Previous Issue
Volume 6, March
 
 

Organics, Volume 6, Issue 2 (June 2025) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
24 pages, 2893 KiB  
Article
Adsorption of Methylene Blue Dye onto Various Marine Sediments and Seagrass Biomass of Posidonia oceanica Species: Kinetics and Equilibrium Studies
by Maria C. Vagi, Andreas S. Petsas, Dionysia Dimitropoulou, Melpomeni Leventelli and Anastasia D. Nikolaou
Organics 2025, 6(2), 21; https://doi.org/10.3390/org6020021 - 6 May 2025
Abstract
This study concerns the investigation of the sorption and desorption phenomena of the organic dye methylene blue (MB) on three different marine sediments and non-living biomass of the seagrass species Posidonia oceanica. All tested adsorbents were of natural origin and were collected [...] Read more.
This study concerns the investigation of the sorption and desorption phenomena of the organic dye methylene blue (MB) on three different marine sediments and non-living biomass of the seagrass species Posidonia oceanica. All tested adsorbents were of natural origin and were collected from unpolluted coasts of the North Aegean Sea (Greece). The batch equilibrium technique was applied and MB concentrations were determined by spectrophotochemical analysis (λ = 665 nm). The experimental results showed that all four isotherm models, Freundlich, Langmuir, Henry, and Temkin, could describe the process. The normalized to organic matter content adsorption coefficients (KOM) ranged between 33.0765 and 34.5279 for the studied sediments. The maximum adsorption capacity (qmax) of sediments was in the range of 0.98 mg g−1 and 6.80 mg g−1, indicating a positive correlation with the adsorbents’ organic matter content, textural analysis of fine fraction (<63 μm), and specific surface area. The bioadsorption of MB on P. oceanica biomass resulted in 13.25 mg g−1 up to 17.86 mg g−1 adsorption efficiency. Desorption studies revealed that the studied dye in most cases was very strongly adsorbed on studied matrices with extremely low quantities of seawater extractable amounts (≤1.62%). According to the experimental findings, phycoremediation by using P. oceanica can be characterized as an efficient method for the bioremediation of dye-polluted wastewater. Full article
Show Figures

Figure 1

19 pages, 6341 KiB  
Review
Aniline and Beyond: A Multifaceted Case Study for a Bildung-Focused Chemical Education
by Teresa Celestino
Organics 2025, 6(2), 20; https://doi.org/10.3390/org6020020 - 1 May 2025
Viewed by 138
Abstract
In the chemical education field, the Johnstone’s triangle represents three learning levels (symbolic, macroscopic, and molecular) needed for students. Afterwards, Mahaffy suggested a tetrahedron model based on this triangle, where the top represents the human element. Subsequently, Sjöström proposed a subdivision of the [...] Read more.
In the chemical education field, the Johnstone’s triangle represents three learning levels (symbolic, macroscopic, and molecular) needed for students. Afterwards, Mahaffy suggested a tetrahedron model based on this triangle, where the top represents the human element. Subsequently, Sjöström proposed a subdivision of the top into three other levels: applied chemistry, socio-cultural context, and critical–philosophic approach. These six dimensions of chemical knowledge will be examined in relation to the discovery of aniline, its chemistry and applications. The historical and epistemic aspects of this topic, gradually broadening the focus to the social, political, and artistic backdrop, can provide a more effective approach to teaching the subject. The major impact of the synthetic dye industry makes this field of study particularly important for a Bildung-focused chemistry education. Full article
Show Figures

Figure 1

18 pages, 2491 KiB  
Review
Use and Roles of Tannins in Polysaccharide-Based Bioplastics and Biocomposites
by Carlo Santulli, Serena Gabrielli and Graziella Roselli
Organics 2025, 6(2), 19; https://doi.org/10.3390/org6020019 - 1 May 2025
Viewed by 487
Abstract
Most bioplastics are based on polysaccharides, which are either synthesized from a variously sourced monomer or extracted from some biomass waste. In many cases, some lignocellulosic fibers are then added to the obtained bioplastics to form biocomposites and extend their range of applications [...] Read more.
Most bioplastics are based on polysaccharides, which are either synthesized from a variously sourced monomer or extracted from some biomass waste. In many cases, some lignocellulosic fibers are then added to the obtained bioplastics to form biocomposites and extend their range of applications beyond packaging films and generically easily biodegradable materials. Plant-extracted tannins, which, as such, might also be building blocks for bioplastics, do nonetheless represent a useful complement in their production when added to polysaccharide-based plastics and biocomposites, since they offer other functions, such as bioadhesion, coloration, and biocidal effect. The variety of species used for tannin extraction and condensation is becoming very wide and is also connected with the local availability of amounts of bio-waste from other productions, such as from the food system. This work tries to summarize the evolution and recent developments in tannin extraction and their increasing centrality in the production of polysaccharide-based plastics, adhesives, and natural fiber composites. Full article
(This article belongs to the Special Issue Chemistry of Heterocyclic Compounds)
Show Figures

Figure 1

18 pages, 4205 KiB  
Article
Synthesis of Bipyridine Ether-Type Bifunctional Precursors
by Bálint Jávor, Antal Agárdi, Péter Kisfaludi, Barnabás Frigyes, Márton Temesvári, Panna Vezse, Tünde Tóth, Péter Huszthy and Ádám Golcs
Organics 2025, 6(2), 18; https://doi.org/10.3390/org6020018 - 10 Apr 2025
Viewed by 277
Abstract
Bipyridine ethers are commonly occurring structural motifs in supramolecular chemistry. The herein reported efforts aim to extend the synthetic platform of bipyridino-precursors with new bifunctional intermediates and to improve some previously reported synthetic strategies for structural analogues, like bipyridine-diols as common macrocycle precursors. [...] Read more.
Bipyridine ethers are commonly occurring structural motifs in supramolecular chemistry. The herein reported efforts aim to extend the synthetic platform of bipyridino-precursors with new bifunctional intermediates and to improve some previously reported synthetic strategies for structural analogues, like bipyridine-diols as common macrocycle precursors. In addition, their optimized and highly efficient oxidation to the corresponding dialdehydes is reported to obtain further reactive intermediates with wide modifiability. Furthermore, methylations of pyridine-carbaldehydes were carried out alongside different synthetic strategies to introduce chirality centers. Synthetic difficulties and some unsuccessful approaches are also reported to help in focusing future efforts. Full article
(This article belongs to the Special Issue Chemistry of Heterocyclic Compounds)
Show Figures

Graphical abstract

13 pages, 3347 KiB  
Article
Small Deviations in Geometries Affect Detonation Velocities and Pressures of Nitroaromatic Molecules
by Danijela S. Kretić, Marija I. Maslarević and Dušan Ž. Veljković
Organics 2025, 6(2), 17; https://doi.org/10.3390/org6020017 - 9 Apr 2025
Viewed by 270
Abstract
Understanding the factors that affect the detonation performance of high-energy molecules (HEMs) is crucial for the design of novel explosives and fuels with desirable characteristics. While molecular factors, such as the presence of specific functional groups that give organic molecules explosive properties, are [...] Read more.
Understanding the factors that affect the detonation performance of high-energy molecules (HEMs) is crucial for the design of novel explosives and fuels with desirable characteristics. While molecular factors, such as the presence of specific functional groups that give organic molecules explosive properties, are key determinants of detonation characteristics, other factors like the geometry of molecules in crystal structures can also affect the high-energy properties of materials. Although it is known that slight deviations in the crystal structure geometry affect the sensitivity of nitroaromatic explosives, the influence of these variations on detonation performance remains unknown. In this study, we extracted different crystal structures of the same high-energy nitroaromatic molecules from the Cambridge Structural Database and calculated their detonation velocities and pressures using the Kamlet–Jacobs equations. Results indicated that different geometries of the same crystal structure can lead to non-negligible differences in detonation velocities and pressures. In the case of the 2,4,6-triamino-1,3,5-trinitrobenzene molecule, discrepancies in detonation pressures among different crystal structures were calculated to be 7.68%. Analysis of geometrical arrangements showed that these differences are mainly the consequence of diverse non-covalent bonding patterns that affect crystal densities. Full article
Show Figures

Figure 1

49 pages, 14143 KiB  
Review
An Overview of Quinolones as Potential Drugs: Synthesis, Reactivity and Biological Activities
by Ayoub El-mrabet, Amal Haoudi, Youssef Kandri-Rodi and Ahmed Mazzah
Organics 2025, 6(2), 16; https://doi.org/10.3390/org6020016 - 3 Apr 2025
Viewed by 676
Abstract
Quinolones represent one of the largest classes of synthetic antibiotics used in both human and veterinary medicine. Since the discovery of nalidixic acid, a substantial body of research has been carried out on quinolones, resulting in the synthesis of several quinolone derivatives with [...] Read more.
Quinolones represent one of the largest classes of synthetic antibiotics used in both human and veterinary medicine. Since the discovery of nalidixic acid, a substantial body of research has been carried out on quinolones, resulting in the synthesis of several quinolone derivatives with exceptional pharmacology. In addition to their antibacterial action, quinolones have a broad spectrum of diverse biological activities. In this regard, the present review examines the literature of recent years describing synthesis protocols, reactivity and biological properties, with particular emphasis on the antibacterial, antimalarial, antitrypanosomal, antileishmanial, antiviral and anticancer activities of this famous class of molecules. Finally, this review highlights the potential of quinolones as preferred pharmacophores in medicinal chemistry. The aim is to highlight the innovative aspects of the rational design of new therapeutic agents with this structural motif, in the face of emerging antibiotic resistance and the urgent need for new active molecules. Full article
Show Figures

Graphical abstract

11 pages, 1186 KiB  
Article
Synthesis of Indole-Based Derivatives Containing Ammonium Salts, Diamines and Aminoureas for Organocatalysis
by Marcello Casertano, Brian G. Kelly, Malachi W. Gillick-Healy, Paolo Grieco and Mauro F. A. Adamo
Organics 2025, 6(2), 15; https://doi.org/10.3390/org6020015 - 2 Apr 2025
Viewed by 330
Abstract
Indole heterocycles have an established reactivity, and these compounds are H-bond donors via a peculiar non-basic NH. However, the indole core has been scarcely employed in organocatalysis, with only a few examples relevant to electrophilic halogenation reported. To expand the range of potential [...] Read more.
Indole heterocycles have an established reactivity, and these compounds are H-bond donors via a peculiar non-basic NH. However, the indole core has been scarcely employed in organocatalysis, with only a few examples relevant to electrophilic halogenation reported. To expand the range of potential transformations achievable via indole catalysis, we have designed a set of new organic species incorporating an indole core, alongside three privelaged chiral moieties found in many known organocatalysts, namely a quaternary ammonium salt, a diamine and an amino-urea. Herein, we report an optimised synthetic route for the preparation of these potential catalytic species in an enantiomerically pure form. The syntheses are conceived to be modular and therefore will allow each of the three single organic catalysts to be expanded into families without alteration of the synthetic layout, therefore leading to a fast optimisation of new asymmetric procedures. Full article
Show Figures

Graphical abstract

9 pages, 689 KiB  
Article
Optimized Synthesis of Dinitrochalcones via Ultrasonic Bath in a Cyclohexane–Methanol Solvent System
by Alam Yair Hidalgo, Quirino Torres-Sauret, Carlos Ernesto Lobato-García, Erika Madeleyne Ramos-Rivera, Luis Fernando Roa de la Fuente, Abraham Gómez-Rivera, Miguel Ángel Vilchis-Reyes, Erika Alarcón-Matus, Oswaldo Hernández-Abreu and Nancy Romero-Ceronio
Organics 2025, 6(2), 14; https://doi.org/10.3390/org6020014 - 1 Apr 2025
Viewed by 323
Abstract
This study describes the efficient synthesis of five dinitrochalcones (DNCHs) using an ultrasonic bath as an unconventional method to improve reaction yields and reduce reaction times. The Claisen–Schmidt condensation of nitroacetophenones and nitrobenzaldehydes was carried out in a cyclohexane–methanol solvent system under ultrasonic [...] Read more.
This study describes the efficient synthesis of five dinitrochalcones (DNCHs) using an ultrasonic bath as an unconventional method to improve reaction yields and reduce reaction times. The Claisen–Schmidt condensation of nitroacetophenones and nitrobenzaldehydes was carried out in a cyclohexane–methanol solvent system under ultrasonic irradiation, achieving yields between 56% and 92%. The application of ultrasound not only accelerated the reaction but also improved the overall efficiency compared to conventional methods such as magnetic stirring. The synthesized compounds were characterized by NMR spectroscopy, which corroborated their structures. Therefore, it is confirmed that obtaining DNCHs with a nitro group in ortho by ultrasonic irradiation is an energetically efficient and environmentally friendly alternative. Full article
Show Figures

Figure 1

26 pages, 8018 KiB  
Article
Synthesis and In Silico Evaluation of GABA, Pregabalin and Baclofen N-Heterocyclic Analogues as GABAB Receptor Agonists
by Zuleyma Martínez-Campos, Luis Eduardo Hernandez-Dominguez, Fatima Romero-Rivera, Diana López-López, María Vicky Corona-González, Susana T. López-Cortina, Francisco José Palacios-Can, Rodrigo Said Razo-Hernández and Mario Fernández-Zertuche
Organics 2025, 6(2), 13; https://doi.org/10.3390/org6020013 - 24 Mar 2025
Viewed by 386
Abstract
γ-amino butyric acid (GABA) is an inhibitory neurotransmitter whose deficiency has been associated with various neurological disorders. However, its low liposolubility limits its use as a supplement. Thus, multiple investigations have focused on searching for lipophilic GABA analogs that can modulate the [...] Read more.
γ-amino butyric acid (GABA) is an inhibitory neurotransmitter whose deficiency has been associated with various neurological disorders. However, its low liposolubility limits its use as a supplement. Thus, multiple investigations have focused on searching for lipophilic GABA analogs that can modulate the activity of the GABAB receptor, which could be associated with the etiology of some central nervous system disorders. The GABA analogs available on the market are Vigabatrin, Gabapentin as well as Pregabalin and Baclofen. In this work, we report on the synthesis of GABA analogs, taking the scaffold of GABA, Pregabalin, and Baclofen as a starting point. The analogs include structural features that could favor the affinity of the molecules for the GABAB receptor, such as heterocyclic rings in the γ-position and alkyl or p-Cl-phenyl substituents (in analogy to Pregabalin and Baclofen, respectively). These analogs were synthesized by a sequence of reactions involving an N-alkylation, a 1,4-conjugated addition of dialkyl and diarylcuprates and a basic hydrolysis. Furthermore, a computational molecular docking over the GABAB receptor was performed to evaluate the interaction of each compound in the Baclofen binding site. With this information, we evaluated our compounds as GABAB agonists through a QSAR analysis. Finally, by means of molecular similarity analysis, and in silico ADME prediction, we support our three best compounds (8ab, 8d) as potential GABAB receptor agonists. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop