Previous Issue
Volume 5, March
 
 

Sustain. Chem., Volume 5, Issue 2 (June 2024) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 5122 KiB  
Review
Sustainable Technological Applications of Green Carbon Materials
by Martinho Freitas, Luís Pinto da Silva, Pedro M. S. M. Rodrigues and Joaquim Esteves da Silva
Sustain. Chem. 2024, 5(2), 81-97; https://doi.org/10.3390/suschem5020007 - 01 Apr 2024
Viewed by 505
Abstract
Green carbon-based materials (GCM), i.e., carbon materials produced using renewable biomass or recycled waste, ought to be used to make processes sustainable and carbon-neutral. Carbon nanomaterials, like carbon dots and the nanobichar families, and carbon materials, like activated carbon and biochar substances, are [...] Read more.
Green carbon-based materials (GCM), i.e., carbon materials produced using renewable biomass or recycled waste, ought to be used to make processes sustainable and carbon-neutral. Carbon nanomaterials, like carbon dots and the nanobichar families, and carbon materials, like activated carbon and biochar substances, are sustainable materials with great potential to be used in different technological applications. In this review, the following four applications were selected, and the works published in the last two years (since 2022) were critically reviewed: agriculture, water treatment, energy management, and carbon dioxide reduction and sequestration. GCM improved the performance of the technological applications under revision and played an important role in the sustainability of the processes, contributing to the mitigation of climate change, by reducing emissions and increasing the sequestration of CO2eq. Full article
Show Figures

Figure 1

13 pages, 5334 KiB  
Article
Isolation of Cardanol Fractions from Cashew Nutshell Liquid (CNSL): A Sustainable Approach
by Bhavika Bhatia, Nagarjuna Amarnath, Sumit K. Rastogi and Bimlesh Lochab
Sustain. Chem. 2024, 5(2), 68-80; https://doi.org/10.3390/suschem5020006 - 01 Apr 2024
Viewed by 814
Abstract
Exploring sustainable approaches to replace petroleum-based chemicals is an ongoing challenge in reducing the carbon footprint. Due to the complexity and percentage variation in nature-generated molecules, which further varies based on geographical origin and the purification protocol adopted, a better isolation strategy for [...] Read more.
Exploring sustainable approaches to replace petroleum-based chemicals is an ongoing challenge in reducing the carbon footprint. Due to the complexity and percentage variation in nature-generated molecules, which further varies based on geographical origin and the purification protocol adopted, a better isolation strategy for individual components is required. Agrowaste from the cashew industry generates phenolic lipid (cardanol)-rich cashew nutshell liquid (CNSL) and has recently shown extensive commercial utility. Cardanol naturally exists as a mixture of three structurally different components with C15-alkylene chains: monoene, diene, and triene. The separation of these three fractions has been a bottleneck and is crucial for certain structural designs and reproducibility. Herein, we describe the gram-scale purification of cardanol into each component using flash column chromatography within the sustainability framework. The solvent used for elution is recovered and reused after each stage (up to 82%), making it a cost-effective and sustainable purification strategy. This simple purification technique replaces the alternative high-temperature vacuum distillation, which requires substantial energy consumption and poses vacuum fluctuation and maintenance challenges. Three components (monoene 42%, diene 22%, and triene 36%) were isolated with good purity and were fully characterized by 1H and 13C NMR, GC-MS, HPLC, and FTIR spectroscopy. The present work demonstrates that greener and simpler strategies pave the way for the isolation of constituents from nature-sourced biochemicals and unleash the potential of CNSL-derived fractions for high-end applications. Full article
Show Figures

Figure 1

8 pages, 228 KiB  
Perspective
Sustainable-by-Design Approach of Active Catalysts to Produce Reactive Oxygen Species in Water Matrices
by Prisco Prete
Sustain. Chem. 2024, 5(2), 60-67; https://doi.org/10.3390/suschem5020005 - 29 Mar 2024
Viewed by 388
Abstract
An overview of the latest advances in the design of active catalysts with the ability to promote (photo) Fenton processes in water from a Green Chemistry perspective is discussed herein. A critical evaluation of the most relevant advances has been disclosed, and a [...] Read more.
An overview of the latest advances in the design of active catalysts with the ability to promote (photo) Fenton processes in water from a Green Chemistry perspective is discussed herein. A critical evaluation of the most relevant advances has been disclosed, and a brief perspective is presented about what is needed to fill the gap of knowledge in this field. Full article
20 pages, 4680 KiB  
Review
The Multifaceted Perspective on the Role of Green Synthesis of Nanoparticles in Promoting a Sustainable Green Economy
by Manish Kumar Sah, Biraj Shah Thakuri, Jyoti Pant, Ramesh L. Gardas and Ajaya Bhattarai
Sustain. Chem. 2024, 5(2), 40-59; https://doi.org/10.3390/suschem5020004 - 25 Mar 2024
Viewed by 1248
Abstract
The current economic development paradigm, which is based on steadily rising resource consumption and pollution emissions, is no longer viable in a world with limited resources and ecological capacity. The “green economy” idea has presented this context with a chance to alter how [...] Read more.
The current economic development paradigm, which is based on steadily rising resource consumption and pollution emissions, is no longer viable in a world with limited resources and ecological capacity. The “green economy” idea has presented this context with a chance to alter how society handles the interplay between the environmental and economic spheres. The related concept of “green nanotechnology” aims to use nano-innovations within the fields of materials science and engineering to generate products and processes that are economically and ecologically sustainable, enabling society to establish and preserve a green economy. Many different economic sectors are anticipated to be impacted by these applications, including those related to corrosion inhibitor nanofertilizers, nanoremediation, biodegradation, heavy metal detection, biofuel, insecticides and pesticides, and catalytic CO2 reduction. These innovations might make it possible to use non-traditional water sources safely and to create construction materials that are enabled by nanotechnology, improving living and ecological conditions. Therefore, our aim is to highlight how nanotechnology is being used in the green economy and to present promises for nano-applications in this domain. In the end, it emphasizes how critical it is to attain a truly sustainable advancement in nanotechnology. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop