Next Issue
Volume 23, MTME 2025
Previous Issue
Volume 21, ANM 2024
 
 
materproc-logo

Journal Browser

Journal Browser

Mater. Proc., 2025, ICAET 2025

The 2025 11th International Conference on Advanced Engineering and Technology

Incheon, Republic of Korea | 21–23 March 2025

Volume Editors:
Jongwan Hu, Incheon National University, Republic of Korea
Dongkeon Kim, Dong-A University, Republic of Korea
Mosbeh Kaloop, Incheon Disaster Prevention Research Center, Republic of Korea; Mansoura University, Egypt

Number of Papers: 10
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Cover Story (view full-size image): The 2025 11th International Conference on Advanced Engineering and Technology (11th ICAET) was held in Incheon, Korea, on March 21–23, 2025. The conference was organized by Incheon Disaster [...] Read more.
Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Other

2 pages, 582 KB  
Editorial
Preface to the 2025 11th International Conference on Advanced Engineering and Technology
by Jongwan Hu, Dongkeon Kim and Mosbeh Kaloop
Mater. Proc. 2025, 22(1), 9; https://doi.org/10.3390/materproc2025022009 - 4 Aug 2025
Viewed by 101 Show Figures

Figure 1

2 pages, 118 KB  
Editorial
Statement of Peer Review
by Jongwan Hu, Dongkeon Kim and Mosbeh Kaloop
Mater. Proc. 2025, 22(1), 10; https://doi.org/10.3390/materproc2025022010 - 4 Aug 2025
Viewed by 39

Other

Jump to: Editorial

8 pages, 180 KB  
Proceeding Paper
Implementation Benefits of Modular Building Practices in the Construction Sector
by Ifije Ohiomah, Olusegun Oguntona and Emmanuel Ayorinde
Mater. Proc. 2025, 22(1), 1; https://doi.org/10.3390/materproc2025022001 - 15 Jul 2025
Viewed by 373
Abstract
The construction industry faces significant challenges such as environmental degradation, resource depletion, waste generation, and pollution, necessitating a shift toward sustainable practices. This study explores the benefits of implementing modular building practices (MBP) as a transformative solution. A quantitative research approach was employed, [...] Read more.
The construction industry faces significant challenges such as environmental degradation, resource depletion, waste generation, and pollution, necessitating a shift toward sustainable practices. This study explores the benefits of implementing modular building practices (MBP) as a transformative solution. A quantitative research approach was employed, utilising a structured questionnaire distributed to active and practising construction professionals. Data were analysed using mean item scores and standard deviation, with Cronbach’s alpha confirming the reliability of the research instrument (α = 0.961). The findings reveal that MBPs offer significant benefits, including eco-friendly operations, reduced material wastage, improved safety, and high productivity, among others. The discussion highlights MBPs’ potential to address environmental and economic challenges, aligning with global sustainability goals. The study concludes that MBP is a viable alternative to traditional construction, recommending policy support, industry collaboration, and further research to optimise its adoption and integration into the construction sector. Full article
7 pages, 1785 KB  
Proceeding Paper
Optimizing a Cu-Ni Nanoalloy-Coated Mesoporous Carbon for Efficient CO2 Electroreduction
by Manal B. Alhamdan, Ahmed Bahgat Radwan and Noora Al-Qahtani
Mater. Proc. 2025, 22(1), 2; https://doi.org/10.3390/materproc2025022002 - 16 Jul 2025
Viewed by 423
Abstract
Reducing atmospheric carbon dioxide is a critical global priority. This study investigates the influence of Cu-Ni nanoalloy loading on the CO2 electroreduction efficiency in the context of mesoporous carbon supports. Current methods struggle when it comes to catalyst efficiency, selectivity, and longevity. [...] Read more.
Reducing atmospheric carbon dioxide is a critical global priority. This study investigates the influence of Cu-Ni nanoalloy loading on the CO2 electroreduction efficiency in the context of mesoporous carbon supports. Current methods struggle when it comes to catalyst efficiency, selectivity, and longevity. By synthesizing copper–nickel nanoparticles through chemical reduction and depositing them on porous carbon, this research aimed to optimize catalyst loading and understand the structure–activity relationships. Catalyst performance was evaluated using chronoamperometry and linear sweep voltammetry (LSV). The results showed that 12 wt% catalyst loading achieved optimal CO2 reduction, outperforming its 36 wt% counterpart by balancing the catalyst quantity. This study reveals that 12 wt% Cu-Ni loading provides a higher CO2 reduction current density and greater long-term stability than 36 wt% loading, owing to better nanoparticle dispersion and reduced aggregation. Unlike previous Cu-Ni/mesoporous carbon studies, this work uniquely compares different loadings to directly correlate the structure, electrochemical performance, and catalyst durability. Full article
Show Figures

Figure 1

8 pages, 706 KB  
Proceeding Paper
Developing a Nature-Inspired Sustainability Assessment Tool: The Role of Materials Efficiency
by Olusegun Oguntona
Mater. Proc. 2025, 22(1), 3; https://doi.org/10.3390/materproc2025022003 - 17 Jul 2025
Viewed by 315
Abstract
The global push for sustainable development has intensified the need for innovative tools to assess and enhance sustainability in the built environment. This study explores the role of materials efficiency (ME) within a nature-inspired sustainability assessment framework, focusing on green building projects in [...] Read more.
The global push for sustainable development has intensified the need for innovative tools to assess and enhance sustainability in the built environment. This study explores the role of materials efficiency (ME) within a nature-inspired sustainability assessment framework, focusing on green building projects in South Africa. Using a nature-based (biomimicry) approach, this study identifies and prioritises key ME criteria such as eco-friendly materials, local sourcing, and responsible processing. The methodology employed the Analytic Hierarchy Process (AHP), with input from 38 carefully sampled construction experts, to rank ME criteria through pairwise comparisons. The findings revealed that eco-friendly materials (29.5%) and locally sourced materials (25.1%) were the highest-weighted factors, with strong expert consensus (CR = 0.01). The study highlights how nature-inspired principles like closed-loop systems and minimal waste can guide sustainable construction aligned with global goals such as the UN Sustainable Development Goals. The conclusion advocates for integrating ME criteria into green certification systems, industry collaboration, and further research to scale the framework globally. This study bridges biomimicry theory with practical sustainability assessment, offering actionable insights for the built environment. Full article
Show Figures

Figure 1

8 pages, 2222 KB  
Proceeding Paper
Advanced 3D Polymeric Sponges Offer Promising Solutions for Addressing Environmental Challenges in Qatar’s Marine Ecosystems
by Mohamed Helally, Mostafa H. Sliem and Noora Al-Qahtani
Mater. Proc. 2025, 22(1), 4; https://doi.org/10.3390/materproc2025022004 - 18 Jul 2025
Viewed by 310
Abstract
The increasing incidence of oil contamination in many aquatic ecosystems, particularly in oil-rich regions such as Qatar, poses significant threats to marine life and human activities. Our study addresses the critical need for effective and eco-friendly oil-water separation techniques, focusing on developing graphene [...] Read more.
The increasing incidence of oil contamination in many aquatic ecosystems, particularly in oil-rich regions such as Qatar, poses significant threats to marine life and human activities. Our study addresses the critical need for effective and eco-friendly oil-water separation techniques, focusing on developing graphene and chitosan-based three-dimensional (3D) polymeric sponges. These materials have demonstrated potential due to their high porosity and surface area, which can be enhanced through surface treatment to improve hydrophobicity and oleophilicity. This study introduces a new technique dependent on the optimization of the graphene oxide (GO) concentration within the composite sponge to achieve a superior oil uptake capacity (51.4 g oil/g sponge at 3% GO), and the detailed characterization of the material’s performance in separating heavy oil-water emulsions. Our study seeks to answer key questions regarding the performance of these modified sponges and their scalability for industrial applications. This research directly aligns with Qatar’s environmental goals and develops sustainable oil-water separation technologies. It addresses the pressing challenges of oil spills, ultimately contributing to improved marine ecosystem protection and efficient resource recovery. Full article
Show Figures

Figure 1

8 pages, 961 KB  
Proceeding Paper
Analyzing Small-Particle Contamination in Disposable Food Service Ware, Drinking Water, and Commercial Table Salt in Doha, Qatar
by Marwa Al-Ani, Ala Al-Ardah, Mennatalla Kuna, Zainab Smati, Asma Mohamed, Mostafa Sliem and Noora Al-Qahtani
Mater. Proc. 2025, 22(1), 5; https://doi.org/10.3390/materproc2025022005 - 18 Jul 2025
Viewed by 245
Abstract
Microplastics (MPs) have emerged as pervasive environmental contaminants due to their widespread presence across various ecosystems, including their use in single-use plastic food ware and table salt dispensers. This issue coincides with the presence of heavy metals in water sources in Doha, Qatar. [...] Read more.
Microplastics (MPs) have emerged as pervasive environmental contaminants due to their widespread presence across various ecosystems, including their use in single-use plastic food ware and table salt dispensers. This issue coincides with the presence of heavy metals in water sources in Doha, Qatar. Fourier Transform Infrared (FTIR) analysis revealed that the plastic plate and spoon were composed of polyolefin, with the spoon exhibiting additional peaks that indicated oxidation or the presence of additives. Thermogravimetric Analysis (TGA) revealed that the spoon exhibited higher thermal stability, retaining approximately 10% of its mass at 700 °C, than the plate, which retained 2%, indicating the presence of complex additives or contamination. MPs in food-grade salt samples were verified through filtration and Fourier Transform Infrared (FTIR) Spectroscopy, identifying polymers such as polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). These MPs likely stem from exposure to packaging or environmental contaminants. FTIR spectra confirmed the integrity of the polymers after treatment. Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES) analysis revealed varying levels of heavy metals in bottled and tap water, with notable findings including detectable arsenic and lead in both, higher calcium and magnesium in bottled water, and the presence of copper present in tap water only, highlighting potential health and infrastructure-related concerns. These results highlight the possible risks associated with exposure to MPs and heavy metals from everyday products and water sources, underscoring the need for enhanced regulatory oversight and safer material choices to ensure protection. Full article
Show Figures

Figure 1

8 pages, 1058 KB  
Proceeding Paper
A Review of Global Microplastic (MP) Databases: A Study on the Challenges and Opportunities for Data Integration in the Context of MP Pollution
by Hussain Ahamed, Marwa Al-Ani, Ala Al-Ardah and Noora Al-Qahtani
Mater. Proc. 2025, 22(1), 6; https://doi.org/10.3390/materproc2025022006 - 21 Jul 2025
Viewed by 319
Abstract
Microplastic (MP) pollution is an escalating global environmental concern, with a growing body of research addressing diverse dimensions of this issue. Despite this progress, the field remains hindered by generating large, heterogeneous datasets that follow inconsistent reporting standards, resulting in fragmented and often [...] Read more.
Microplastic (MP) pollution is an escalating global environmental concern, with a growing body of research addressing diverse dimensions of this issue. Despite this progress, the field remains hindered by generating large, heterogeneous datasets that follow inconsistent reporting standards, resulting in fragmented and often incompatible databases. While various databases on MPs have been developed, they primarily operate in isolation, limiting the accessibility and cross-comparison of data. This study presents a foundational approach to aggregating and accessing existing MP pollution datasets. A comprehensive review of the currently available databases was conducted to evaluate their integration potential. It revealed key challenges such as non-standardized data formats, limited accessibility, and difficulty performing comparative analyses across sources. To address these barriers, a prototype web-based platform was developed that enables unified access to MP datasets. The architecture includes a smart standardization layer that harmonizes inputs from disparate sources. The integration of Large Language Models (LLMs) with Retrieval-Augmented Generation (RAG) techniques was proposed to facilitate natural language querying. This enables researchers to interact with the platform intuitively and extract meaningful insights more efficiently. The proposed system aims to enhance data discoverability, promote interoperability, and support robust, data-driven environmental research, paving the way toward more informed policy-making and scientific collaboration in the fight against MP pollution. With this platform, there is a potential for new discoveries and a future in which the tools to effectively combat this global issue are available, making the audience realize the potential for new discoveries. Full article
Show Figures

Figure 1

7 pages, 1077 KB  
Proceeding Paper
Synergistic Copper–Nickel-Doped Biochar from Animal Waste as Efficient Catalyst for Hydrogen Evolution Reaction
by Ala Al-Ardah, Zainab Baloochi, Yousra Kamal, Moza Al-Neama, Haya Suwaidan, Mostafa Selim and Noora Al-Qahtani
Mater. Proc. 2025, 22(1), 7; https://doi.org/10.3390/materproc2025022007 - 31 Jul 2025
Viewed by 145
Abstract
As the global energy industry shifts away from fossil fuels, there is a growing need for sustainable and renewable hydrogen production methods. This research investigates the potential of using biochar derived from animal waste as a precursor for creating effective catalysts for the [...] Read more.
As the global energy industry shifts away from fossil fuels, there is a growing need for sustainable and renewable hydrogen production methods. This research investigates the potential of using biochar derived from animal waste as a precursor for creating effective catalysts for the hydrogen evolution reaction (HER). By incorporating copper and nickel into the biochar through hydrothermal processing, the study examined the resulting catalysts’ structural, chemical, and catalytic properties. Techniques such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR) confirmed the successful integration of metallic nanoparticles and revealed notable changes in surface morphology, elemental composition, and functional group distribution. The Cu–Ni co-doped biochar catalyst (Cu–Ni/BC) demonstrated a significant 45% increase in hydrogen evolution efficiency compared to the undoped biochar control sample. These results highlight the synergistic effects of copper and nickel in enhancing the catalyst’s electron transfer capabilities and active site availability. This study offers a sustainable, cost-effective, and environmentally friendly alternative to conventional hydrogen production catalysts, presenting considerable potential for waste valorization while promoting clean energy solutions. The research aligns with circular economy principles, contributing to the advancement of sustainable energy technologies. Full article
Show Figures

Figure 1

7 pages, 1019 KB  
Proceeding Paper
Melting Boundaries: How Heat Transforms Recycled Bottles into Chemical Time Bombs
by Marwa Al-Ani and Noora Al-Qahtani
Mater. Proc. 2025, 22(1), 8; https://doi.org/10.3390/materproc2025022008 - 31 Jul 2025
Viewed by 158
Abstract
Plastic recycling, especially of polyethylene terephthalate (PET), is essential for reducing plastic waste and promoting sustainability. This study examines the migration of phthalic acid esters (PAEs) from locally sourced recycled PET (rPET) bottles under high-temperature conditions (24 °C, 50 °C, and cyclic 70 [...] Read more.
Plastic recycling, especially of polyethylene terephthalate (PET), is essential for reducing plastic waste and promoting sustainability. This study examines the migration of phthalic acid esters (PAEs) from locally sourced recycled PET (rPET) bottles under high-temperature conditions (24 °C, 50 °C, and cyclic 70 °C) over a period of three weeks. High-Performance Liquid Chromatography (HPLC) analysis revealed increased PAE leaching at elevated temperatures, though levels remained below international safety limits. Thermo-Gravimetric Analyzer (TGA) confirmed that plastic caps exhibit higher thermal stability and decompose more completely than plastic bottles under various thermal conditions, highlighting the influence of material composition and thermal aging on degradation behavior. Findings highlight the importance of proper storage and ongoing monitoring to ensure consumer safety. Future research should investigate alternative plasticizers to improve the safety of PET recycling. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop