Beyond Peptides and Peptidomimetics: Natural Heteroaromatic Amino Acids in the Synthesis of Fused Heterocyclic Frameworks for Bioactive Agents
Abstract
:1. Introduction
2. Fused Heterocyclic Scaffolds from Histidine
3. Fused Heterocyclic Scaffolds from Tryptophan
3.1. Tricyclic-Fused Heterocyclic Scaffolds by Heterocyclization at Indole C-2
3.1.1. 6-5-6-Fused Ring System
3.1.2. 6-5-5-Fused Ring System
3.1.3. 6-5-7-Fused Ring System
3.2. Tricyclic-Fused Heterocyclic Scaffolds by Heterocyclization at Indole C-4
3.3. Polycyclic-Fused Scaffolds Involving Indole Nitrogen and C-2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADP | Adenosine diphosphate |
AhR | Aryl hydrocarbon receptor |
BQ | 1,4-benzoquinone |
CDI | 1,1′-Carbonyldiimidazole |
CNPq | Conselho Nacional de Desenvolvimento Científico e Tecnológico |
DBN | 1,5-diazabicyclo [4.3.0]non-5-ene |
DCE | 1,2-Dichloroethane |
DCM | Dichloromethane |
DEPBT | (3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H)-one |
DKM | Diketomorpholines |
DKP | Diketopiperazines |
DMAD | Dimethyl acetylenedicarboxylate |
DMDO | Dimethyldioxirane |
DMF | N,N-Dimethylformamide |
DMP | Dess–Martin periodinane |
DMSO | Dimethyl Sulfoxide |
FAPERGS | Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul |
FDA | Food and Drug Administration |
GB | Gardenia blue |
GCR | Glutathione recovery capacity |
HDAC | Histone deacetylase |
HIV | Human Immunodeficiency Viruses |
HSV | Herpes simplex virus |
IBD | Iodobenzene diacetate |
IBX | 2-Iodoxybenzoic acid |
JAK | Janus kinase |
NBS | N-Bromosuccinimide |
NCS | N-Chlorosuccinimide |
PC | Prostate cancer |
PDE5 | Phosphodiesterase type 5 |
PG | Protecting group |
PPSE | Trimethylsilyl polyphosphate |
PTSA | p-toluene sulfonic acid |
Py | Pyridine |
RAF | Rapidly Accelerated Fibrosarcoma |
SSAO | Semicarbazide-sensitive amine oxidase |
TBDPS | tert-butyldiphenylsilyl |
TCCA | Trichloroisocyanuric acid |
TFA | Trifluoroacetic acid |
TFAE | Trifluoroacetaldehyde ethyl hemiacetal |
TfOH | Trifluoromethanesulfonic acid |
THF | Tetrahydrofuran |
TMV | Tobacco Mosaic Virus |
Ugi-3CR | Ugi-three-component reaction |
References
- Taylor, R.D.; MacCoss, M.; Lawson, A.D.G. Rings in Drugs: Miniperspective. J. Med. Chem. 2014, 57, 5845–5859. [Google Scholar] [CrossRef] [PubMed]
- Shearer, J.; Castro, J.L.; Lawson, A.D.G.; MacCoss, M.; Taylor, R.D. Rings in Clinical Trials and Drugs: Present and Future. J. Med. Chem. 2022, 65, 8699–8712. [Google Scholar] [CrossRef] [PubMed]
- Mendes Lampert, L.; Ruszczyk Machado, B.; Rocha Joaquim, A.; Fumagalli, F. Rings in “Lead-like Drugs”. Lett. Drug Des. Discov. 2024, 21, 3851–3857. [Google Scholar] [CrossRef]
- Stefanucci, A.; Pinnen, F.; Feliciani, F.; Cacciatore, I.; Lucente, G.; Mollica, A. Conformationally Constrained Histidines in the Design of Peptidomimetics: Strategies for the χ-Space Control. Int. J. Mol. Sci. 2011, 12, 2853–2890. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.; Murugan, R.N.; Jacob, B.; Hyun, J.-K.; Cheong, C.; Hwang, E.; Park, H.-N.; Seo, J.-H.; Srinivasrao, G.; Lee, K.S.; et al. Discovery of Novel Histidine-Derived Lipo-Amino Acids: Applied in the Synthesis of Ultra-Short Antimicrobial Peptidomimetics Having Potent Antimicrobial Activity, Salt Resistance and Protease Stability. Eur. J. Med. Chem. 2013, 68, 10–18. [Google Scholar] [CrossRef]
- Mahindra, A.; Bagra, N.; Wangoo, N.; Jain, R.; Khan, S.I.; Jacob, M.R.; Jain, R. Synthetically Modified L-Histidine-Rich Peptidomimetics Exhibit Potent Activity against Cryptococcus Neoformans. Bioorg. Med. Chem. Lett. 2014, 24, 3150–3154. [Google Scholar] [CrossRef]
- Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and Arginine-Rich Antimicrobial Peptides: Structures and Mechanisms of Action. Biochim. Biophys. Acta Biomembr. 2006, 1758, 1184–1202. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhou, H.; Shi, P.; Zhao, X.; Liu, H.; Li, X. Clickable Tryptophan Modification for Late-Stage Diversification of Native Peptides. Sci. Adv. 2024, 10, eadp9958. [Google Scholar] [CrossRef]
- Rai, N.; Tiwari, R.T.; Sahu, A.; Verma, E.; Rathore, S.; Patil, S.; Patil, A.G. Exploring Tryptophan-Based Short Peptides: Promising Candidate for Anticancer and Antimicrobial Therapies. Anticancer. Agents Med. Chem. 2025, 25, 124–133. [Google Scholar] [CrossRef]
- Han, Y.N.; Ryu, S.Y.; Han, B.H.; Woo, L.K. Spinacine fromPanax Ginseng. Arch. Pharm. Res. 1987, 10, 258–259. [Google Scholar] [CrossRef]
- Kong, D.; Cui, L.; Wang, X.; Wo, J.; Xiong, F. Fungus-Derived Opine Enhances Plant Photosynthesis. J. Adv. Res. 2024, S2090123224005472. [Google Scholar] [CrossRef] [PubMed]
- Cordell, G.A.; Lamahewage, S.N.S. Ergothioneine, Ovothiol A, and Selenoneine—Histidine-Derived, Biologically Significant, Trace Global Alkaloids. Molecules 2022, 27, 2673. [Google Scholar] [CrossRef]
- Shengule, S.R.; Karuso, P. Concise Total Synthesis of the Marine Natural Product Ageladine A. Org. Lett. 2006, 8, 4083–4084. [Google Scholar] [CrossRef]
- Liu, J.; Ng, T.; Rui, Z.; Ad, O.; Zhang, W. Unusual Acetylation-Dependent Reaction Cascade in the Biosynthesis of the Pyrroloindole Drug Physostigmine. Angew. Chem. Int. Ed. 2014, 53, 136–139. [Google Scholar] [CrossRef]
- Alkaloids Derived from Tryptophan. In Alkaloids; Elsevier: Amsterdam, The Netherlands, 2015; pp. 63–102. ISBN 978-0-12-417302-6.
- Nowacka, A.; Śniegocka, M.; Śniegocki, M.; Ziółkowska, E.; Bożiłow, D.; Smuczyński, W. Multifaced Nature of Yohimbine—A Promising Therapeutic Potential or a Risk? Int. J. Mol. Sci. 2024, 25, 12856. [Google Scholar] [CrossRef]
- Wang, H.; Tian, R.; Chen, Y.; Li, W.; Wei, S.; Ji, Z.; Aioub, A.A.A. In Vivo and in Vitro Antifungal Activities of Five Alkaloid Compounds Isolated from Picrasma Quassioides (D. Don) Benn against Plant Pathogenic Fungi. Pestic. Biochem. Phys. 2022, 188, 105246. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Li, N.; Wang, J.; Schneider, U. Fruitful Decades for Canthin-6-Ones from 1952 to 2015: Biosynthesis, Chemistry, and Biological Activities. Molecules 2016, 21, 493. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.; Lim, L.R.; Tan, Y.Q.; Go, M.K.; Bell, D.J.; Freemont, P.S.; Yew, W.S. Reconstituting the Complete Biosynthesis of D-Lysergic Acid in Yeast. Nat. Commun. 2022, 13, 712. [Google Scholar] [CrossRef]
- Xue, H.; Wang, W. Effects of Carbetocin Combined with Ergometrine Maleate on Blood Loss and Coagulation Function of Puerperae with Postpartum Haemorrhage. Am. J. Transl. Res. 2023, 15, 556–562. [Google Scholar]
- Bharate, S.B.; Lindsley, C.W. Natural Products Driven Medicinal Chemistry. J. Med. Chem. 2024, 67, 20723–20730. [Google Scholar] [CrossRef]
- Fay, N.; Kouklovsky, C.; De La Torre, A. Natural Product Synthesis: The Endless Quest for Unreachable Perfection. ACS Org. Inorg. Au 2023, 3, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Dymińska, L. Spectroscopic Properties of Spinacine—An Active Component of Ginseng (Panax ginseng) and Spinach (Spinacia oleracea). Spectrosc. Lett. 2016, 49, 635–646. [Google Scholar] [CrossRef]
- De La Figuera, N.; Fiol, S.; Fernández, J.-C.; Forns, P.; Fernández-Forner, D.; Albericio, F. Role of the Acid Group in the Pictet-Spengler Reaction of α-Amino Acids. Synlett 2006, 2006, 1903–1907. [Google Scholar] [CrossRef]
- Hu, Q.; Kuki, A.; Nowlin, D.; Nowlin, M.; Plewe, M.; Plewe, B.; Wang, H.; Zhang, J. HIV-Integrase Inhibitors, Pharmaceutical Compositions, and Methods for Their Use. WO 2004/039803 A2, 13 May 2004. [Google Scholar]
- Chuaqui, C.; Cossrow, J.; Dowling, J.; Guan, B.; Hoemann, M.; Ishchenko, A.; Jones, J.H.; Kabigting, L.; Kumaravel, G.; Peng, H.; et al. Heteroaryl Compounds Useful as RAF Kinase Inhibitors. WO 2010/078408 A1, 8 July 2010. [Google Scholar]
- Mark, W.O.; Sawyer, J.S.; Lisa, M. Schultze Chemical Compounds. WO 02/38563 A2, 16 May 2002. [Google Scholar]
- Caldirola, P.; Besencon, O.; Olsson, R.; Öhman, J. New Use of 4, 5, 6, 7-Tetrahydroimidazo-[4,5-c]Pyridine Derivatives. WO 02/38153, 16 May 2002. [Google Scholar]
- Karuso, P.H.; Shengule, S.R. Synthesis of Ageladine A and Analogs Thereof. WO 2009/152584 A1, 23 December 2009. [Google Scholar]
- Guzman, F.; Cain, M.; Larscheid, P.; Hagen, T.; Cook, J.M.; Schweri, M.; Skolnick, P.; Paul, S.M. Biomimetic Approach to Potential Benzodiazepine Receptor Agonists and Antagonists. J. Med. Chem. 1984, 27, 564–570. [Google Scholar] [CrossRef]
- Fujii, S.; Maki, Y.; Kimoto, H.; Cohen, L.A. Facile Syntheses of 4-(Trifluoromethyl)-L-Spinacine and 4-(Trifluoromethyl)Spinaceamine. J. Fluor. Chem. 1987, 35, 581–589. [Google Scholar] [CrossRef]
- Neuberger, A. The Reaction between Histidine and Formaldehyde. Biochem. J. 1944, 38, 309–314. [Google Scholar] [CrossRef]
- Smith, D.; Gallagher, A.; Crowley, V.; Gergens, W.; Abel, P.; Hulce, M. An Efficient Synthesis of 4(5)-Benzyl-l-Histidines Employing Catalytic Transfer Hydrogenolysis at Elevated Temperatures. Synthesis 2013, 46, 515–521. [Google Scholar] [CrossRef]
- Daka, P.; Liu, A.; Karunaratne, C.; Csatary, E.; Williams, C.; Xiao, H.; Lin, J.; Xu, Z.; Page, R.C.; Wang, H. Design, Synthesis and Evaluation of XZH-5 Analogues as STAT3 Inhibitors. Bioorg. Med. Chem. 2015, 23, 1348–1355. [Google Scholar] [CrossRef]
- Guillen, F.; Brégeon, D.; Plaquevent, J.-C. (S)-Histidine: The Ideal Precursor for a Novel Family of Chiral Aminoacid and Peptidic Ionic Liquids. Tetrahedron Lett. 2006, 47, 1245–1248. [Google Scholar] [CrossRef]
- Voelter, W.; Wollmann, H. Process for the Preparation of N-Substituted Histidine Derivatives, N-Substituted Histidine Derivatives and Their Use. DE 3322117 A1, 20 December 1984. [Google Scholar]
- Smolyar, N.N.; Abramyants, M.G.; Yutilov, Y.M. Dehydrogenation of 4-Phenyl-Substituted Spinaceamine and Spinacine. Russ. J. Org. Chem. 2006, 42, 541–544. [Google Scholar] [CrossRef]
- Smolyar, N.N.; Abramyants, M.G.; Zavyazkina, T.I.; Matveeva, D.I.; Borodkin, Y.S.; Voloskii, I.A. Synthesis and Dehydrogenation of Spinaceamine and Spinacine 4-Hetaryl Derivatives. Russ. J. Org. Chem. 2009, 45, 1219–1223. [Google Scholar] [CrossRef]
- Lee, J.G.; Kim, K.C. Aromatization of Cyclohexenes and Cyclohexadienes with Selenium Dioxide-Trimethylsilyl Polyphosphate. Tetrahedron Lett. 1992, 33, 6363–6366. [Google Scholar] [CrossRef]
- Gi, U.S.; Baltes, W. Model Reactions on Roast Aroma Formation. 14. Formation of 2-Acetylpyrido[3,4-d]Imidazole by Heating of Glucose with Histidine. J. Agric. Food Chem. 1993, 41, 644–646. [Google Scholar] [CrossRef]
- Gi, U.-S.; Baltes, W. Model Reactions on Roast Aroma Formation. 15. Investigations on the Formation of Pyrido[3,4-d]Imidazoles during the Maillard Reactions. J. Agric. Food Chem. 1995, 43, 2226–2230. [Google Scholar] [CrossRef]
- Koo-ho, G.; Cucurbit; Jeong, H.; Ikjun, I. Novel Pyrrolo-Lactone and Pyrrole Compounds Exhibiting Glutathione Recovery Ability in Living Cells against Harmful Oxygen Groups and Their Preparation Method. KR1020160035931 A, 25 February 2019. [Google Scholar]
- Setti, T.; Arab, M.G.L.; Santos, G.S.; Alkass, N.; Andrade, M.A.P.; Lana, J.F.S.D. The Protective Role of Glutathione in Osteoarthritis. J. Clin. Orthop. Trauma. 2021, 15, 145–151. [Google Scholar] [CrossRef]
- Daniel, D.L.; Smith, C. Corbin Thompson Dimethyl Amino Azetidine Amides as JAK Inhibitors. US 2020/0071323 Al, 5 March 2020. [Google Scholar]
- Mahboobi, S.; Sellmer, A.; Pongratz, H.; Leon-Hardt, M.; Krämer, O.; Böhmer, F.-D.; Kelter, G. Novel HDAC6 Inhibitors and Their Uses. WO 2016/020369 A1, 11 February 2016. [Google Scholar]
- Braña, M.F.; Guisado, C.; Pérez-Castells, J.; Pérez-Serrano, L. Synthesis of 4,7,8a,9-tetrahydro-3 H. -diimidazo-[1,5- a :4′,5′- d ]Pyridine Derivatives. J. Heterocycl. Chem. 2002, 39, 417–420. [Google Scholar] [CrossRef]
- Eschenbrenner-Lux, V.; Dückert, H.; Khedkar, V.; Bruss, H.; Waldmann, H.; Kumar, K. Cascade Syntheses Routes to the Centrocountins. Chem. Eur. J. 2013, 19, 2294–2304. [Google Scholar] [CrossRef]
- Kumar, K. Centrocountins—Synthesis and Chemical Biology of Nature Inspired Indoloquinolizines. In Small Molecule Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2020; pp. 247–265. ISBN 978-0-12-818349-6. [Google Scholar]
- Zhang, X.; Zhang, R.; Li, R.; Zhang, J.; Wang, Y.; Chai, X.; Wang, Y. Elucidating the Formation Mechanism of Gardenia Blue Pigment from Amino Acid and Genipin. Arab. J. Chem. 2025, 18, 106048. [Google Scholar] [CrossRef]
- Chai, X.; Zhang, X.; Wang, Y.; Yu, H.; Wang, D.; Fang, S.; Yu, H.; Dong, X.; Li, R. A Cyclopentaquinolizine Imidazole Compound and Its Preparation Method and Applica-Tion. CN 114751906 A, 15 July 2022. [Google Scholar]
- Zhao, M.; Peng, S.; Gui, L.; Hao, Y. Hexacyclic Piperazine-Dione Compounds, Their Preparation, Biological Activity and Appli-Cation. CN 112010855 A, 1 December 2020. [Google Scholar]
- Afsah, E.M.; Hammouda, M.; Hamama, W.S. Pictet-Spengler Reactions of Tryptamine and Tryptophan with Cycloalkanones and ketonicMannich Bases. Monatsh. Chem. 1985, 116, 851–855. [Google Scholar] [CrossRef]
- Wu, G.; Wang, W.; Li, F.; Xu, C.; Zhou, Y.; Li, Z.; Liu, B.; Shao, L.; Chen, D.; Bai, S.; et al. Design, Synthesis and Biological Activity Evaluation of β-Carboline Derivatives Containing Nitrogen Heterocycles. Molecules 2024, 29, 5155. [Google Scholar] [CrossRef]
- Kuo, F.-M.; Tseng, M.-C.; Yen, Y.-H.; Chu, Y.-H. Microwave Accelerated Pictet–Spengler Reactions of Tryptophan with Ketones Directed toward the Preparation of 1,1-Disubstituted Indole Alkaloids. Tetrahedron 2004, 60, 12075–12084. [Google Scholar] [CrossRef]
- Rashid, N.; Alam, S.; Hasan, M.; Khan, N.; Khan, K.M.; Duddeck, H.; Pescitelli, G.; Kenéz, Á.; Antus, S.; Kurtán, T. Cis -Diastereoselectivity in Pictet–Spengler Reactions of L -Tryptophan and Electronic Circular Dichroism Studies. Chirality 2012, 24, 789–795. [Google Scholar] [CrossRef]
- Singh, J.; Shah, R.; Singh, D.; Jaggi, A.S.; Singh, N. Design, Synthesis, and Biological Evaluation of 2-substituted-2,3,4,9-tetrahydrospiro-β-carboline-3-carboxylic Acid Derivatives as First-in-class Mast Cell Stabilizers. Arch. Pharm. 2018, 351, 1800019. [Google Scholar] [CrossRef]
- Nazari Formagio, A.S.; Santos, P.R.; Zanoli, K.; Ueda-Nakamura, T.; Düsman Tonin, L.T.; Nakamura, C.V.; Sarragiotto, M.H. Synthesis and Antiviral Activity of β-Carboline Derivatives Bearing a Substituted Carbohydrazide at C-3 against Poliovirus and Herpes Simplex Virus (HSV-1). Eur. J. Med. Chem. 2009, 44, 4695–4701. [Google Scholar] [CrossRef]
- Du, G.; Sun, C.; Liu, Y.; Dong, Q.; Gao, P.; Li, D.; Qu, L. In Vitro Anti-Parasitic Activity and Mechanism of β-Carboline Derivatives Isolated from the Extracellular Product of Salinivibrio Proteolyticus Strain YCSC6. Aquaculture 2021, 534, 736337. [Google Scholar] [CrossRef]
- Saini, K.; Singh, J.; Shah, R.; Kaur, J.; Singh, D.; Singh, N.; Jaggi, A.S.; Chopra, D.S.; Singh, R.S. Synthesis of 1-(4-Hydroxy-3-Methoxyphenyl)-2,3,4,9-Tetrahydro-1H-β-Carboline-3-Carboxylic Acid Derivatives as Mast Cell Stabilizers. Med. Chem. Res. 2020, 29, 1400–1412. [Google Scholar] [CrossRef]
- Ling, Y.; Li, Y.; Zhu, R.; Qian, J.; Liu, J.; Gao, W.; Meng, C.; Miao, J.; Xiong, B.; Qiu, X.; et al. Hydroxamic Acid Derivatives of β-Carboline/Hydroxycinnamic Acid Hybrids Inducing Apoptosis and Autophagy through the PI3K/Akt/mTOR Pathways. J. Nat. Prod. 2019, 82, 1442–1450. [Google Scholar] [CrossRef]
- Song, H.; Liu, Y.; Liu, Y.; Huang, Y.; Li, Y.; Wang, Q. Design, Synthesis, Anti-TMV, Fungicidal, and Insecticidal Activity Evaluation of 1,2,3,4-Tetrahydro-β-Carboline-3-Carboxylic Acid Derivatives Based on Virus Inhibitors of Plant Sources. Bioorg. Med. Chem. Lett. 2014, 24, 5228–5233. [Google Scholar] [CrossRef]
- Cao, R.; Peng, W.; Chen, H.; Hou, X.; Guan, H.; Chen, Q.; Ma, Y.; Xu, A. Synthesis and in Vitro Cytotoxic Evaluation of 1,3-Bisubstituted and 1,3,9-Trisubstituted β-Carboline Derivatives. Eur. J. Med. Chem. 2005, 40, 249–257. [Google Scholar] [CrossRef]
- Zeng, L.; Zhang, J. Design, Synthesis, and Evaluation of a Novel Class of 2,3-Disubstituted-Tetrahydro-β-Carboline Derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 3718–3722. [Google Scholar] [CrossRef]
- Xie, J.; Xu, W.; Song, H.; Liu, Y.; Zhang, J.; Wang, Q. Synthesis and Antiviral/Fungicidal/Insecticidal Activities Study of Novel Chiral Indole Diketopiperazine Derivatives Containing Acylhydrazone Moiety. J. Agric. Food Chem. 2020, 68, 5555–5571. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.; Bi, Y.; Gao, X.; Li, P.; Hou, S.; Zhang, Y.; Bammert, C.; Jockusch, S.; Legalley, T.D.; Michael Gibson, K.; et al. Indole-TEMPO Conjugates Alleviate Ischemia-Reperfusion Injury via Attenuation of Oxidative Stress and Preservation of Mitochondrial Function. Bioorg. Med. Chem. 2017, 25, 2545–2568. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Liu, Y.; Liu, Y.; Wang, L.; Wang, Q. Synthesis and Antiviral and Fungicidal Activity Evaluation of β-Carboline, Dihydro-β-Carboline, Tetrahydro-β-Carboline Alkaloids, and Their Derivatives. J. Agric. Food Chem. 2014, 62, 1010–1018. [Google Scholar] [CrossRef]
- Li, J.-L.; Liu, L.; Pei, Y.-N.; Zhu, H.-J. Copper(II)-Containing C2-Symmetric Bistetracarboline Amides in Enantioselective Henry Reactions. Tetrahedron 2014, 70, 9077–9083. [Google Scholar] [CrossRef]
- Singh, D.; Hazra, C.K.; Malakar, C.C.; Pandey, S.K.; Kaith, B.S.; Singh, V. Indium-Mediated Domino Allylation-Lactonisation Approach: Diastereoselective Synthesis of β-Carboline C-3 Tethered α-Methylene γ-Butyrolactones. ChemistrySelect 2018, 3, 4859–4864. [Google Scholar] [CrossRef]
- Jadala, C.; Sathish, M.; Reddy, T.S.; Reddy, V.G.; Tokala, R.; Bhargava, S.K.; Shankaraiah, N.; Nagesh, N.; Kamal, A. Synthesis and in Vitro Cytotoxicity Evaluation of β-Carboline-Combretastatin Carboxamides as Apoptosis Inducing Agents: DNA Intercalation and Topoisomerase-II Inhibition. Bioorg. Med. Chem. 2019, 27, 3285–3298. [Google Scholar] [CrossRef]
- Marçal, L.; Garden, S. Synthesis of Spiro-Pyrrolidinyloxindoles by Oxidative Rearrangement of N-Acyltetrahydro-β-Carbolines Using an Oxone/Aqueous Acetone Mixture. J. Braz. Chem. Soc. 2018, 30, 19–32. [Google Scholar] [CrossRef]
- Alberch, L.; Bailey, P.D.; Clingan, P.D.; Mills, T.J.; Price, R.A.; Pritchard, R.G. The Cis- Specific Pictet−Spengler Reaction. Eur. J. Org. Chem. 2004, 2004, 1887–1890. [Google Scholar] [CrossRef]
- Lin, G.; Wang, Y.; Zhou, Q.; Tang, W.; Wang, J.; Lu, T. A Facile Synthesis of 3-Substituted 9H-Pyrido[3,4-b]Indol-1(2H)-One Derivatives from 3-Substituted β-Carbolines. Molecules 2010, 15, 5680–5691. [Google Scholar] [CrossRef]
- Lin, Y.; Xia, X.; Yao, R.; Ni, L.; Hu, J.; Guo, W.; Zhu, B. Synthesis and in Vitro Biological Evaluation of Hybrids from Tetrahydro-β-Carboline and Hydroxylcinnamic Acid as Antitumor Carcinoma Agents. Chem. Pharm. Bull. 2014, 62, 343–349. [Google Scholar] [CrossRef]
- Chen, L.; Xie, J.; Song, H.; Liu, Y.; Gu, Y.; Wang, L.; Wang, Q. Design, Synthesis, and Biological Activities of Spirooxindoles Containing Acylhydrazone Fragment Derivatives Based on the Biosynthesis of Alkaloids Derived from Tryptophan. J. Agric. Food Chem. 2016, 64, 6508–6516. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Majumder, S.; Clayton, T.; Petrou, S.; VanLinn, M.L.; Namjoshi, O.A.; Ma, C.; Cromer, B.A.; Roth, B.L.; Platt, D.M.; et al. Design, Synthesis, and Subtype Selectivity of 3,6-Disubstituted β-Carbolines at Bz/GABA(A)Ergic Receptors. SAR and Studies Directed toward Agents for Treatment of Alcohol Abuse. Bioorg. Med. Chem. 2010, 18, 7548–7564. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Sarkar, T.; Datta, S.; Maiti, A.; Chakrabarti, M.; Mondal, T.; Mondal, C.; Banerjee, A.; Roy, S.; Mukherjee, S.; et al. Structure-based Discovery of (S)-2-amino-6-(4-fluorobenzyl)-5,6,11,11a-tetrahydro-1H-imidazo[1′,5′:1,6]Pyrido[3,4-b]Indole-1,3(2H)-dione as Low Nanomolar, Orally Bioavailable Autotaxin Inhibitor. Chem. Biol. Drug. Des. 2022, 99, 496–503. [Google Scholar] [CrossRef]
- Li, S.; Yang, B.; Zhang, Q.; Zhang, J.; Wang, J.; Wu, W. Synthesis and Bioactivity of β-Carboline Derivatives. Nat. Prod. Commun. 2010, 5, 1934578X1000501016. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Teng, S.F.; Kesuma, D.; Deng, Y.; Duan, J.; Wang, J.H.; Qi, R.Z.; Sim, M.M. β-Carbolines as Specific Inhibitors of Cyclin-Dependent Kinases. Bioorg. Med. Chem. Lett. 2002, 12, 1129–1132. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, T.; Wang, X.; Luo, L.; Guo, J.; Peng, Y.; Xu, Q.; Miao, J.; Zhang, Y.; Ling, Y. Development of Novel β-Carboline-Based Hydroxamate Derivatives as HDAC Inhibitors with DNA Damage and Apoptosis Inducing Abilities. Med. Chem. Commun. 2017, 8, 1213–1219. [Google Scholar] [CrossRef]
- Ling, Y.; Feng, J.; Luo, L.; Guo, J.; Peng, Y.; Wang, T.; Ge, X.; Xu, Q.; Wang, X.; Dai, H.; et al. Design and Synthesis of C3-Substituted β-Carboline-Based Histone Deacetylase Inhibitors with Potent Antitumor Activities. ChemMedChem 2017, 12, 646–651. [Google Scholar] [CrossRef]
- Zhang, L.; Li, W.; Xiao, T.; Song, Z.; Csuk, R.; Li, S. Design and Discovery of Novel Chiral Antifungal Amides with 2-(2-Oxazolinyl)Aniline as a Promising Pharmacophore. J. Agric. Food Chem. 2018, 66, 8957–8965. [Google Scholar] [CrossRef]
- Ling, Y.; Guo, J.; Yang, Q.; Zhu, P.; Miao, J.; Gao, W.; Peng, Y.; Yang, J.; Xu, K.; Xiong, B.; et al. Development of Novel β-Carboline-Based Hydroxamate Derivatives as HDAC Inhibitors with Antiproliferative and Antimetastatic Activities in Human Cancer Cells. Eur. J. Med. Chem. 2018, 144, 398–409. [Google Scholar] [CrossRef]
- Xu, Q.-B.; Chen, X.-F.; Feng, J.; Miao, J.-F.; Liu, J.; Liu, F.-T.; Niu, B.-X.; Cai, J.-Y.; Huang, C.; Zhang, Y.; et al. Design, Synthesis and Biological Evaluation of Hybrids of β-Carboline and Salicylic Acid as Potential Anticancer and Apoptosis Inducing Agents. Sci. Rep. 2016, 6, 36238. [Google Scholar] [CrossRef]
- Li, Z.; Chen, S.; Zhu, S.; Luo, J.; Zhang, Y.; Weng, Q. Synthesis and Fungicidal Activity of β-Carboline Alkaloids and Their Derivatives. Molecules 2015, 20, 13941–13957. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.-M.; Lu, Y.; Jin, J.-L.; Guo, H.; Lin, G.-W.; Wang, Y.; Lu, T. Synthesis, Characterization, DNA Binding Ability and Cytotoxicity of the Novel Platinum(II), Copper(II), Cobalt(II) and Nickel(II) Complexes with 3-(1 H -Benzo[ d ]Imidazol-2-Yl)- β -Carboline. Inorganica Chim. Acta 2014, 421, 91–99. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, Y.; Jiang, Z.; Shu, B.; Sethuraman, V.; Zhong, G. Design, Synthesis, Fungicidal Property and QSAR Studies of Novel β -carbolines Containing Urea, Benzoylthiourea and Benzoylurea for the Control of Rice Sheath Blight. Pest. Manag. Sci. 2018, 74, 1736–1746. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, V.; Devi, N.; Malakar, C.C.; Shankar, R.; Singh, V. Metal–Free Decarboxylative Amination: An Alternative Approach Towards Regioselective Synthesis of β-Carboline N-fused Imidazoles. Adv. Synth. Catal. 2017, 359, 1213–1226. [Google Scholar] [CrossRef]
- Ling, Y.; Xu, C.; Luo, L.; Cao, J.; Feng, J.; Xue, Y.; Zhu, Q.; Ju, C.; Li, F.; Zhang, Y.; et al. Novel β-Carboline/Hydroxamic Acid Hybrids Targeting Both Histone Deacetylase and DNA Display High Anticancer Activity via Regulation of the P53 Signaling Pathway. J. Med. Chem. 2015, 58, 9214–9227. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jin, Q.; Lin, G.; Yang, T.; Wang, Z.; Lu, Y.; Tang, Y.; Liu, L.; Lu, T. Synthesis and Structure of the β-Carboline Derivatives and Their Binding Intensity with Cyclin-Dependent Kinase 2. Chem. Pharm. Bull. 2012, 60, 435–441. [Google Scholar] [CrossRef]
- Lin, G.; Wang, Y.; Zhou, Q.; Wang, J.; Yang, T.; Wang, Z.; Lu, T. Synthesis of a Novel Series of 1,6-Disubstituted-3-(Cyclohexylmethoxy)-β-Carboline Derivatives via Minisci Reaction. Synth. Commun. 2012, 42, 1895–1910. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, M.; Wang, Y.; Zhu, H.; Wang, Y.; Zhao, S.; Wu, J.; Peng, S. Design, Synthesis, and in Vivo Evaluations of Benzyl Nω-Nitro-Nα-(9H-Pyrido[3,4-b]Indole-3-Carbonyl)-l-Argininate as an Apoptosis Inducer Capable of Decreasing the Serum Concentration of P-Selectin. Med. Chem. Commun. 2016, 7, 1730–1737. [Google Scholar] [CrossRef]
- Lunagariya, N.A.; Gohil, V.M.; Kushwah, V.; Neelagiri, S.; Jain, S.; Singh, S.; Bhutani, K.K. Design, Synthesis and Biological Evaluation of 1,3,6-Trisubstituted β-Carboline Derivatives for Cytotoxic and Anti-Leishmanial Potential. Bioorg. Med. Chem. Lett. 2016, 26, 789–794. [Google Scholar] [CrossRef]
- Shankaraiah, N.; Jadala, C.; Nekkanti, S.; Senwar, K.R.; Nagesh, N.; Shrivastava, S.; Naidu, V.G.M.; Sathish, M.; Kamal, A. Design and Synthesis of C3-Tethered 1,2,3-Triazolo-β-Carboline Derivatives: Anticancer Activity, DNA-Binding Ability, Viscosity and Molecular Modeling Studies. Bioorg. Chem. 2016, 64, 42–50. [Google Scholar] [CrossRef]
- Lan, J.-S.; Xie, S.-S.; Li, S.-Y.; Pan, L.-F.; Wang, X.-B.; Kong, L.-Y. Design, Synthesis and Evaluation of Novel Tacrine-(β-Carboline) Hybrids as Multifunctional Agents for the Treatment of Alzheimer’s Disease. Bioorg. Med. Chem. 2014, 22, 6089–6104. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Chen, W.; Fan, W.; Ma, Q.; Sun, R.; Shao, G.; Cao, R. Synthesis and Preliminary Evaluation of Novel Alkyl Diamine Linked Bivalent β-Carbolines as Angiogenesis Inhibitors. Med. Chem. Commun. 2016, 7, 2177–2183. [Google Scholar] [CrossRef]
- Kamal, A.; Srinivasulu, V.; Nayak, V.L.; Sathish, M.; Shankaraiah, N.; Bagul, C.; Reddy, N.V.S.; Rangaraj, N.; Nagesh, N. Design and Synthesis of C3-Pyrazole/Chalcone-Linked Beta-Carboline Hybrids: Antitopoisomerase I, DNA-Interactive, and Apoptosis-Inducing Anticancer Agents. ChemMedChem 2014, 9, 2084–2098. [Google Scholar] [CrossRef]
- Sun, R.; Liu, R.; Zhou, C.; Ren, Z.; Guo, L.; Ma, Q.; Fan, W.; Qiu, L.; Yu, H.; Shao, G.; et al. Synthesis and Biological Evaluation of Piperazine Group-Linked Bivalent β-Carbolines as Potential Antitumor Agents. Med. Chem. Commun. 2015, 6, 2170–2174. [Google Scholar] [CrossRef]
- Kamal, A.; Narasimha Rao, M.P.; Swapna, P.; Srinivasulu, V.; Bagul, C.; Shaik, A.B.; Mullagiri, K.; Kovvuri, J.; Reddy, V.S.; Vidyasagar, K.; et al. Synthesis of β-Carboline–Benzimidazole Conjugates Using Lanthanum Nitrate as a Catalyst and Their Biological Evaluation. Org. Biomol. Chem. 2014, 12, 2370–2387. [Google Scholar] [CrossRef]
- Savariz, F.C.; Foglio, M.A.; De Carvalho, J.E.; Ruiz, A.L.T.G.; Duarte, M.C.T.; Da Rosa, M.F.; Meyer, E.; Sarragiotto, M.H. Synthesis and Evaluation of New β-Carboline-3-(4-Benzylidene)-4H-Oxazol-5-One Derivatives as Antitumor Agents. Molecules 2012, 17, 6100–6113. [Google Scholar] [CrossRef]
- Abdelsalam, M.A.; AboulWafa, O.M.; M Badawey, E.-S.A.; El-Shoukrofy, M.S.; El-Miligy, M.M.; Gouda, N.; Elaasser, M.M. Design, Synthesis, Anticancer Screening, Docking Studies and In Silico ADME Prediction of Some β-Carboline Derivatives. Future Med. Chem. 2018, 10, 1159–1175. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Guo, L.; Ma, Q.; Chen, W.; Fan, W.; Zhang, J. Design, Synthesis, and Biological Evaluation of Novel N-Acylhydrazone Bond Linked Heterobivalent β-Carbolines as Potential Anticancer Agents. Molecules 2019, 24, 2950. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Lin, Y.-C.; Chen, J.-P.; Chan, H.-C.; Hsu, M.-H.; Lin, H.-Y.; Kuo, S.-C.; Huang, L.-J. Synthesis and Biological Evaluation of Novel 3,9-Substituted β-Carboline Derivatives as Anticancer Agents. Bioorg. Med. Chem. Lett. 2015, 25, 3873–3877. [Google Scholar] [CrossRef]
- Guo, L.; Ma, Q.; Chen, W.; Fan, W.; Zhang, J.; Dai, B. Synthesis and Biological Evaluation of Novel N9 -Heterobivalent β-Carbolines as Angiogenesis Inhibitors. J. Enzyme Inhib. Med. Chem. 2019, 34, 375–387. [Google Scholar] [CrossRef]
- Huo, X.; Li, W.; Zhang, B.; Chen, X.; Zhou, Y.; Zhang, J.; Han, X.; Dai, B. Synthesis and Fungicidal Evaluation of Novel β -Carboline-Benzimidazole and β-Carboline-Benzothiazole Hybrids. Chin. J. Org. Chem. 2018, 38, 3356. [Google Scholar] [CrossRef]
- Abramyants, M.G.; Lomov, D.A.; Zavyazkina, T.I. Dehydrogenation of 1-Aryl(Hetaryl)-1,2,3,4-Tetrahydro-9H-β-Carboline-3-Carboxylic Acids and Their Esters with Dimethyl Sulfoxide. Russ. J. Org. Chem. 2016, 52, 1610–1615. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, Z.; Dong, J.; Shi, X.-X.; Lu, X. Novel Asymmetric Total Syntheses of (R)-(−)-Pyridindolol, (R)-(−)-Pyridindolol K1, and (R)-(−)-Pyridindolol K2 via a Mild One-Pot Aromatization of N-Tosyl-Tetrahydro-β-Carboline with (S)-2,3-O-Isopropylidene-l-Glyceraldehyde as the Source of Chirality. Tetrahedron Asymmetry 2013, 24, 633–637. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Y.; Wang, L.; Chen, X.; Sun, Y.; Lin, L.; Tang, Y.; Li, F.; Chen, D. Organic Base-Promoted Efficient Dehydrogenative/Decarboxylative Aromatization of Tetrahydro-β-Carbolines into β-Carbolines under Air. Tetrahedron Lett. 2019, 60, 800–804. [Google Scholar] [CrossRef]
- Venkataramana Reddy, P.O.; Mishra, S.; Tantak, M.P.; Nikhil, K.; Sadana, R.; Shah, K.; Kumar, D. Design, Synthesis and in Vitro Cytotoxicity Studies of Novel β-Carbolinium Bromides. Bioorg. Med. Chem. Lett. 2017, 27, 1379–1384. [Google Scholar] [CrossRef]
- Kamal, A.; Sathish, M.; Prasanthi, A.V.G.; Chetna, J.; Tangella, Y.; Srinivasulu, V.; Shankaraiah, N.; Alarifi, A. An Efficient One-Pot Decarboxylative Aromatization of Tetrahydro-β-Carbolines by Using N-Chlorosuccinimide: Total Synthesis of Norharmane, Harmane and Eudistomins. RSC Adv. 2015, 5, 90121–90126. [Google Scholar] [CrossRef]
- Mohamad Arshad, A.S.; Meesala, R.; Hanapi, N.A.; Mordi, M.N. A Convenient Synthesis of β-Carbolines by Iron-Catalyzed Aerobic Decarboxylative/Dehydrogenative Aromatization of Tetrahydro-β-Carbolines under Air. Tetrahedron 2021, 83, 131960. [Google Scholar] [CrossRef]
- Drung, B.; Scholz, C.; Barbosa, V.A.; Nazari, A.; Sarragiotto, M.H.; Schmidt, B. Computational & Experimental Evaluation of the Structure/Activity Relationship of β-Carbolines as DYRK1A Inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 4854–4860. [Google Scholar] [CrossRef]
- Guo, L.; Chen, W.; Cao, R.; Fan, W.; Ma, Q.; Zhang, J.; Dai, B. Synthesis and Structure-Activity Relationships of Asymmetric Dimeric β-Carboline Derivatives as Potential Antitumor Agents. Eur. J. Med. Chem. 2018, 147, 253–265. [Google Scholar] [CrossRef]
- Gohil, V.M.; Brahmbhatt, K.G.; Loiseau, P.M.; Bhutani, K.K. Synthesis and Anti-Leishmanial Activity of 1-Aryl-β-Carboline Derivatives against Leishmania Donovani. Bioorganic Med. Chem. Lett. 2012, 22, 3905–3907. [Google Scholar] [CrossRef]
- Xin, B.; Tang, W.; Wang, Y.; Lin, G.; Liu, H.; Jiao, Y.; Zhu, Y.; Yuan, H.; Chen, Y.; Lu, T. Design, Synthesis and Biological Evaluation of β-Carboline Derivatives as Novel Inhibitors Targeting B-Raf Kinase. Bioorg. Med. Chem. Lett. 2012, 22, 4783–4786. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-X.; Xiang, J.-C.; Cheng, Y.; Ma, J.-T.; Wu, Y.-D.; Wu, A.-X. Direct Biomimetic Synthesis of β-Carboline Alkaloids from Two Amino Acids. J. Org. Chem. 2018, 83, 12247–12254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Sun, X.; Xu, B.; Bijian, K.; Wan, S.; Li, G.; Alaoui-Jamali, M.; Jiang, T. Total Synthesis and Bioactivity of the Marine Alkaloid Pityriacitrin and Some of Its Derivatives. Eur. J. Med. Chem. 2011, 46, 6089–6097. [Google Scholar] [CrossRef]
- Choudhary, A.N.; Kumar, A.; Joshi, A.; Kohli, M.S. Synthesis of Tryptoline-3-Carboxylic Acid Derivatives A Novel Antidiabetic Agent. J. Young Pharm. 2011, 3, 132–137. [Google Scholar] [CrossRef]
- Triggle, D.J.; Mitchell, J.M.; Filler, R. The Pharmacology of Physostigmine. CNS Drug Rev. 1998, 4, 87–136. [Google Scholar] [CrossRef]
- Kamenecka, T.M.; Danishefsky, S.J. Discovery through Total Synthesis: A Retrospective on the Himastatin Problem. Chem. Eur. J. 2001, 7, 41–63. [Google Scholar] [CrossRef] [PubMed]
- García-Domínguez, P.; De Lera, A.R. Puzzling Out the Structure of Novofumigatamide: Total Synthesis of Constitutional Isomers. Part II. J. Org. Chem. 2022, 87, 12528–12546. [Google Scholar] [CrossRef]
- Luo, L.; Zhai, X.; Wang, Y.; Peng, Y.; Gong, H. Divergent Total Syntheses of C3 a−C7′ Linked Diketopiperazine Alkaloids (+)-Asperazine and (+)-Pestalazine A Enabled by a Ni-Catalyzed Reductive Coupling of Tertiary Alkyl Chloride. Chem. Eur. J. 2019, 25, 989–992. [Google Scholar] [CrossRef]
- Nakagawa, M.; Kato, S.; Kataoka, S.; Kodato, S.; Watanabe, H.; Okajima, H.; Hino, T.; Witkop, B. Dye-Sensitized Photooxygenation of Tyrptophan: 3a-Hydroperoxypyrroloindole as a Labile Precursor of Formylkynurenine. Chem. Pharm. Bull. 1981, 29, 1013–1026. [Google Scholar] [CrossRef]
- Wei, Y.; Lu, C.; Jiang, S.; Zhang, Y.; Li, Q.; Bai, W.; Wang, X. Directed Evolution of a Tryptophan 2,3-Dioxygenase for the Diastereoselective Monooxygenation of Tryptophans. Angew. Chem. Int. Ed. 2020, 59, 3043–3047. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, R.; Li, L.; Liu, J.; Liu, Y.; Song, H.; Wang, Q. Design, Synthesis, and Bioactivity Study of Novel Tryptophan Derivatives Containing Azepine and Acylhydrazone Moieties. Molecules 2022, 27, 6700. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Li, X.; Xu, L.; Ma, J.; Sun, L.; Zhang, B.; Lin, B.; Cheng, M.; Liu, Y. Diels-Alder Cycloaddition of Azepino[4,5-b]Indoles Towards Hydrocarbazole Derivatives and Related Heterocycles. Adv. Synth. Catal. 2022, 364, 873–889. [Google Scholar] [CrossRef]
- Jida, M.; Betti, C.; Urbanczyk-Lipkowska, Z.; Tourwé, D.; Ballet, S. Highly Diastereoselective Synthesis of 1-Carbamoyl-4-Aminoindoloazepinone Derivatives via the Ugi Reaction. Org. Lett. 2013, 15, 5866–5869. [Google Scholar] [CrossRef]
- Ryan, K.L.; Akhmedov, N.G.; Panaccione, D.G. Identification and Structural Elucidation of Ergotryptamine, a New Ergot Alkaloid Produced by Genetically Modified Aspergillus Nidulans and Natural Isolates of Epichloë Species. J. Agric. Food Chem. 2015, 63, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Cheon, C.-H. Total Synthesis of Rucaparib. J. Org. Chem. 2022, 87, 4813–4817. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Mingo, M.; Rodríguez, N.; Gómez Arrayás, R.; Carretero, J.C. Access to Benzazepinones by Pd-Catalyzed Remote C–H Carbonylation of γ-Arylpropylamine Derivatives. Org. Lett. 2019, 21, 4345–4349. [Google Scholar] [CrossRef]
- Jiao, R.H.; Xu, S.; Liu, J.Y.; Ge, H.M.; Ding, H.; Xu, C.; Zhu, H.L.; Tan, R.X. Chaetominine, a Cytotoxic Alkaloid Produced by Endophytic Chaetomium Sp. IFB-E015. Org. Lett. 2006, 8, 5709–5712. [Google Scholar] [CrossRef]
- Cheng, Z.; Lou, L.; Liu, D.; Li, X.; Proksch, P.; Yin, S.; Lin, W. Versiquinazolines A–K, Fumiquinazoline-Type Alkaloids from the Gorgonian-Derived Fungus Aspergillus Versicolor LZD-14-1. J. Nat. Prod. 2016, 79, 2941–2952. [Google Scholar] [CrossRef]
- Wu, J.-F.; Huang, P.-Q. Concise, Enantioselective Total Syntheses of Both the Proposed and Revised Structures of (−)-Versiquinazoline H. Chin. Chem. Lett. 2020, 31, 61–63. [Google Scholar] [CrossRef]
- Xu, C.-P.; Luo, S.-P.; Wang, A.-E.; Huang, P.-Q. Complexity Generation by Chemical Synthesis: A Five-Step Synthesis of (−)-Chaetominine from l-Tryptophan and Its Biosynthetic Implications. Org. Biomol. Chem. 2014, 12, 2859. [Google Scholar] [CrossRef]
- Nourry, A.; Legoupy, S.; Huet, F. Synthesis of an Analogue of Lavendamycin and of Conformationally Restricted Derivatives by Cyclization via a Hemiaminal Intermediate. Tetrahedron Lett. 2007, 48, 6014–6018. [Google Scholar] [CrossRef]
- Nguyen, B.D.; Stevens, B.L.; Elson, D.J.; Finlay, D.; Gamble, J.T.; Kopparapu, P.R.; Tanguay, R.L.; Buermeyer, A.B.; Kerkvliet, N.I.; Kolluri, S.K. 11-Cl-BBQ, a Select Modulator of AhR-Regulated Transcription, Suppresses Lung Cancer Cell Growth via Activation of P53 and p27Kip1. FEBS J. 2023, 290, 2064–2084. [Google Scholar] [CrossRef]
- Nancy, I. Kerkvliet; Sebas-Tian Bernales; Jit Chakravarty; Brahmam Pujala; Pasha Khan; Varun Kumar; Abhinandan Danodia; Gon-Zalo Ureta Aryl Hydrocarbon Receptor Activators. WO 2021/02206 A1, 4 February 2021. [Google Scholar]
- Wang, M.-Z.; Si, T.-X.; Ku, C.-F.; Zhang, H.-J.; Li, Z.-M.; Chan, A.S.C. Synthesis of Javanicunines A and B, 9-Deoxy-PF1233s A and B, and Absolute Configuration Establishment of Javanicunine B. J. Org. Chem. 2019, 84, 831–839. [Google Scholar] [CrossRef]
- Khopade, T.M.; Ajayan, K.; Vincent, D.M.; Lane, A.L.; Viswanathan, R. Biomimetic Total Synthesis of (+)-Nocardioazine B and Analogs. J. Org. Chem. 2022, 87, 11519–11533. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Feng, X.; Cai, L.; Xu, Z.; Ye, T. Total Synthesis and Absolute Configuration of Nocardioazine B. Chem. Commun. 2012, 48, 4344. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; May, J.P.; Huang, J.; Perrin, D.M. Stereoselective Synthesis of Brevianamide E. Org. Lett. 2012, 14, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Li, X.; Hikawa, H.; Suzuki, T.; Tsutsumi, K.; Sato, M.; Takikawa, O.; Suzuki, H.; Yokoyama, Y. Synthesis and Biological Evaluation of Novel Tryptoline Derivatives as Indoleamine 2,3-Dioxygenase (IDO) Inhibitors. Bioorg. Med. Chem. 2013, 21, 1159–1165. [Google Scholar] [CrossRef]
- Sunder-Plassmann, N.; Sarli, V.; Gartner, M.; Utz, M.; Seiler, J.; Huemmer, S.; Mayer, T.U.; Surrey, T.; Giannis, A. Synthesis and Biological Evaluation of New Tetrahydro-β-Carbolines as Inhibitors of the Mitotic Kinesin Eg5. Bioorg. Med. Chem. 2005, 13, 6094–6111. [Google Scholar] [CrossRef]
- Walton, J.G.A.; Patterson, S.; Liu, G.; Haraldsen, J.D.; Hollick, J.J.; Slawin, A.M.Z.; Ward, G.E.; Westwood, N.J. Synthesis and Biological Evaluation of Functionalised Tetrahydro-β-Carboline Analogues as Inhibitors of Toxoplasma Gondii Invasion. Org. Biomol. Chem. 2009, 7, 3049. [Google Scholar] [CrossRef]
- Abadi, A.H.; Lehmann, J.; Piazza, G.A.; Abdel-Halim, M.; Ali, M.S.M. Synthesis, Molecular Modeling, and Biological Evaluation of Novel Tetrahydro- β -Carboline Hydantoin and Tetrahydro-β-Carboline Thiohydantoin Derivatives as Phosphodiesterase 5 Inhibitors. Int. J. Med. Chem. 2011, 2011, 1–9. [Google Scholar] [CrossRef]
- Hotha, S.; Yarrow, J.C.; Yang, J.G.; Garrett, S.; Renduchintala, K.V.; Mayer, T.U.; Kapoor, T.M. HR22C16: A Potent Small-Molecule Probe for the Dynamics of Cell Division. Angew. Chem. Int. Ed. 2003, 42, 2379–2382. [Google Scholar] [CrossRef] [PubMed]
- Marcus, A.I.; Peters, U.; Thomas, S.L.; Garrett, S.; Zelnak, A.; Kapoor, T.M.; Giannakakou, P. Mitotic Kinesin Inhibitors Induce Mitotic Arrest and Cell Death in Taxol-Resistant and -Sensitive Cancer Cells. J. Biol. Chem. 2005, 280, 11569–11577. [Google Scholar] [CrossRef]
- Dan, L.; Liu, Z.; Huo, L.; Yang, H.; Yi, J.; Xie, X.; She, X. Total Synthesis of (+)-Tabertinggine. Tetrahedron 2022, 115, 132781. [Google Scholar] [CrossRef]
- Chaniyara, R.; Tala, S.; Chen, C.-W.; Zang, X.; Kakadiya, R.; Lin, L.-F.; Chen, C.-H.; Chien, S.-I.; Chou, T.-C.; Tsai, T.-H.; et al. Novel Antitumor Indolizino[6,7-b]Indoles with Multiple Modes of Action: DNA Cross-Linking and Topoisomerase I and II Inhibition. J. Med. Chem. 2013, 56, 1544–1563. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhang, J.; Zhang, J.; Chen, S.; Wei, J.; Xiong, L.; Qiu, D. A β-Carboline [1’, 2’: 1, 2] Imidazole Derivative and Its Preparation Method and Application, and Pharmaceutical Composition. CN118164983A, 11 June 2024. [Google Scholar]
- Liu, J.; Wu, G.; Cui, G.; Wang, W.-X.; Zhao, M.; Wang, C.; Zhang, Z.; Peng, S. A New Class of Anti-Thrombosis Hexahydropyrazino-[1′,2′:1,6]Pyrido-[3,4-b]-Indole-1,4-Dions: Design, Synthesis, logK Determination, and QSAR Analysis. Bioorg. Med. Chem. 2007, 15, 5672–5693. [Google Scholar] [CrossRef]
- Bai, H.; Cui, P.; Zang, C.; Li, S. Enantioselective Total Synthesis, Divergent Optimization and Preliminary Biological Evaluation of (Indole-N-Alkyl)-Diketopiperazines. Bioorg. Med. Chem. Lett. 2019, 29, 126718. [Google Scholar] [CrossRef]
- Zheng, H.; Wu, Y.; Sun, B.; Cheng, C.; Qiao, Y.; Jiang, Y.; Zhao, S.; Xie, Z.; Tan, J.; Lou, H. Discovery of Furyl/Thienyl β-Carboline Derivatives as Potent and Selective PDE5 Inhibitors with Excellent Vasorelaxant Effect. Eur. J. Med. Chem. 2018, 158, 767–780. [Google Scholar] [CrossRef] [PubMed]
- El-Gamil, D.S.; Ahmed, N.S.; Gary, B.D.; Piazza, G.A.; Engel, M.; Hartmann, R.W.; Abadi, A.H. Design of Novel β-Carboline Derivatives with Pendant 5-Bromothienyl and Their Evaluation as Phosphodiesterase-5 Inhibitors. Arch. Pharm. 2013, 346, 23–33. [Google Scholar] [CrossRef]
- Mohamed, H.A.; Girgis, N.M.R.; Wilcken, R.; Bauer, M.R.; Tinsley, H.N.; Gary, B.D.; Piazza, G.A.; Boeckler, F.M.; Abadi, A.H. Synthesis and Molecular Modeling of Novel Tetrahydro-β-Carboline Derivatives with Phosphodiesterase 5 Inhibitory and Anticancer Properties. J. Med. Chem. 2011, 54, 495–509. [Google Scholar] [CrossRef]
- ElHady, A.K.; Shih, S.-P.; Chen, Y.-C.; Liu, Y.-C.; Ahmed, N.S.; Keeton, A.B.; Piazza, G.A.; Engel, M.; Abadi, A.H.; Abdel-Halim, M. Extending the Use of Tadalafil Scaffold: Development of Novel Selective Phosphodiesterase 5 Inhibitors and Histone Deacetylase Inhibitors. Bioorg. Chem. 2020, 98, 103742. [Google Scholar] [CrossRef]
- Coward, R.M.; Carson, C.C. Tadalafil in the Treatment of Erectile Dysfunction. Ther. Clin. Risk Manag. 2008, 4, 1315–1330. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Borba, I.A.S.; Peripolli, J.B.; Joaquim, A.R.; Fumagalli, F. Beyond Peptides and Peptidomimetics: Natural Heteroaromatic Amino Acids in the Synthesis of Fused Heterocyclic Frameworks for Bioactive Agents. Organics 2025, 6, 23. https://doi.org/10.3390/org6020023
de Borba IAS, Peripolli JB, Joaquim AR, Fumagalli F. Beyond Peptides and Peptidomimetics: Natural Heteroaromatic Amino Acids in the Synthesis of Fused Heterocyclic Frameworks for Bioactive Agents. Organics. 2025; 6(2):23. https://doi.org/10.3390/org6020023
Chicago/Turabian Stylede Borba, Isis Apolo Silveira, Jamile Buligon Peripolli, Angélica Rocha Joaquim, and Fernando Fumagalli. 2025. "Beyond Peptides and Peptidomimetics: Natural Heteroaromatic Amino Acids in the Synthesis of Fused Heterocyclic Frameworks for Bioactive Agents" Organics 6, no. 2: 23. https://doi.org/10.3390/org6020023
APA Stylede Borba, I. A. S., Peripolli, J. B., Joaquim, A. R., & Fumagalli, F. (2025). Beyond Peptides and Peptidomimetics: Natural Heteroaromatic Amino Acids in the Synthesis of Fused Heterocyclic Frameworks for Bioactive Agents. Organics, 6(2), 23. https://doi.org/10.3390/org6020023