pumas, C. Application of Phycocyanin from Arthrospira (Spirulina) platensis as a Hair Dye. Front. Mar. Sci. 2022, 9, 1024988. [Google Scholar] [CrossRef]
- Dammak, M.; Ben Hlima, H.; Smaoui, S.; Fendri, I.; Michaud, P.; Ayadi, M.A.; Abdelkafi, S. Conception of an Environmental Friendly O/W Cosmetic Emulsion from Microalgae. Environ. Sci. Pollut. Res. 2022, 29, 73896–73909. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.; Campos, P.M.B.G.M. Development and Photoprotective Effect of a Sunscreen Containing the Antioxidants Spirulina and Dimethylmethoxy Chromanol on Sun-Induced Skin Damage. Eur. J. Pharm. Sci. 2017, 104, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Józsa, L.; Ujhelyi, Z.; Vasvári, G.; Sinka, D.; Nemes, D.; Fenyvesi, F.; Váradi, J.; Vecsernyés, M.; Szabó, J.; Kalló, G.; et al. Formulation of Creams Containing Spirulina Platensis Powder with Different Nonionic Surfactants for the Treatment of Acne Vulgaris. Molecules 2020, 25, 4856. [Google Scholar] [CrossRef]
- Sasounian, R.; Martinez, R.M.; Lopes, A.M.; Giarolla, J.; Rosado, C.; Magalhães, W.V.; Velasco, M.V.R.; Baby, A.R. Innovative Approaches to an Eco-Friendly Cosmetic Industry: A Review of Sustainable Ingredients. Clean Technol. 2024, 6, 176–198. [Google Scholar] [CrossRef]
- Elkady, O.A.; Mannaa, I.M.; El Bishbishy, M.H. Evaluation and Formulation of Spirulina platensis Proteins for Potential Applications in Hair Care Products. Discov. Appl. Sci. 2024, 6, 151. [Google Scholar] [CrossRef]
- Dlamini, S.; Mahowa, V. Investigating Factors That Influence the Purchase Behaviour of Green Cosmetic Products. Clean. Responsible Consum. 2024, 13, 100190. [Google Scholar] [CrossRef]
- Chwil, M.; Mihelič, R.; Matraszek-Gawron, R.; Terlecka, P.; Skoczylas, M.M.; Terlecki, K. Comprehensive Review of the Latest Investigations of the Health-Enhancing Effects of Selected Properties of Arthrospira and Spirulina Microalgae on Skin. Pharmaceuticals 2024, 17, 1321. [Google Scholar] [CrossRef]
- Salomon, G.; Giordano-Labadie, F. Surfactant Irritations and Allergies. Eur. J. Dermatol. 2022, 32, 677–681. [Google Scholar] [CrossRef]
- Cornwell, P.A. A Review of Shampoo Surfactant Technology: Consumer Benefits, Raw Materials and Recent Developments. Int. J. Cosmet. Sci. 2018, 40, 16–30. [Google Scholar] [CrossRef]
- Jeraal, M.I.; Roberts, K.J.; McRobbie, I.; Harbottle, D. Process-Focused Synthesis, Crystallization, and Physicochemical Characterization of Sodium Lauroyl Isethionate. ACS Sustain. Chem. Eng. 2018, 6, 2667–2675. [Google Scholar] [CrossRef]
- Rumin, J.; Nicolau, E.; de Junior, R.G.O.; Fuentes-Grünewald, C.; Picot, L. Analysis of Scientific Research Driving Microalgae Market Opportunities in Europe. Mar. Drugs 2020, 18, 264. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, H. Algae as a Source of Biologically Active Ingredients for the Formulation of Functional Foods and Nutraceuticals. In Functional Ingredients from Algae for Foods and Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–19. [Google Scholar]
- Pereira, L. Seaweeds as Source of Bioactive Substances and Skin Care Therapy—Cosmeceuticals, Algotheraphy, and Thalassotherapy. Cosmetics 2018, 5, 68. [Google Scholar] [CrossRef]
- Aslam, A.; Bahadar, A.; Liaquat, R.; Saleem, M.; Waqas, A.; Zwawi, M. Algae as an Attractive Source for Cosmetics to Counter Environmental Stress. Sci. Total Environ. 2021, 772, 144905. [Google Scholar] [CrossRef]
- Aslam, A.; Fazal, T.; uz Zaman, Q.; Shan, A.; Rehman, F.; Iqbal, J.; Rashid, N.; Ur Rehman, M.S. Biorefinery of Microalgae for Nonfuel Products. In Microalgae Cultivation for Biofuels Production; Elsevier: Amsterdam, The Netherlands, 2020; pp. 197–209. [Google Scholar]
- Olson, E.G. Creating an Enterprise-level “Green” Strategy. J. Bus. Strategy 2008, 29, 22–30. [Google Scholar] [CrossRef]
- Amberg, N.; Fogarassy, C. Green Consumer Behavior in the Cosmetics Market. Resources 2019, 8, 137. [Google Scholar] [CrossRef]
- Matić, M.; Puh, B. Consumers’ Purchase Intentions Towards Natural Cosmetics. Ekon. Vjesn./Econviews Rev. Contemp. Bus. 2016, 29, 53–64. [Google Scholar]
- Shimul, A.S.; Cheah, I.; Khan, B.B. Investigating Female Shoppers’ Attitude and Purchase Intention toward Green Cosmetics in South Africa. J. Glob. Mark. 2022, 35, 37–56. [Google Scholar] [CrossRef]
- Lafarga, T. Effect of Microalgal Biomass Incorporation into Foods: Nutritional and Sensorial Attributes of the End Products. Algal Res. 2019, 41, 101566. [Google Scholar] [CrossRef]
- Martínez-Sanz, M.; Larsson, E.; Filli, K.B.; Loupiac, C.; Assifaoui, A.; López-Rubio, A.; Lopez-Sanchez, P. Nano-/Microstructure of Extruded Spirulina/Starch Foams in Relation to Their Textural Properties. Food Hydrocoll. 2020, 103, 105697. [Google Scholar] [CrossRef]
- Khaligh, S.F.; Asoodeh, A. Green Synthesis and Biological Characterization of Cerium Oxide Nanoemulsion against Human HT-29 Colon Cancer Cell Line. Mater. Technol. 2022, 37, 2318–2338. [Google Scholar] [CrossRef]
Brand/Company | Product Type | Application | Origin | Purchase Link |
---|---|---|---|---|
Tulípia | Facial cream | Skincare | Goiânia, Brazil | https://tulipia.com.br/ (accessed on 24 May 2025) |
Sallve | Anti-oil stick | Skincare | São Paulo, Brazil | https://www.sallve.com.br/ (accessed on 24 May 2025) |
Mad 4 Life | Skincare kits | Nutrition and skincare | Cajamar, Brazil | https://www.mad4.life/ (accessed on 24 May 2025) |
GYADA Cosmetics | Haircare line with Spirulina | Hair strengthening | Lagerhaus Tankstelle, Austria | https://www.ecco-verde.com/ (accessed on 24 May 2025) |
SutaCosmetic | Serums, creams, facial products | Anti-aging, hydration | Estoril, Portugal | https://sutacosmetic.com/ (accessed on 24 May 2025) |
MySpirulina Cosmetics® | Creams, facial products | Skincare | Reinbek, Germany | https://www.ocean-pharma.de/en/ (accessed on 24 May 2025) |
SkinOwl | Body concentrate with spirulina | Hydration and skin brightening | Boise, USA | https://www.skinowl.com/ (accessed on 24 May 2025) |
EmerginC | Facial toner with spirulina | Toning and pH balance | New York, USA | https://emerginc.com/ (accessed on 24 May 2025) |
Golde | Powder facial masks with spirulina | Soothing and nourishment | New York, USA | https://golde.co/ (accessed on 24 May 2025) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, S.d.P.; Bürck, M.; Costa, S.F.F.d.; Assis, M.; Braga, A.R.C. Spirulina as a Key Ingredient in the Evolution of Eco-Friendly Cosmetics. BioTech 2025, 14, 41. https://doi.org/10.3390/biotech14020041
Ramos SdP, Bürck M, Costa SFFd, Assis M, Braga ARC. Spirulina as a Key Ingredient in the Evolution of Eco-Friendly Cosmetics. BioTech. 2025; 14(2):41. https://doi.org/10.3390/biotech14020041
Chicago/Turabian StyleRamos, Sergiana dos Passos, Monize Bürck, Stephanie Fabrícia Francisco da Costa, Marcelo Assis, and Anna Rafaela Cavalcante Braga. 2025. "Spirulina as a Key Ingredient in the Evolution of Eco-Friendly Cosmetics" BioTech 14, no. 2: 41. https://doi.org/10.3390/biotech14020041
APA StyleRamos, S. d. P., Bürck, M., Costa, S. F. F. d., Assis, M., & Braga, A. R. C. (2025). Spirulina as a Key Ingredient in the Evolution of Eco-Friendly Cosmetics. BioTech, 14(2), 41. https://doi.org/10.3390/biotech14020041