Efficient Synthesis of Novel 10R-Pyrido[4,3-a]Phenazines, Including the Series Progenitor
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Approach
2.2. Procedure for the Synthesis of 10-R-Pyrido[4,3-a]Phenazines 3a–l
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Laursen, J.B.; Nielsen, J. Phenazine natural products: Biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 2004, 104, 1663–1686. [Google Scholar] [CrossRef] [PubMed]
- Dictionary of Natural Products. Available online: https://dnp.chemnetbase.com/chemical/ChemicalSearchResults.xhtml?dswid=2474 (accessed on 16 April 2025).
- Guttenberger, N.; Blankenfeldt, W.; Breinbauer, R. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg. Med. Chem. 2017, 25, 6149–6166. [Google Scholar] [CrossRef] [PubMed]
- Miksa, B. The phenazine scaffold used as cytotoxic pharmacophore applied in bactericidal, antiparasitic and antitumor agents. Helv. Chim. Acta 2022, 105, e202200066. [Google Scholar] [CrossRef]
- Huang, W.; Wan, Y.; Zhang, S.; Wang, C.; Zhang, Z.; Su, H.; Hou, F. Recent Advances in Phenazine Natural Products: Chemical Structures and Biological Activities. Molecules 2024, 29, 4771. [Google Scholar] [CrossRef]
- Huigens, R.W.; Brummel, B.R.; Tenneti, S.; Garrison, A.T.; Xiao, T. Pyrazine and phenazine heterocycles: Platforms for total synthesis and drug discovery. Molecules 2022, 27, 1112. [Google Scholar] [CrossRef]
- Yan, J.; Liu, W.; Cai, J.; Wang, Y.; Li, D.; Hua, H.; Cao, H. Advances in phenazines over the past decade: Review of their pharmacological activities, mechanisms of action, biosynthetic pathways and synthetic strategies. Mar. Drugs 2021, 19, 610. [Google Scholar] [CrossRef]
- Cimmino, A.; Evidente, A.; Mathieu, V.; Andolfi, A.; Lefranc, F.; Kornienko, A.; Kiss, R. Phenazines and cancer. Nat. Prod. Rep. 2012, 29, 487–501. [Google Scholar] [CrossRef]
- Garrison, A.T.; Abouelhassan, Y.; Norwood, V.M., IV; Kallifidas, D.; Bai, F.; Nguyen, M.T.; Huigens, R.W., III. Structure–activity relationships of a diverse class of halogenated phenazines that targets persistent, antibiotic-tolerant bacterial biofilms and Mycobacterium tuberculosis. J. Med. Chem. 2016, 59, 3808–3825. [Google Scholar] [CrossRef]
- Nadtochiy, V.V.; Nikonov, I.L.; Zyryanov, G.V. Modern approaches to the synthesis of phenazine derivatives (microreview). Chem. Heterocycl. Comp. 2024, 60, 233–235. [Google Scholar] [CrossRef]
- Hollas, A.; Wei, X.; Murugesan, V.; Nie, Z.; Li, B.; Reed, D.; Wang, W. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nat. Energy 2018, 3, 508–514. [Google Scholar] [CrossRef]
- Vitaku, E.; Gannett, C.N.; Carpenter, K.L.; Shen, L.; Abruña, H.D.; Dichtel, W.R. Phenazine-based covalent organic framework cathode materials with high energy and power densities. J. Am. Chem. Soc. 2019, 142, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Romadina, E.I.; Komarov, D.S.; Stevenson, K.J.; Troshin, P.A. New phenazine based anolyte material for high voltage organic redox flow batteries. Chem. Commun. 2021, 57, 2986–2989. [Google Scholar] [CrossRef] [PubMed]
- Xiao-Ni, Q.; Dang, L.R.; Qu, W.J.; Zhang, Y.M.; Yao, H.; Lin, Q.; Wei, T.B. Phenazine derivatives for optical sensing: A review. J. Mater. Chem. C 2020, 8, 11308–11339. [Google Scholar] [CrossRef]
- Moorthy, N.S.H.N.; Pratheepa, V.; Ramos, M.J.; Vasconcelos, V. Fused aryl-phenazines: Scaffold for the development of bioactive molecules. Curr. Drug Targets 2014, 15, 681–688. [Google Scholar] [CrossRef]
- Gamage, S.A.; Spicer, J.A.; Rewcastle, G.W.; Milton, J.; Sohal, S.; Dangerfield, W.; Denny, W.A. Structure− activity relationships for pyrido-, imidazo-, pyrazolo-, pyrazino-, and pyrrolophenazinecarboxamides as topoisomerase-targeted anticancer agents. J. Med. Chem. 2002, 45, 740–743. [Google Scholar] [CrossRef]
- Che, Y.X.; Qi, X.N.; Qu, W.J.; Shi, B.B.; Lin, Q.; Yao, H.; Wei, T.B. Synthetic strategies of phenazine derivatives: A review. J. Heterocycl. Chem. 2022, 59, 969–996. [Google Scholar] [CrossRef]
- Wrobel, Z.; Kwast, A. 2-Nitroso-N-arylanilines: Products of acid-promoted transformation of σH adducts of arylamines and nitroarenes. Synlett 2007, 10, 1525–1528. [Google Scholar] [CrossRef]
- Wrobel, Z.; Kwast, A. Simple synthesis of N-aryl-2-nitrosoanilines in the reaction of nitroarenes with aniline anion derivatives. Synthesis 2010, 22, 3865–3872. [Google Scholar] [CrossRef]
- Kwast, A.; Stachowska, K.; Wróbel, Z.; Trawczyński, A. N-Aryl-2-nitrosoanilines as intermediates in the synthesis of substituted phenazines from nitroarenes. Tetrahedron Lett. 2011, 52, 6484–6488. [Google Scholar] [CrossRef]
- Wróbel, Z.; Plichta, K.; Kwast, A. Reactivity and substituent effects in the cyclization of N-aryl-2-nitrosoanilines to phenazines. Tetrahedron 2017, 73, 3147–3152. [Google Scholar] [CrossRef]
- Demidov, O.P.; Pobedinskaya, D.Y.; Avakyan, E.K.; Amangasieva, G.A.; Borovlev, I.V. SNH Arylamination of Nitroquinolines: Access to Nitro and Nitroso Derivatives of Arylaminoquinolines. Chem. Heterocycl. Compd. 2018, 54, 875–886. [Google Scholar] [CrossRef]
- Wróbel, Z.; Więcław, M.; Bujok, R.; Wojciechowski, K. Synthesis of pyrrolo[3,2-a]phenazines from 5-nitroindoles and anilines. Monatsh. Chem. 2013, 144, 1847–1853. [Google Scholar] [CrossRef] [PubMed]
- Pobedinskaya, D.Y.; Demidov, O.P.; Borovlev, I.V.; Avakyan, E.K.; Amangasieva, G.A. Synthesis of pyrido[2,3-a]phenazines by intramolecular cyclization of 7-arylamino-8-nitrosoquinolines. Chem. Heterocycl. Compd. 2019, 55, 684–687. [Google Scholar] [CrossRef]
- Kitahara, Y.; Nakai, T.; Nakahara, S.; Akazawa, M.; Shimizu, M.; Kubo, A. Synthesis of 5, 6-, 5, 8-and 7, 8-Isoquinolinediones from the Corresponding Isoquinolinols and Dimethoxyisoquinolines. Chem. Pharm. Bull. 1991, 39, 2256–2263. [Google Scholar] [CrossRef]
- Swoboda, D. Synthesis and Spectroscopic Characterization of Selected Phenothiazines and Phenazines Rationalized Based on DFT Calculation. Molecules 2022, 27, 7519. [Google Scholar] [CrossRef]
- Gamage, M. Pharmaceutical Compounds. U.S. Patent 2001/0034346 A1, 22 April 2003. [Google Scholar]
- Pobedinskaya, D.Y.; Demidov, O.P.; Avakyan, E.K.; Borovleva, A.A.; Larin, A.N.; Ermolenko, A.P.; Borovlev, I.V. A simple method for the synthesis of diarylamines containing a nitroso group in the ortho position based on the SNH arylamination of 5-nitroisoquinoline. Chem. Heterocycl. Compd. 2024, 60, 161–168. [Google Scholar] [CrossRef]
- Wohl, A.; Aue, W. Ueber die einwirkung von nitrobenzol auf anilin bei gegenwart von alkali. Chem. Ber. 1901, 34, 2442–2450. [Google Scholar] [CrossRef]
- CrysAlisPro, Version 1.171.38.41; Rigaku Oxford Diffraction. 2015. Available online: https://rigaku.com/products/crystallography/x-ray-diffraction/crysalispro (accessed on 16 April 2025).
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Entry | Reaction Conditions | Reaction Time, H | Yield, % a |
1 | Glacial AcOH/reflux (Method A) | 0.5 | 97 |
2 | Glacial AcOH/room temperature | 24 | traces |
3 | toluene/5 equiv. pTsOH/reflux | 0.5 | 85 |
4 | MeOH/5 equiv. K2CO3/reflux (Method B) | 0.5 | 95 |
5 | MeOH/5 equiv. KOH/reflux | 0.5 | 83 |
6 | MeOH/5 equiv. NEt3/ reflux | 1 | - |
7 | MeOH/5 equiv. KOH/ room temperature | 24 | traces |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermolenko, A.P.; Pobedinskaya, D.Y.; Avakyan, E.K.; Borovleva, A.A.; Larin, A.N.; Borovlev, I.V.; Demidov, O.P. Efficient Synthesis of Novel 10R-Pyrido[4,3-a]Phenazines, Including the Series Progenitor. Organics 2025, 6, 24. https://doi.org/10.3390/org6020024
Ermolenko AP, Pobedinskaya DY, Avakyan EK, Borovleva AA, Larin AN, Borovlev IV, Demidov OP. Efficient Synthesis of Novel 10R-Pyrido[4,3-a]Phenazines, Including the Series Progenitor. Organics. 2025; 6(2):24. https://doi.org/10.3390/org6020024
Chicago/Turabian StyleErmolenko, Artem P., Diana Y. Pobedinskaya, Elena K. Avakyan, Anastasia A. Borovleva, Alexander N. Larin, Ivan V. Borovlev, and Oleg P. Demidov. 2025. "Efficient Synthesis of Novel 10R-Pyrido[4,3-a]Phenazines, Including the Series Progenitor" Organics 6, no. 2: 24. https://doi.org/10.3390/org6020024
APA StyleErmolenko, A. P., Pobedinskaya, D. Y., Avakyan, E. K., Borovleva, A. A., Larin, A. N., Borovlev, I. V., & Demidov, O. P. (2025). Efficient Synthesis of Novel 10R-Pyrido[4,3-a]Phenazines, Including the Series Progenitor. Organics, 6(2), 24. https://doi.org/10.3390/org6020024