The Peril of Plastics: Atmospheric Microplastics in Outdoor, Indoor, and Remote Environments
Abstract
:1. Introduction
1.1. Composition
1.2. Inhaling Airborne Microplastics
2. Progressive Atmospheric Deposition
3. Microplastic Exchange between Indoor and Outdoor Atmospheres
4. Current Microplastic Sinks in Remote Areas
5. Meteorological Factors
6. Challenges and Visions
- (a)
- Scarce studies on terrestrial AMPs present in various indoor and outdoor sites across the globe overshadow the true reality of suspended AMPs. Moreover, a generalized conclusion cannot be drawn regarding the flow of MPs between indoor and outdoor environments. This hinders the development of a rigid source–pathway–sink trajectory.
- (b)
- The transportation of AMPs and their role as vectors are vastly unexplored. Incomplete source–pathway–sink relationships of AMPs hinder developments, and a wide array of future research can be dedicated to understanding these interrelationships, which can help in regulating the influx or efflux of AMPs.
- (c)
- It is quite challenging to understand the spread of suspended AMP deposition in remote areas with negligible local transport of plastic pollutants, such as glaciers, arctic areas, and other such environments. More future investigations into this approach could provide insights into the relationship of MP pollution with population, industrialization, AMPs transportation, and other parameters.
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bank, M.S.; Hansson, S.V. The Plastic Cycle: A Novel and Holistic Paradigm for the Anthropocene. Environ. Sci. Technol. 2019, 53, 7177–7179. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Sources, fate and effects of microplastics in the marine environment: Part two of a global assessment. In Reports and Studies-IMO/FAO/Unesco-IOC/WMO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) eng no. 93; International Maritime Organization: London, UK, 2016; 220p.
- Alimi, O.S.; Budarz, J.F.; Hernandez, L.M.; Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef] [PubMed]
- ISO-ISO/DIS 4484-2; Textiles and Textile Products—Microplastics from Textile Sources—Part 2: Qualitative and Quantitative Evaluation of Microplastics. ISO: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/80011.html (accessed on 2 June 2024).
- ISO 5157_2023(en); Textiles—Environmental Aspects—Vocabulary. ISO: Geneva, Switzerland, 2023.
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Lagarde, F.; Olivier, O.; Zanella, M.; Daniel, P.; Hiard, S.; Caruso, A. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 2016, 215, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Arreola-Alarcón, I.M.; Reyes-Bonilla, H.; Sakthi, J.S.; Rodríguez-González, F.; Jonathan, M.P. Seasonal tendencies of microplastics around coral reefs in selected Marine Protected National Parks of Gulf of California, Mexico. Mar. Pollut. Bull. 2022, 175, 113333. [Google Scholar] [CrossRef] [PubMed]
- Botterell, Z.L.R.; Bergmann, M.; Hildebrandt, N.; Krumpen, T.; Steinke, M.; Thompson, R.C.; Lindeque, P.K. Microplastic ingestion in zooplankton from the Fram Strait in the Arctic. Sci. Total Environ. 2022, 831, 154886. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhu, L.; Rao, L.; Zhao, L.; Wang, Y.; Wu, X.; Zheng, H.; Liao, X. Nano-and micro-polystyrene plastics disturb gut microbiota and intestinal immune system in honeybee. Sci. Total Environ. 2022, 842, 156819. [Google Scholar] [CrossRef] [PubMed]
- Bobori, D.C.; Dimitriadi, A.; Feidantsis, K.; Samiotaki, A.; Fafouti, D.; Sampsonidis, I.; Kalogiannis, S.; Kastrinaki, G.; Lambropoulou, D.A.; Kyzas, G.Z. Toxic effects of polyethylene-microplastics on freshwater fish species: Implications for human health. Public Health Toxicol. 2022, 2, A108. [Google Scholar] [CrossRef]
- Dey, T. Microplastic pollutant detection by Surface Enhanced Raman Spectroscopy (SERS): A mini-review. Nanotechnol. Environ. Eng. 2022, 8, 41–48. [Google Scholar] [CrossRef]
- Moniuszko, H.; Malonga, W.A.; Koczoń, P.; Thijs, S.; Popek, R.; Przybysz, A. Accumulation of Plastics and Trace Elements in the Mangrove Forests of Bima City Bay, Indonesia. Plants 2023, 12, 462. [Google Scholar] [CrossRef] [PubMed]
- Mészáros, E.; Bodor, A.; Kovács, E.; Papp, S.; Kovács, K.; Perei, K.; Feigl, G. Impacts of plastics on plant development: Recent advances and future research directions. Plants 2023, 12, 3282. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, F.; Sorrentino, M.C.; Cascone, E.; Iuliano, M.; De Tommaso, G.; Granata, A.; Giordano, S.; Spagnuolo, V. Biomonitoring of Airborne Microplastic Deposition in Semi-Natural and Rural Sites Using the Moss Hypnum cupressiforme. Plants 2023, 12, 977. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Y.S.; Anuar, S.T.; Azmi, A.A.; Khalik, W.M.A.W.M.; Lehata, S.; Hamzah, S.R.; Ismail, D.; Ma, Z.F.; Dzulkarnaen, A.; Zakaria, Z. Detection of microplastics in human colectomy specimens. JGH Open 2021, 5, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Tadsuwan, K.; Babel, S. Unraveling microplastics removal in wastewater treatment plant: A comparative study of two wastewater treatment plants in Thailand. Chemosphere 2022, 307, 135733. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Ulke, J.; Font, A.; Chan, K.L.A.; Kelly, F.J. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 2020, 136, 105411. [Google Scholar] [CrossRef]
- Liu, K.; Wu, T.; Wang, X.; Song, Z.; Zong, C.; Wei, N.; Li, D. Consistent Transport of Terrestrial Microplastics to the Ocean through Atmosphere. Environ. Sci. Technol. 2019, 53, 10612–10619. [Google Scholar] [CrossRef] [PubMed]
- Borthakur, A.; Leonard, J.; Koutnik, V.S.; Ravi, S.; Mohanty, S.K. Inhalation risks of wind-blown dust from biosolid-applied agricultural lands: Are they enriched with microplastics and PFAS? Curr. Opin. Environ. Sci. Health 2022, 25, 100309. [Google Scholar] [CrossRef]
- Miri, S.; Saini, R.; Davoodi, S.M.; Pulicharla, R.; Brar, S.K.; Magdouli, S. Biodegradation of microplastics: Better late than never. Chemosphere 2022, 286, 131670. [Google Scholar] [CrossRef]
- Veerasingam, S.; Ranjani, M.; Venkatachalapathy, R.; Bagaev, A.; Mukhanov, V.; Litvinyuk, D.; Verzhevskaia, L.; Guganathan, L.; Vethamony, P. Microplastics in different environmental compartments in India: Analytical methods, distribution, associated contaminants and research needs. TrAC Trends Anal. Chem. 2020, 133, 116071. [Google Scholar] [CrossRef]
- Shi, B.; Patel, M.; Yu, D.; Yan, J.; Li, Z.; Petriw, D.; Pruyn, T.; Smyth, K.; Passeport, E.; Miller, R.J.D.; et al. Automatic quantification and classification of microplastics in scanning electron micrographs via deep learning. Sci. Total Environ. 2022, 825, 153903. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Li, Y.; Jones, T.; Santosh, M.; Liu, P.; Zhang, M.; Xu, L.; Li, W.; Lu, J.; Yang, C.-X. Airborne microplastics: A review of current perspectives and environmental implications. J. Clean. Prod. 2022, 347, 131048. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric microplastics: A review on current status and perspectives. Earth-Sci. Rev. 2020, 203, 103118. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic contamination in an urban area: A case study in Greater Paris. Environ. Chem. 2015, 12, 592–599. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Mirande, C.; Mandin, C.; Guerrouache, M.; Langlois, V.; Tassin, B. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 2017, 221, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Parashar, N.; Hait, S. Plastic rain—Atmospheric microplastics deposition in urban and peri-urban areas of Patna City, Bihar, India: Distribution, characteristics, transport, and source analysis. J. Hazard. Mater. 2023, 458, 131883. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Bai, Y.; Ma, T.; Liu, X.; Wei, H.; Meng, H.; Fu, Y.; Ma, Z.; Zhang, L.; Zhao, J. Distribution and possible sources of atmospheric microplastic deposition in a valley basin city (Lanzhou, China). Ecotoxicol. Environ. Saf. 2022, 233, 113353. [Google Scholar] [CrossRef]
- Hee, Y.Y.; Hanif, N.M.; Weston, K.; Latif, M.T.; Suratman, S.; Rusli, M.U.; Mayes, A.G. Atmospheric microplastic transport and deposition to urban and pristine tropical locations in Southeast Asia. Sci. Total Environ. 2023, 902, 166153. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Ren, S.; Huang, D.; Liu, F.; Li, Z.; Zhang, H.; Zhao, M.; Cao, Y.; Mofolo, S.; et al. Atmospheric deposition of microplastics in a rural region of North China Plain. Sci. Total Environ. 2023, 877, 162947. [Google Scholar] [CrossRef] [PubMed]
- Purwiyanto, A.I.S.; Prartono, T.; Riani, E.; Naulita, Y.; Cordova, M.R.; Koropitan, A.F. The deposition of atmospheric microplastics in Jakarta-Indonesia: The coastal urban area. Mar. Pollut. Bull. 2022, 174, 113195. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Liao, Z.; Ji, X.; Zhu, X.; Wang, Z.; Lu, C.; Shi, C.; Chen, Z.; Ge, L.; Zhang, M.; et al. Microplastic ingestion from atmospheric deposition during dining/drinking activities. J. Hazard. Mater. 2022, 432, 128674. [Google Scholar] [CrossRef] [PubMed]
- Truong, T.-N.-S.; Strady, E.; Kieu-Le, T.-C.; Tran, Q.-V.; Le, T.-M.-T.; Thuong, Q.-T. Microplastic in atmospheric fallouts of a developing Southeast Asian megacity under tropical climate. Chemosphere 2021, 272, 129874. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Duan, Y.; Han, X.; Sun, X.; Munyaneza, J.; Ma, J.; Xiu, G. Atmospheric deposition of microplastics in the megalopolis (Shanghai) during rainy season: Characteristics, influence factors, and source. Sci. Total Environ. 2022, 847, 157609. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Pei, C.; Li, H.; Lin, L.; Liu, S.; Hou, R.; Liao, R.; Xu, X. Atmospheric microplastics at a southern China metropolis: Occurrence, deposition flux, exposure risk and washout effect of rainfall. Sci. Total Environ. 2023, 869, 161839. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.; Bechtel, B.; Brecht, T.; Fischer, E.K. Spatial distribution of atmospheric microplastics in bulk-deposition of urban and rural environments—A one-year follow-up study in northern Germany. Sci. Total Environ. 2023, 901, 165923. [Google Scholar] [CrossRef]
- Kyriakoudes, G.; Turner, A. Suspended and deposited microplastics in the coastal atmosphere of southwest England. Chemosphere 2023, 343, 140258. [Google Scholar] [CrossRef]
- Allen, D.; Allen, S.; Le Roux, G.; Simonneau, A.; Galop, D.; Phoenix, V.R. Temporal Archive of Atmospheric Microplastic Deposition Presented in Ombrotrophic Peat. Environ. Sci. Technol. Lett. 2021, 8, 954–960. [Google Scholar] [CrossRef]
- Cakaj, A.; Lisiak-Zielińska, M.; Drzewiecka, K.; Budka, A.; Borowiak, K.; Drapikowska, M.; Cakaj, A.; Qorri, E.; Szkudlarz, P. Potential Impact of Urban Land Use on Microplastic Atmospheric Deposition: A Case Study in Pristina City, Kosovo. Sustainability 2023, 15, 16464. [Google Scholar] [CrossRef]
- Cai, L.; Wang, J.; Peng, J.; Tan, Z.; Zhan, Z.; Tan, X.; Chen, Q. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: Preliminary research and first evidence. Environ. Sci. Pollut. Res. 2017, 24, 24928–24935. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.; Fischer, E.K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Sci. Total Environ. 2019, 685, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, J.; Zhang, Y.; Wang, L.; Deng, J.; Gao, Y.; Yu, L.; Zhang, J.; Sun, H. Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure. Environ. Int. 2019, 128, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Huang, W.; Fang, M.; Liao, Z.; Wang, Y.; Xu, L.; Mu, Q.; Shi, C.; Lu, C.; Deng, H.; et al. Airborne Microplastic Concentrations in Five Megacities of Northern and Southeast China. Environ. Sci. Technol. 2021, 55, 12871–12881. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Lee, I.; Kim, H.; Park, J.; Cho, S.; Oh, S.; Lee, M.; Kim, H. Comparison of Microplastic Characteristics in the Indoor and Outdoor Air of Urban Areas of South Korea. Water Air Soil Pollut. 2022, 233, 169. [Google Scholar] [CrossRef]
- Jenner, L.C.; Sadofsky, L.R.; Danopoulos, E.; Rotchell, J.M. Household indoor microplastics within the Humber region (United Kingdom): Quantification and chemical characterisation of particles present. Atmos. Environ. 2021, 259, 118512. [Google Scholar] [CrossRef]
- Jenner, L.C.; Sadofsky, L.R.; Danopoulos, E.; Chapman, E.; White, D.; Jenkins, R.L.; Rotchell, J.M. Outdoor Atmospheric Microplastics within the Humber Region (United Kingdom): Quantification and Chemical Characterisation of Deposited Particles Present. Atmosphere 2022, 13, 265. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Zhang, X.; Zhang, Y.; Gao, W.; Wang, R.; He, D. Air conditioner filters become sinks and sources of indoor microplastics fibers. Environ. Pollut. 2022, 292, 118465. [Google Scholar] [CrossRef] [PubMed]
- Torres-Agullo, A.; Karanasiou, A.; Moreno, T.; Lacorte, S. Airborne microplastic particle concentrations and characterization in indoor urban microenvironments. Environ. Pollut. 2022, 308, 119707. [Google Scholar] [CrossRef]
- Perera, K.; Ziajahromi, S.; Nash, S.B.; Manage, P.M.; Leusch, F.D.L. Airborne Microplastics in Indoor and Outdoor Environments of a Developing Country in South Asia: Abundance, Distribution, Morphology, and Possible Sources. Environ. Sci. Technol. 2022, 56, 16676–16685. [Google Scholar] [CrossRef]
- Yao, Y.; Glamoclija, M.; Murphy, A.; Gao, Y. Characterization of microplastics in indoor and ambient air in northern New Jersey. Environ. Res. 2022, 207, 112142. [Google Scholar] [CrossRef]
- Nematollahi, M.J.; Keshavarzi, B.; Mohit, F.; Moore, F.; Busquets, R. Microplastic occurrence in urban and industrial soils of Ahvaz metropolis: A city with a sustained record of air pollution. Sci. Total Environ. 2022, 819, 152051. [Google Scholar] [CrossRef] [PubMed]
- Syafina, P.R.; Yudison, A.P.; Sembiring, E.; Irsyad, M.; Tomo, H.S. Identification of fibrous suspended atmospheric microplastics in Bandung Metropolitan Area, Indonesia. Chemosphere 2022, 308, 136194. [Google Scholar] [CrossRef]
- Kacprzak, S.; Tijing, L.D. Microplastics in indoor environment: Sources, mitigation and fate. J. Environ. Chem. Eng. 2022, 10, 107359. [Google Scholar] [CrossRef]
- Parolini, M.; Antonioli, D.; Borgogno, F.; Gibellino, M.C.; Fresta, J.; Albonico, C.; De Felice, B.; Canuto, S.; Concedi, D.; Romani, A. Microplastic contamination in snow from Western Italian alps. Int. J. Environ. Res. Public Health 2021, 18, 768. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Kang, S.; Wang, Z.; Luo, X.; Guo, J.; Gao, T.; Chen, P.; Yang, C.; Zhang, Y. Microplastic characteristic in the soil across the Tibetan Plateau. Sci. Total Environ. 2022, 828, 154518. [Google Scholar] [CrossRef]
- Primpke, S.; Booth, A.M.; Gerdts, G.; Gomiero, A.; Kögel, T.; Lusher, A.L.; Strand, J.; Scholz-Böttcher, B.M.; Galgani, F.; Provencher, J.F. Monitoring of microplastic pollution in the Arctic: Recent developments in polymer identification, quality assurance and control (QA/QC), and data reporting. Arct. Sci. 2022, 9, 176–197. [Google Scholar] [CrossRef]
- Hamilton, B.M.; Bourdages, M.P.T.; Geoffroy, C.; Vermaire, J.C.; Mallory, M.L.; Rochman, C.M.; Provencher, J.F. Microplastics around an Arctic seabird colony: Particle community composition varies across environmental matrices. Sci. Total Environ. 2021, 773, 145536. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Wang, L.; Wang, X.; Xu, L.; Chen, M.; Gong, P.; Wang, C. Microplastics in a remote Lake Basin of the tibetan plateau: Impacts of atmospheric transport and glacial melting. Environ. Sci. Technol. 2021, 55, 12951–12960. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, T.; Kang, S.; Shi, H.; Mai, L.; Allen, D.; Allen, S. Current status and future perspectives of microplastic pollution in typical cryospheric regions. Earth-Sci. Rev. 2022, 226, 103924. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Liu, K.; Zhu, L.; Song, Z.; Li, D. Atmospheric microplastic over the South China Sea and East Indian Ocean: Abundance, distribution and source. J. Hazard. Mater. 2020, 389, 121846. [Google Scholar] [CrossRef] [PubMed]
- Trainic, M.; Flores, J.M.; Pinkas, I.; Pedrotti, M.L.; Lombard, F.; Bourdin, G.; Gorsky, G.; Boss, E.; Rudich, Y.; Vardi, A.; et al. Airborne microplastic particles detected in the remote marine atmosphere. Commun. Earth Environ. 2020, 1, 64. [Google Scholar] [CrossRef]
- Talukdar, A.; Bhattacharya, S.; Bandyopadhyay, A.; Dey, A. Microplastic pollution in the Himalayas: Occurrence, distribution, accumulation and environmental impacts. Sci. Total Environ. 2023, 874, 162495. [Google Scholar] [CrossRef] [PubMed]
- Citterich, F.; Giudice, A.L.; Azzaro, M. A plastic world: A review of microplastic pollution in the freshwaters of the Earth’s poles. Sci. Total Environ. 2023, 869, 161847. [Google Scholar] [CrossRef] [PubMed]
- Evangeliou, N.; Grythe, H.; Klimont, Z.; Heyes, C.; Eckhardt, S.; Lopez-Aparicio, S.; Stohl, A. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 2020, 11, 3381. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xiong, X.; Wang, K.; Wang, H.; Ling, Y.; Li, Q.; Xu, F.; Wu, C. Homogenization of microplastics in alpine rivers: Analysis of microplastic abundance and characteristics in rivers of Qilian Mountain, China. J. Environ. Manag. 2023, 340, 118011. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Qadir, A.; Yaqub, A.; Hassan, H.U.; Irfan, M.; Aslam, M. Microplastics in water, sediments, and fish at Alpine River, originating from the Hindu Kush Mountain, Pakistan: Implications for conservation. Environ. Sci. Pollut. Res. 2023, 30, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Forster, N.A.; Wilson, S.C.; Tighe, M.K. Microplastic pollution on hiking and running trails in Australian protected environments. Sci. Total Environ. 2023, 874, 162473. [Google Scholar] [CrossRef]
- Pastorino, P.; Anselmi, S.; Esposito, G.; Bertoli, M.; Pizzul, E.; Barceló, D.; Elia, A.C.; Dondo, A.; Prearo, M.; Renzi, M. Microplastics in biotic and abiotic compartments of high-mountain lakes from Alps. Ecol. Indic. 2023, 150, 110215. [Google Scholar] [CrossRef]
- Han, B.; Yacoub, M.; Li, A.; Nicholson, K.; Gruver, J.; Neumann, K.; Sharma, S. Human Activities Increased Microplastics Contamination in the Himalaya Mountains. Hydrology 2024, 11, 4. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Kang, S.; Yang, L.; Luo, X.; Chen, P.; Guo, J.; Hu, Z.; Yang, C.; Yang, Z.; et al. Long-range transport of atmospheric microplastics deposited onto glacier in southeast Tibetan Plateau. Environ. Pollut. 2022, 306, 119415. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Tappenbeck, T.H.; Wu, C.; Elser, J.J. Microplastics in Flathead Lake, a large oligotrophic mountain lake in the USA. Environ. Pollut. 2022, 306, 119445. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, M.; Moulatlet, G.M.; Valencia, B.G.; Maisincho, L.; Rodríguez-Barroso, R.; Albendín, G.; Sakali, A.; Lucas-Solis, O.; Conicelli, B.; Capparelli, M.V. Microplastics in a tropical Andean Glacier: A transportation process across the Amazon basin? Sci. Total Environ. 2022, 805, 150334. [Google Scholar] [CrossRef] [PubMed]
- Godoy, V.; Calero, M.; González-Olalla, J.M.; Martín-Lara, M.A.; Olea, N.; Ruiz-Gutierrez, A.; Villar-Argaiz, M. The human connection: First evidence of microplastics in remote high mountain lakes of Sierra Nevada, Spain. Environ. Pollut. 2022, 311, 119922. [Google Scholar] [CrossRef] [PubMed]
- Villanova-Solano, C.; Hernández-Sánchez, C.; Díaz-Peña, F.J.; González-Sálamo, J.; González-Pleiter, M.; Hernández-Borges, J. Microplastics in snow of a high mountain national park: El Teide, Tenerife (Canary Islands, Spain). Sci. Total Environ. 2023, 873, 162276. [Google Scholar] [CrossRef]
- Szewc, K.; Graca, B.; Dołęga, A. Atmospheric deposition of microplastics in the coastal zone: Characteristics and relationship with meteorological factors. Sci. Total Environ. 2021, 761, 143272. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Jiménez, P.D.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Liu, K.; Wang, X.; Fang, T.; Xu, P.; Zhu, L.; Li, D. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci. Total Environ. 2019, 675, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Welsh, B.; Aherne, J.; Paterson, A.M.; Yao, H.; McConnell, C. Atmospheric deposition of anthropogenic particles and microplastics in south-central Ontario, Canada. Sci. Total Environ. 2022, 835, 155426. [Google Scholar] [CrossRef]
- Roblin, B.; Ryan, M.; Vreugdenhil, A.; Aherne, J. Ambient atmospheric deposition of anthropogenic microfibers and microplastics on the western periphery of Europe (Ireland). Environ. Sci. Technol. 2020, 54, 11100–11108. [Google Scholar] [CrossRef]
MP | Size | Shape | Techniques | Deposition | Location | Ref. |
---|---|---|---|---|---|---|
Asia | ||||||
PET, PP | 347.9 ± 189.2 µm | Fibers and fragments | Deposition flux | 1959.6 ± 205 MPs/m2/day | Patna, Bihar, India | [31] |
PET | 50~500 µm | Fragments and fibers | Deposition flux followed by visual inspection and FTIR | 353.83 MP/m2/day | Lanzhou, China | [32] |
MP | 50–100 μm | Fragments | Nile Red method and μ-FTIR | 114 to 689 MP/m2/day | Southeast Asia (Malaysia) | [33] |
Rayon, PET, PE | 3–50 μm | Fibers | Fluorescence microscopy and μ-FTIR | 892–75,421 MP/m2/day | Quzhou County, China | [34] |
PES, PS, PE and Polybutadiene | 500–1000 μm | Foam, fragments, and fibers | Deposition using rain gauge and FTIR | 3 to 40 MP/m2/day | Jakarta, Indonesia | [35] |
MP | <100 µm | Amorphous fragments | - | 105 MP/m2/day | Dining/drinking venues, China | [36] |
PP, PE, PVC | 300–5000 µm | Fibers, films, and fragments | Deposition flux | 71 to 917 MP/m2/day | South of Vietnam | [37] |
PA, PET and PVF | <1000 µm | Fibers | - | 3261.22 ± 2847.99 MP/m2/day | Shanghai, China | [38] |
PET, Rayon | - | Fibers | Deposition flux | 84.00 ± 6.95 items/m2/d (wet season) and 47.88 ± 8.35 items/m2/d (dry season) | Guangzhou, Southern China | [39] |
Europe | ||||||
MP | - | Fibers in higher amounts | - | 89 ± 61 MP/m2/day | Northern Germany | [40] |
Rayon | Fibers | Visual examination under stereomicroscope and FTIR | 11.28 to 79.2 MP/m2/day | Southwest England | [41] | |
PP, PET, PE, PS, PVC | ≤30 μm | Fibers and fragments | μRaman spectroscopy | 178 (±79) MP/m2/day | Central Pyrenees | [42] |
MPs | <2.5 mm | Fibers and fragments | Microscopy | 61.7–107.7 MPs/day | Pristina, Republic of Kosovo | [43] |
MP | Size | Shape | Techniques for Identifying Shape | Deposition | Location | Ref. |
---|---|---|---|---|---|---|
PE, PET, PES, HDPE, LDPE | 50–1910 µm | Fibers and fragments | µ-FTIR | 0.39 ± 0.39 to 4.91 ± 2.48 MPs/L | Aosta Valley, Western Italian Alps | [58] |
PP | - | Transparent fibers | Microscopy and Raman spectroscopy | 0.48 ± 0.28 MPs/L | Qilian Mountain, China | [69] |
MPs | 50–300 µm | Fibers | Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy | Water: 305.79 ± 289.66 MPs/m3 | Hindu Kush Mountain, Pakistan | [70] |
Sediment: 588.29 ± 253.95 MPs/kg | ||||||
PET, PU, PS, and polyamide | - | Fibers | Laser Direct Infrared Imaging (LDIR), SEM | 17.4 MPs/m2/day | Hiking trail in Southeast Australia | [71] |
PP and PET | 100.2–142.1 μm | Fibers and fragments | Stereomicroscopy, FTIR | Upper lake: 1.75 ± 0.62 MPs/m3 | Sediments in Lake Balma, Cottian Alps | [72] |
101.1–138.6 μm | Lower lake: 1.33 ± 0.67 MPs/m3 | |||||
MPs | - | Fibers, films, and fragments | FTIR-ATR spectroscopy | 2.0 ± 1.7 MPs/L | Water samples from Sagarmatha National Park, Nepal | [73] |
MPs | 48–200 μm | Fibers and films | Raman microscope | Snow: 9.55 ± 0.9 MPs/L | Tibetan Plateau | [74] |
MPs | - | Non-fibrous material | Raman spectroscopy | Dry deposition: 4 to 140 MPs/m2/dayWet deposition: 0.006–0.050 MPs/mL | Flathead lake, USA | [75] |
MPs | - | Fibers, films, and fragments | ATR-FTIR | 131 ± 24 MPs/L | Andean glacier | [76] |
<45 μm | Fibers and fragments | Stereomicroscope | 21.3 MPs/L | High mountain lakes of Sierra Nevada, Spain | [77] | |
PES, nylon, PA, PP | 250–750 μm | Cellulosic compounds, polyester, and acrylic microfibers | Stereomicroscope, µ-FTIR | 167 ± 104 and 188 ± 164 MPs/L | High mountain snow, El Teide, Spain | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borah, S.J.; Gupta, A.K.; Kumar, V.; Jhajharia, P.; Singh, P.P.; Kumar, P.; Kumar, R.; Dubey, K.K.; Gupta, A. The Peril of Plastics: Atmospheric Microplastics in Outdoor, Indoor, and Remote Environments. Sustain. Chem. 2024, 5, 149-162. https://doi.org/10.3390/suschem5020011
Borah SJ, Gupta AK, Kumar V, Jhajharia P, Singh PP, Kumar P, Kumar R, Dubey KK, Gupta A. The Peril of Plastics: Atmospheric Microplastics in Outdoor, Indoor, and Remote Environments. Sustainable Chemistry. 2024; 5(2):149-162. https://doi.org/10.3390/suschem5020011
Chicago/Turabian StyleBorah, Shikha Jyoti, Abhijeet Kumar Gupta, Vinod Kumar, Priyanka Jhajharia, Praduman Prasad Singh, Pramod Kumar, Ravinder Kumar, Kashyap Kumar Dubey, and Akanksha Gupta. 2024. "The Peril of Plastics: Atmospheric Microplastics in Outdoor, Indoor, and Remote Environments" Sustainable Chemistry 5, no. 2: 149-162. https://doi.org/10.3390/suschem5020011
APA StyleBorah, S. J., Gupta, A. K., Kumar, V., Jhajharia, P., Singh, P. P., Kumar, P., Kumar, R., Dubey, K. K., & Gupta, A. (2024). The Peril of Plastics: Atmospheric Microplastics in Outdoor, Indoor, and Remote Environments. Sustainable Chemistry, 5(2), 149-162. https://doi.org/10.3390/suschem5020011