You are currently viewing a new version of our website. To view the old version click .

Organics

Organics is an international, peer-reviewed, open access journal on organic chemistry published quarterly online by MDPI.

Quartile Ranking JCR - Q3 (Chemistry, Organic)

All Articles (193)

Helical Molecular Cages with sp-Conjugated Linkages

  • Wei Wu,
  • Takahiro Kojima and
  • Hiroshi Sakaguchi

A conjugated helical cage, comprising two 1,3,5-tris(phenylethynyl)benzene units connected by diyne linkers, was successfully synthesized. X-ray crystallography revealed helical molecular structures with large twisted angles and a 1:1 mixture of P- and M-enantiomers. Variable-temperature-NMR measurement indicated the racemization process between the enantiomers occurs rapidly on the NMR timescale. The rapid interconversion is attributed to the flexible diyne linkages, even though they were believed to be rigid.

25 December 2025

(a) X-ray crystallographic analysis of 5. (b) Experimental molecular structure of M-5. (c) Calculated molecular structures of M-5 at B3LYP (left) and M06-2X (right) levels of theory.

Our previous study demonstrated that thiophene-substituted synthetic curcumin analogs possessed better antibacterial activity and stability than natural curcumin, demethoxycurcumin, or bisdemethoxycurcumin in antibacterial photodynamic therapy (aPDT). In addition, the activity of the furan-substituted analogs was weaker than that of the thiophene-substituted compounds. As oxygen, sulfur, and selenium belong to the same group in the periodic table, the antibacterial and anticancer activities of these three different elemental analogs were compared and investigated. The thiophene-substituted analog (compound 3) exhibited the most potent antibacterial activity in aPDT experiments. However, the furan-substituted analog (compound 1) exhibited the most potent anticancer activity. These results indicate that the differences in atomic radii or energy levels in these compounds produce different cell-attack results on generated free radicals. Ruthenium(II) complexes have a good reputation for use in PDT for cancer treatment. Our results show that complexation of ruthenium(II) with thiophene-substituted curcumin analogs does not enhance their antibacterial or anticancer activity.

23 December 2025

Possible biomedical application of curcuminoids through PDT.

A novel series of Schiff bases (3a3k), incorporating tranexamic acid (TXA) and phenol-derived aldehydes via imine linkers, was synthesized and structurally characterized. The antimicrobial activity of the compounds was evaluated against a range of clinically and environmentally relevant bacterial and fungal strains. Among them, derivatives 3i and 3k, bearing bromine and chlorine substituents on the phenol ring, exhibited the most potent antimicrobial effects, particularly against Penicillium italicum and Proteus mirabilis (MIC as low as 0.014 mg/mL). To elucidate the underlying mechanism of action, in silico molecular docking studies were conducted, revealing strong binding affinities of 3i and 3k toward fungal sterol 14α-demethylase (CYP51B), with predicted binding energies surpassing those of the reference antifungal ketoconazole. Additionally, UV-Vis and fluorescence spectroscopy assays demonstrated good stability of compound 3k in PBS and its effective binding to human serum albumin (HSA), respectively. ADMET and ProTox-II predictions further supported the drug-likeness, low toxicity (Class 4), and favorable pharmacokinetic profile of compound 3k. Collectively, these findings highlight TXA–phenol imine derivatives as promising scaffolds for the development of next-generation antimicrobial agents, particularly targeting resistant fungal pathogens.

16 December 2025

The stability of compound 3k in PBS followed by UV-Vis spectrophotometry.

Theoretical Modeling of BODIPY-Helicene Circularly Polarized Luminescence

  • Giovanni Bella,
  • Giuseppe Bruno and
  • Antonio Santoro

Density functional theory (DFT) and its extension, time-dependent DFT (TD-DFT), have become fundamental tools for modeling chiral excited states and supporting experimental chiroptical spectroscopies. In this connection, the interest in understanding the asymmetric emission through the circularly polarized luminescence (CPL) technique peaked in the current decade. In the present work, we are computationally faced with an emerging class of luminophores which combines the luminogenic source of the BODIPY unit with the intrinsic chirality of the helicene pendant to obtain a chiral radiative deactivation. In particular, a meso-substituted BODIPY-[6]helicene was deeply examined through a DFT multistep approach to attain an appreciable level of theory for the CPL simulation. Among the multitude of alternatives, TPSSTPSS exchange-correlation functional with 6-311G(d,p) basis set revealed to be the best computational protocol to emulate the CPL spectral profile with regard to peak intensity, band position, and chiral sign for both M and P form.

5 December 2025

(Top) Structures of the smaller fused-polycyclic aromatic compounds. (Bottom) Left-handed (M) and right-handed (P) [6]helicene.

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Organics - ISSN 2673-401X