Use and Roles of Tannins in Polysaccharide-Based Bioplastics and Biocomposites
Abstract
:1. Introduction
- Poly(lactic acid) (PLA) is normally obtained from the saccharose dimer, as extracted from biological sources, such as corn starch [12]. In this case, for example, to obtain mechanical improvement of the polymer, tannins from Quebracho wood mixture and Kraft lignin were added in different amounts [13].
- Thermoplastic starches (TPSs), which represent a general category of compounds useful as a matrix for bioplastics, especially when disposing of biomass waste of different origins, are most often used for food packaging films [16]. In this case, normally glycerol is used as the main plasticizer, of which tannin-rich biomasses, such as spent coffee grounds (SCGs), can act as effect enhancers [17].
2. Origins and Modes of Extraction of the Various Tannins Used in Bioplastics
3. Function of Tannins in Bioplastics
3.1. Esterification of Condensed Tannins for Processing in Plastics for Various Uses
3.2. Tannin-Based Bio-Adhesives
3.3. Tannins as Coloring Agents in Bioplastics
3.4. Tannins in Biocomposites Including Lignocellulosic Fibers
3.5. Tannins as Compared with Other Building Blocks for Bioplastics and Biocomposites: Humins
4. Discussion
- (i)
- The development of effective crosslinkers to use tannins for wood-based panels; after initial attempts, early in this century, on polyethyleneimine [114], nowadays one of the most diffused is hexamethylenetetramine (HMTA) [115], which forms tannin and amino methylene bridges. This is a formaldehyde-free technology that is supposed to coexist with binderless principles, based on the modification of wood to promote adhesion [116]. Research is continuing: natural crosslinkers, such as those based on proteins, though thermoset, tend to become thermoplastic under the effect of moisture and generally contamination; this is the case for casein [117]. In practice, therefore, attention is concentrated on aldehyde (aliphatic, cyclic, or aromatic) or amine functional groups, according to the specific reactive groups on the various adhesives based on natural substances [118]. However, the drive towards achieving full-biobased adhesives is by no means exhausting; a glucose–tannin combination has in fact been also proposed for wood adhesion, which proved highly performant [119].
- (ii)
- As for other bio-based products, the principal bottleneck is the requirement for thorough characterization of these materials, especially as far as the market for thermosetting polymers and composites is concerned, where specifications need to be supplied and constantly verified for their variability over time. This occurs, e.g., in the field of bio-epoxies [120] and bio-polyurethanes [121]. In the latter case, the tannin-based resin can also be used as a modifier for lignocellulosic fibers to improve their adhesion to further matrices; this has been, for example, proposed with ramie fibers [122]. Fiber modification is generally a widely diffused practice; tannin-rich plants, such as persimmon, are important candidates for that purpose, despite limitations due to their seasonal availability, which may hinder the possible industrialization of the process [123].
- (iii)
- In the field of biocomposites and of the increasing number of lignocellulosic fibers that are employed with that purpose [124], tannin-based matrices provide a very suitable location for their effective bonding. It is no surprise that the last years have witnessed the development of tannin resin composites with various natural fibers, such as Urena lobata [125] and Grewia bicolor [126]. Together with high interfacial properties obtained, these materials are able to present also antibacterial and anti-mold properties [127], which represented a limit so far for fully bio-based biocomposites.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barbehenn, R.V.; Constabel, C.P. Tannins in plant–herbivore interactions. Phytochem 2011, 72, 1551–1565. [Google Scholar] [CrossRef] [PubMed]
- Covington, A.D. Tanning Chemistry: The Science of Leather; Royal Society of Chemistry: London, UK, 2009. [Google Scholar]
- Farha, A.K.; Yang, Q.Q.; Kim, G.; Li, H.B.; Zhu, F.; Liu, H.Y.; Gan, R.-Y.; Corke, H. Tannins as an alternative to antibiotics. Food Biosci. 2020, 38, 100751. [Google Scholar] [CrossRef]
- Pizzi, A. Tannins medical/pharmacological and related applications: A critical review. Sustain. Chem. Pharm. 2021, 22, 100481. [Google Scholar] [CrossRef]
- Padmaja, G. Evaluation of techniques to reduce assayable tannin and cyanide in cassava leaves. J. Agric. Food Chem. 1989, 37, 712–716. [Google Scholar] [CrossRef]
- Thomas, M.M.G.; Barbosa Filho, J.M. Anti-inflammatory actions of tannins isolated from the bark of Anacardium occidentale L. J. Ethnopharmacol. 1985, 13, 289–300. [Google Scholar] [CrossRef]
- Sanmuga Priya, E.; Senthamil Selvan, P.; Ajay, B. Tannin rich fraction from Terminalia chebula fruits as Anti-inflammatory agent. J. Herbs Spices Med. Plants 2018, 24, 74–86. [Google Scholar] [CrossRef]
- Rajasekaran, S.; Rajasekar, N.; Sivanantham, A. Therapeutic potential of plant-derived tannins in non-malignant respiratory diseases. J. Nutr. Biochem. 2021, 94, 108632. [Google Scholar] [CrossRef]
- Benyahya, S.; Aouf, C.; Caillol, S.; Boutevin, B.; Pascault, J.P.; Fulcrand, H. Functionalized green tea tannins as phenolic prepolymers for bio-based epoxy resins. Ind. Crops Prod. 2014, 53, 296–307. [Google Scholar] [CrossRef]
- Capretti, M.; Giammaria, V.; Santulli, C.; Boria, S.; Del Bianco, G. Use of Bio-Epoxies and Their Effect on the Performance of Polymer Composites: A Critical Review. Polymers 2023, 15, 4733. [Google Scholar] [CrossRef]
- Zia, K.M.; Noreen, A.; Zuber, M.; Tabasum, S.; Mujahid, M. Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review. Int. J. Biol. Macromol. 2016, 82, 1028–1040. [Google Scholar] [CrossRef]
- Garlotta, D. A literature review of poly (lactic acid). J. Polym. Environ. 2001, 9, 63–84. [Google Scholar] [CrossRef]
- Anwer, M.A.; Naguib, H.E.; Celzard, A.; Fierro, V. Comparison of the thermal, dynamic mechanical and morphological properties of PLA-Lignin & PLA-Tannin particulate green composites. Compos. Part B Eng. 2015, 82, 92–99. [Google Scholar]
- Adeleye, A.T.; Odoh, C.K.; Enudi, O.C.; Banjoko, O.O.; Osiboye, O.O.; Odediran, E.T.; Louis, H. Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process. Biochem. 2020, 96, 174–193. [Google Scholar] [CrossRef]
- Bonnenfant, C.; Gontard, N.; Aouf, C. Extending biopolyesters circularity by using natural stabilizers: A review on the potential of polyphenols to enhance poly (hydroxyalkanoates) thermal stability while preserving its biodegradability. Polym. Test. 2022, 110, 107561. [Google Scholar] [CrossRef]
- Rahardiyan, D.; Moko, E.M.; Tan, J.S.; Lee, C.K. Thermoplastic starch (TPS) bioplastic, the green solution for single-use petroleum plastic food packaging–A review. Enzym. Microb. Technol. 2023, 168, 110260. [Google Scholar] [CrossRef]
- Masssijaya, S.Y.; Lubis, M.A.R.; Nissa, R.C.; Nurhamiyah, Y.; Nugroho, P.; Antov, P.; Lee, S.-H.; Papadopoulos, A.N.; Kusumah, S.S.; Karlinasari, L. Utilization of spent coffee grounds as a sustainable resource for the synthesis of bioplastic composites with polylactic acid, starch, and sucrose. J. Compos. Sci. 2023, 7, 512. [Google Scholar] [CrossRef]
- Talekar, S.; Patti, A.F.; Vijayraghavan, R.; Arora, A. An integrated green biorefinery approach towards simultaneous recovery of pectin and polyphenols coupled with bioethanol production from waste pomegranate peels. Bioresource Technol. 2018, 266, 322–334. [Google Scholar]
- Mallegni, N.; Cicogna, F.; Passaglia, E.; Gigante, V.; Coltelli, M.B.; Coiai, S. Natural Antioxidants: Advancing Stability and Performance in Sustainable Biobased and Biodegradable Plastics. Compounds 2025, 5, 4. [Google Scholar] [CrossRef]
- Das, A.K.; Islam, M.N.; Faruk, M.O.; Ashaduzzaman, M.; Dungani, R. Review on tannins: Extraction processes, applications and possibilities. S. Afr. J. Bot. 2020, 135, 58–70. [Google Scholar] [CrossRef]
- Agrippina, F.D.; Ismayati, M.; Hidayati, S.; Pratama, B.P. Utilization of Tannins with Various Polymers for Green-Based Active Packaging: A Review. J. Sylva Lestari 2024, 12, 648–683. [Google Scholar] [CrossRef]
- Rosenboom, J.G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Yazaki, Y. Tannins from Acacia mearnsii De Wild. Bark: Tannin determination and biological activities. Molecules 2018, 23, 837. [Google Scholar] [CrossRef] [PubMed]
- Kemppainen, K.; Siika-aho, M.; Pattathil, S.; Giovando, S.; Kruus, K. Spruce bark as an industrial source of condensed tannins and non-cellulosic sugars. Ind. Crops Prod. 2014, 52, 158–168. [Google Scholar] [CrossRef]
- Fedorov, V.S.; Ryazanova, T.V. Bark of Siberian conifers: Composition, use, and processing to extract tannin. Forests 2021, 12, 1043. [Google Scholar] [CrossRef]
- Tessmer, M.A.; Kluge, R.A.; Appezzato-da-Glória, B. The accumulation of tannins during the development of ‘Giombo’ and ‘Fuyu’ persimmon fruits. Sci. Hortic. 2014, 172, 292–299. [Google Scholar] [CrossRef]
- Daskalakis, I.; Stavrakaki, M.; Sotirakoglou, K.; Biniari, K. Variations in the levels of individual phenolic compounds in grapevine latent buds during eco-dormancy, following chemically-induced stress conditions. Agronomy 2021, 11, 1798. [Google Scholar] [CrossRef]
- Feeny, P.P.; Bostock, H. Seasonal changes in the tannin content of oak leaves. Phytochem 1968, 7, 871–880. [Google Scholar] [CrossRef]
- Hernes, P.J.; Benner, R.; Cowie, G.L.; Goni, M.A.; Bergamaschi, B.A.; Hedges, J.I. Tannin diagenesis in mangrove leaves from a tropical estuary: A novel molecular approach. Geochim. Cosmochim. Acta 2001, 65, 3109–3122. [Google Scholar] [CrossRef]
- Patra, A.; Prasath, V.A. Isolation of detoxified cassava (Manihot esculenta L.) leaf protein by alkaline extraction-isoelectric precipitation: Optimization and its characterization. Food Chem. 2024, 437, 137845. [Google Scholar] [CrossRef]
- Mailoa, M.N.; Mahendradatta, M.; Laga, A.; Djide, N. Antimicrobial activities of tannins extract from guava leaves (Psidium guajava L.) on pathogens microbial. Int. J. Sci. Technol. Res. 2014, 3, 236–241. [Google Scholar]
- Oszmianski, J.; Wojdylo, A.; Lamer-Zarawska, E.; Swiader, K. Antioxidant tannins from Rosaceae plant roots. Food Chem. 2007, 100, 579–583. [Google Scholar] [CrossRef]
- Bakkali, A.T.; Jaziri, M.; Ishimaru, K.; Tanaka, N.; Shimomura, K.; Yoshimatsu, K.; Homes, J.; Vanhaelen, M. Tannin production in hairy root cultures of Lawsonia inermis. J. Plant Physiol. 1997, 151, 505–508. [Google Scholar] [CrossRef]
- Kantar, F.; Pilbeam, C.J.; Hebblethwaite, P.D. Effect of tannin content of faba bean (Vicia faba) seed on seed vigour, germination and field emergence. Ann. Appl. Biol. 1996, 128, 85–93. [Google Scholar] [CrossRef]
- Park, M.; Cho, H.; Jung, H.; Lee, H.; Hwang, K.T. Antioxidant and anti-inflammatory activities of tannin fraction of the extract from black raspberry seeds compared to grape seeds. J. Food Biochem. 2014, 38, 259–270. [Google Scholar] [CrossRef]
- Zhang, S.J.; Lin, Y.M.; Zhou, H.C.; Wei, S.D.; Lin, G.H.; Ye, G.F. Antioxidant tannins from stem bark and fine root of Casuarina equisetifolia. Molecules 2010, 15, 5658–5670. [Google Scholar] [CrossRef]
- Wei, S.D.; Zhou, H.C.; Lin, Y.M.; Liao, M.M.; Chai, W.M. MALDI-TOF MS analysis of condensed tannins with potent antioxidant activity from the leaf, stem bark and root bark of Acacia confusa. Molecules 2010, 15, 4369–4381. [Google Scholar] [CrossRef]
- Giovando, S.; Koch, G.; Romagnoli, M.; Paul, D.; Vinciguerra, V.; Tamantini, S.; Marini, F.; Zikeli, F.; Mugnozza, G.S. Spectro-topochemical investigation of the location of polyphenolic extractives (tannins) in chestnut wood structure and ultrastructure. Ind. Crops Prod. 2019, 141, 111767. [Google Scholar] [CrossRef]
- Pasch, H.; Pizzi, A. Considerations on the macromolecular structure of chestnut ellagitannins by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. J. Appl. Polym. Sci. 2002, 85, 429–437. [Google Scholar] [CrossRef]
- Singh, N.B.; De, A.; Shukla, S.K.; Guin, M. Bioplastic from renewable biomass. In Handbook of Bioplastics and Biocomposites Engineering Applications; Scrivener Publishing LLC: Beverly, MA, USA, 2023; pp. 49–79. [Google Scholar]
- Tang, G.Y.; Zhao, C.N.; Liu, Q.; Feng, X.L.; Xu, X.Y.; Cao, S.Y.; Meng, X.; Li, S.; Gan, R.-Y.; Li, H.B. Potential of grape wastes as a natural source of bioactive compounds. Molecules 2018, 23, 2598. [Google Scholar] [CrossRef]
- Jiang, Y.; Subbiah, V.; Wu, H.; Bk, A.; Sharifi-Rad, J.; Suleria, H.A. Phenolic profiling of berries waste and determination of their antioxidant potential. J. Food Qual. 2022, 2022, 5605739. [Google Scholar] [CrossRef]
- Karamać, M. In-vitro study on the efficacy of tannin fractions of edible nuts as antioxidants. Eur. J. Lipid Sci. Technol. 2009, 111, 1063–1071. [Google Scholar] [CrossRef]
- Muccilli, V.; Maccarronello, A.E.; Rasoanandrasana, C.; Cardullo, N.; de Luna, M.S.; Pittala, M.G.; Riccobene, P.M.; Carroccio, S.C.; Scamporrino, A.A. Green3: A green extraction of green additives for green plastics. Heliyon 2024, 10, e24469. [Google Scholar] [CrossRef]
- Koopmann, A.K.; Schuster, C.; Torres-Rodríguez, J.; Kain, S.; Pertl-Obermeyer, H.; Petutschnigg, A.; Hüsing, N. Tannin-based hybrid materials and their applications: A review. Molecules 2020, 25, 4910. [Google Scholar] [CrossRef] [PubMed]
- Carn, F.; Guyot, S.; Baron, A.; Pérez, J.; Buhler, E.; Zanchi, D. Structural properties of colloidal complexes between condensed tannins and polysaccharide hyaluronan. Biomacromolecules 2012, 13, 751–759. [Google Scholar] [CrossRef]
- Merino, D.; Quilez-Molina, A.I.; Perotto, G.; Bassani, A.; Spigno, G.; Athanassiou, A. A second life for fruit and vegetable waste: A review on bioplastic films and coatings for potential food protection applications. Green Chem. 2022, 24, 4703–4727. [Google Scholar] [CrossRef]
- Santulli, C. Extraction of flavonoids from agrowaste. In Extraction of Natural Products from Agro-Industrial Wastes, A Green and Sustainable Approach; Bhawani, S.A., Khan, A., Ahmad, F.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Chapter 7; pp. 111–130. ISBN 978–0-12–823349–8. [Google Scholar]
- Kaczmarek, B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials—A minireview. Materials 2020, 13, 3224. [Google Scholar] [CrossRef]
- Son, H.Y.; Koo, B.I.; Lee, J.B.; Kim, K.R.; Kim, W.; Jang, J.; Yoon, M.S.; Cho, J.-W.; Nam, Y.S. Tannin–titanium oxide multilayer as a photochemically suppressed ultraviolet filter. ACS Appl. Mater. Interfaces 2018, 10, 27344–27354. [Google Scholar] [CrossRef]
- Missio, A.L.; Gatto, D.A.; Tondi, G. Exploring tannin extracts: Introduction to new bio-based materials. Braz. J. Wood Sci. 2019, 10, 88–102. [Google Scholar] [CrossRef]
- Downey, M.O.; Hanlin, R.L. Comparison of ethanol and acetone mixtures for extraction of condensed tannin from grape skin. S. Afr. J. Enol. Vitic. 2010, 31, 154–159. [Google Scholar] [CrossRef]
- Kovač, M.J.; Jokić, S.; Jerković, I.; Molnar, M. Optimization of deep eutectic solvent extraction of phenolic acids and tannins from Alchemilla vulgaris L. Plants 2022, 11, 474. [Google Scholar] [CrossRef]
- Murga, R.; Ruiz, R.; Beltran, S.; Cabezas, J.L. Extraction of natural complex phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide and alcohol. J. Agric. Food Chem. 2000, 48, 3408–3412. [Google Scholar] [CrossRef] [PubMed]
- Lianfu, Z.; Zelong, L. Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason. Sonochem. 2008, 15, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Tomak, E.D.; Gonultas, O. The wood preservative potentials of valonia, chestnut, tara and sulphited oak tannins. J. Wood Chem. Technol. 2018, 38, 183–197. [Google Scholar] [CrossRef]
- García, D.E.; Glasser, W.G.; Pizzi, A.; Paczkowski, S.P.; Laborie, M.P. Modification of condensed tannins: From polyphenol chemistry to materials engineering. New J. Chem. 2016, 40, 36–49. [Google Scholar] [CrossRef]
- Grigsby, W.J.; Bridson, J.H.; Lomas, C.; Elliot, J.A. Esterification of condensed tannins and their impact on the properties of poly (lactic acid). Polymers 2013, 5, 344–360. [Google Scholar] [CrossRef]
- Grigsby, W.J.; Bridson, J.H.; Schrade, C. Modifying biodegradable plastics with additives based on condensed tannin esters. J. Appl. Polym. Sci. 2015, 132, 41626. [Google Scholar] [CrossRef]
- Martinez, G.A.; Rebecchi, S.; Decorti, D.; Domingos, J.M.; Natolino, A.; Del Rio, D.; Bertin, L.; Da Porto, C.; Fava, F. Towards multi-purpose biorefinery platforms for the valorisation of red grape pomace: Production of polyphenols, volatile fatty acids, polyhydroxyalkanoates and biogas. Green Chem. 2016, 18, 261–270. [Google Scholar] [CrossRef]
- Nanni, A.; Parisi, M.; Colonna, M. Wine by-products as raw materials for the production of biopolymers and of natural reinforcing fillers: A critical review. Polymers 2021, 13, 381. [Google Scholar] [CrossRef]
- Nanni, A.; Cancelli, U.; Montevecchi, G.; Masino, F.; Messori, M.; Antonelli, A. Functionalization and use of grape stalks as poly (butylene succinate)(PBS) reinforcing fillers. Waste Manag. 2021, 126, 538–548. [Google Scholar] [CrossRef]
- Jin, A.; Del Valle, L.J.; Puiggalí, J. Copolymers and Blends Based on 3-Hydroxybutyrate and 3-Hydroxyvalerate Units. Int. J. Mol. Sci. 2023, 24, 17250. [Google Scholar] [CrossRef]
- Angelini, S.; Cerruti, P.; Immirzi, B.; Poskovic, M.; Santagata, G.; Scarinzi, G.; Malinconico, M. From microbial biopolymers to bioplastics: Sustainable additives for PHB processing and stabilization. In Microbial Factories: Biodiversity, Biopolymers, Bioactive Molecules: Volume 2; Kalia, V.C., Ed.; Springer: New Delhi, India, 2015; pp. 139–160. [Google Scholar]
- Ferri, M.; Papchenko, K.; Degli Esposti, M.; Tondi, G.; De Angelis, M.G.; Morselli, D.; Fabbri, P. Fully biobased polyhydroxyalkanoate/tannin films as multifunctional materials for smart food packaging applications. ACS Appl. Mater. Interface 2023, 15, 28594–28605. [Google Scholar] [CrossRef] [PubMed]
- Ismayati, M.; Hastuti, N.; Fatriasari, W.; Lubis, M.A.R.; Suryanegara, L.; Sari, F.P.; Burhani, D.; Amalia, B.; Agrippina, F.D.; Hidayati, S.; et al. Optimization of tannin isolation from bark of Acacia mangium and application in PLA-tannin based biofilm with antioxidant properties. In AIP Conference Proceedings; AIP Publishing: New York, NY, USA, 2024; Volume 2973. [Google Scholar]
- Ismayati, M.; Fatah, N.A.N.; Ernawati, E.E.; Juliandri; Kusumaningrum, W. B.; Lubis, M.A.R.; Fatriasari, W.; Solihat, N.N.; Sari, F.P.; Halim, A.; et al. Antioxidant and UV-blocking activity of PVA/tannin-based bioplastics in food packaging application. Int. J. Biol. Macromol. 2024, 257, 128332. [Google Scholar] [CrossRef] [PubMed]
- Gaugler, M.; Grigsby, W.; Harper, D.; Rials, T. Chemical imaging of the spatial distribution and interactions of tannin dispersal in bioplastic systems. Adv. Mater. Res. 2007, 29, 173–176. [Google Scholar] [CrossRef]
- Özacar, M.; Şengil, İ.A. Evaluation of tannin biopolymer as a coagulant aid for coagulation of colloidal particles. Coll. Surf. A 2003, 229, 85–96. [Google Scholar] [CrossRef]
- Turunen, J.; Karppinen, A.; Ihme, R. Effectiveness of biopolymer coagulants in agricultural wastewater treatment at two contrasting levels of pollution. SN Appl. Sci. 2019, 1, 210. [Google Scholar] [CrossRef]
- Pizzi, A. Tannin-based adhesives. J. Macromol. Sci. Rev. Macromol. Chem. Phys. 1980, 18, 247–315. [Google Scholar] [CrossRef]
- Pizzi, A.; Scharfetter, H.O. The chemistry and development of tannin-based adhesives for exterior plywood. J. Appl. Polym. Sci. 1978, 22, 1745–1761. [Google Scholar] [CrossRef]
- Moubarik, A.; Pizzi, A.; Allal, A.; Charrier, F.; Khoukh, A.; Charrier, B. Cornstarch–mimosa tannin–urea formaldehyde resins as adhesives in the particleboard production. Starch-Stärke 2010, 62, 131–138. [Google Scholar] [CrossRef]
- Moubarik, A.; Causse, N.; Poumadere, T.; Allal, A.; Pizzi, A.; Charrier, F.; Charrier, B. Shear refinement of formaldehyde-free corn starch and mimosa tannin (Acacia mearnsii) wood adhesives. J. Adhes. Sci. Technol. 2011, 25, 1701–1713. [Google Scholar] [CrossRef]
- Lopes, P.J.G.; Calegari, L.; de Medeiros Silva, W.A.; Gatto, D.A.; de Medeiros Neto, P.N.; De Melo, R.R.; Bakke, I.A.; Delucis, R.d.A.; Missio, A.L. Tannin-based extracts of Mimosa tenuiflora bark: Features and prospecting as wood adhesives. Appl. Adhes. Sci. 2021, 9, 3. [Google Scholar] [CrossRef]
- Dhawale, P.V.; Vineeth, S.K.; Gadhave, R.V.; Jabeen Fatima, M.J.; Supekar, M.V.; Thakur, V.K.; Raghavan, P. Tannin as a renewable raw material for adhesive applications: A review. Mater. Adv. 2022, 3, 3365–3388. [Google Scholar] [CrossRef]
- Ghahri, S.; Mohebby, B.; Pizzi, A.; Mirshokraie, A.; Mansouri, H.R. Improving water resistance of soy-based adhesive by vegetable tannin. J. Polym. Environ. 2018, 26, 1881–1890. [Google Scholar] [CrossRef]
- Sultan, M.; Nassar, M.; Abdel Hakim, A.A.; Refaat, Y. Eco-friendly lignocellulosic particleboards bonded with free-formaldehyde itaconic polyamidoamine epichlorohydrin/soy protein adhesive. Egypt. J. Chem. 2020, 63, 961–972. [Google Scholar] [CrossRef]
- Wang, J.; Scheibel, T. Recombinant production of mussel byssus inspired proteins. Biotechnol. J. 2018, 13, 1800146. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, K.; Wu, Q.; Zhang, X.; Qian, C.; Fan, D. Mussel byssus cuticle-inspired low-carbon footprint soybean meal adhesives with high-strength and anti-mildew performance. Ind. Crops Prod. 2024, 222, 119433. [Google Scholar] [CrossRef]
- Gwak, M.A.; Choi, Y.H.; Kim, M.H.; Park, W.H. Mussel byssus-inspired gallol-enriched chitosan hydrogel fibers with strong adhesive properties. Eur. Polym. J. 2024, 204, 112673. [Google Scholar] [CrossRef]
- Argenziano, R.; Viggiano, S.; Esposito, R.; Schibeci, M.; Gaglione, R.; Castaldo, R.; Fusaro, L.; Boccafoschi, F.; Arciello, A.; Della Greca, M.; et al. All natural mussel-inspired bioadhesives from soy proteins and plant derived polyphenols with marked water-resistance and favourable antibacterial profile for wound treatment applications. J. Colloid Interface Sci. 2023, 652, 1308–1324. [Google Scholar] [CrossRef]
- Rivero, S.; Garcia, M.A.; Pinotti, A. Crosslinking capacity of tannic acid in plasticized chitosan films. Carbohydr. Polym. 2010, 82, 270–276. [Google Scholar] [CrossRef]
- Yang, Q.; Tang, L.; Guo, C.; Deng, F.; Wu, H.; Chen, L.; Huang, L.; Lu, P.; Ding, C.; Ni, Y.; et al. A bioinspired gallol-functionalized collagen as wet-tissue adhesive for biomedical applications. Chem. Eng. J. 2021, 417, 127962. [Google Scholar] [CrossRef]
- Mewoli, A.E.; Segovia, C.; Njom, A.E.; Ebanda, F.B.; Biwôlé, J.J.E.; Xinyi, C.; Ateba, A.; Girods, P.; Pizzi, A.; Brosse, N. Characterization of tannin extracted from Aningeria altissima bark and formulation of bioresins for the manufacture of Triumfetta cordifolia needle-punched nonwovens fiberboards: Novel green composite panels for sustainability. Ind. Crops Prod. 2023, 206, 117734. [Google Scholar] [CrossRef]
- Efhamisisi, D.; Thevenon, M.F.; Hamzeh, Y.; Karimi, A.N.; Pizzi, A.; Pourtahmasi, K. Induced tannin adhesive by boric acid addition and its effect on bonding quality and biological performance of poplar plywood. ACS Sustain. Chem. Eng. 2016, 4, 2734–2740. [Google Scholar] [CrossRef]
- Clementi, C.; Dominici, F.; Luzi, F.; Puglia, D.; Latterini, L. Historically Inspired Strategy to Achieve Sustainable and Effective Coloration of Bioplastics. ACS Sustain. Chem. Eng. 2023, 11, 9643–9653. [Google Scholar] [CrossRef]
- Micó-Vicent, B.; Ramos, M.; Viqueira, V.; Luzi, F.; Dominici, F.; Terenzi, A.; Maron, E.; Hamzaoui, M.; Kohnen, S.; Torre, L.; et al. Anthocyanin hybrid nanopigments from pomegranate waste: Colour, thermomechanical stability and environmental impact of polyester-based bionanocomposites. Polymers 2021, 13, 1966. [Google Scholar] [CrossRef] [PubMed]
- Cunha, R.V.; Morais, A.I.; Trigueiro, P.; de Souza, J.S.N.; Damacena, D.H.; Brandão-Lima, L.C.; Bezerra, R.D.S.; Fonseca, M.G.; Silva-Filho, E.C.; Osajima, J.A. Organic–inorganic hybrid pigments based on bentonite: Strategies to stabilize the quinoidal base form of anthocyanin. Int. J. Mol. Sci. 2023, 24, 2417. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Li, C.; Qin, Y.; Xiao, L.; Liu, J. Comparison of the structural, physical and functional properties of κ-carrageenan films incorporated with pomegranate flesh and peel extracts. Int. J. Biol. Macromol. 2020, 147, 1076–1088. [Google Scholar] [CrossRef]
- Alizadeh-Sani, M.; Mohammadian, E.; Rhim, J.W.; Jafari, S.M. pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends Food Sci. Technol. 2020, 105, 93–144. [Google Scholar] [CrossRef]
- Ma, Q.; Liang, T.; Cao, L.; Wang, L. Intelligent poly (vinyl alcohol)-chitosan nanoparticles-mulberry extracts films capable of monitoring pH variations. Int. J. Biol. Macromol. 2018, 108, 576–584. [Google Scholar] [CrossRef]
- Jiang, G.; Hou, X.; Zeng, X.; Zhang, C.; Wu, H.; Shen, G.; Li, S.; Luo, Q.; Li, M.; Liu, X.; et al. Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. Int. J. Biol. Macromol. 2020, 143, 359–372. [Google Scholar] [CrossRef]
- Hernandez, C.; Cadenillas, L.; Maghubi, A.E.; Caceres, I.; Durrieu, V.; Mathieu, C.; Bailly, J.D. Mimosa tenuiflora aqueous extract: Role of condensed tannins in anti-aflatoxin B1 activity in Aspergillus flavus. Toxins 2021, 13, 391. [Google Scholar] [CrossRef]
- Venter, P.B.; Senekal, N.D.; Amra-Jordaan, M.; Bonnet, S.L.; Van der Westhuizen, J.H. Analysis of commercial proanthocyanidins. Part 2: An electrospray mass spectrometry investigation into the chemical composition of sulfited quebracho (Schinopsis lorentzii and Schinopsis balansae) heartwood extract. Phytochemistry 2012, 78, 156–169. [Google Scholar] [CrossRef]
- Konai, N.; Pizzi, A.; Danwe, R.; Lucien, M.A.; Lionel, K.T. Thermomechanical analysis of African tannins resins and biocomposite characterization. J. Adhes. Sci. Technol. 2021, 35, 1492–1499. [Google Scholar] [CrossRef]
- Stepczyńska, M.; Rytlewski, P.; Moraczewski, K.; Pawłowska, A.; Karasiewicz, T. Novel Biocomposite of Starch and Flax Fiber Modified with Tannic Acid with Biocidal Properties. Polymers 2024, 16, 1108. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, V., Jr.; Ramires, E.C.; Razera, I.A.T.; Frollini, E. Biobased composites from tannin–phenolic polymers reinforced with coir fibers. Ind. Crops Prod. 2010, 32, 305–312. [Google Scholar] [CrossRef]
- Ramires, E.C.; Frollini, E. Tannin–phenolic resins: Synthesis, characterization, and application as matrix in biobased composites reinforced with sisal fibers. Compos. Part B Eng. 2012, 43, 2851–2860. [Google Scholar] [CrossRef]
- Segovia, C.; Sauget, A.; Besserer, A.; Kueny, R.; Pizzi, A. Evaluating mold growth in tannin-resin and flax fiber biocomposites. Ind. Crops Prod. 2016, 83, 438–443. [Google Scholar] [CrossRef]
- Moreira, A.A.; de Carvalho, F.A.; Bilck, A.P.; de Paula, M.T.; Mali, S.; Yamashita, F.; de Oliveira, A.L.M. Tannin improves the processability and delays the biodegradability of poly (lactic acid)-starch-based thermoset materials produced by injection molding made with renewable compounds. J. Appl. Polym. Sci. 2023, 140, e53815. [Google Scholar] [CrossRef]
- Zhou, X.; Du, G. Applications of tannin resin adhesives in the wood industry. In Tannins-Structural Properties, Biological Properties and Current Knowledge; Intechopen: Rijeka, Croatia, 2020; pp. 97–103. [Google Scholar]
- Pizzi, A. Tannin-based biofoams-A review. J. Renew. Mater. 2019, 7, 474–489. [Google Scholar] [CrossRef]
- Pizzi, A.; Khan, A. Furanic Rigid Foams, Furanic-Based Bioplastics and Furanic-Derived Wood Adhesives and Bioadhesives. In Furan Derivatives-Recent Advances and Applications; Khan, A., Rahman, M.M., Ramesh, M., Khan, S.A., Asiri, A.M.A., Eds.; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar]
- Natali, M.; Rallini, M.; Torre, L.; Puglia, D. High temperature composites from renewable resources: A perspective on current technological challenges for the manufacturing of non-oil based high char yield matrices and carbon fibers. Front. Mater. 2022, 9, 805131. [Google Scholar] [CrossRef]
- Chen, X.; Guigo, N.; Pizzi, A.; Sbirrazzuoli, N.; Li, B.; Fredon, E.; Gerardin, C. Ambient temperature self-blowing tannin-humins biofoams. Polymers 2020, 12, 2732. [Google Scholar] [CrossRef]
- de Jong, E.; Mascal, M.; Constant, S.; Claessen, T.; Tosi, P.; Mija, A. The origin, composition, and applications of industrial humins–a review. Green Chem 2025, 27, 3136–3166. [Google Scholar] [CrossRef]
- Zavarzina, A.G.; Danchenko, N.N.; Demin, V.V.; Artemyeva, Z.S.; Kogut, B.M. Humic substances: Hypotheses and reality (a review). Eurasian Soil Sci 2021, 54, 1826–1854. [Google Scholar] [CrossRef]
- Hayes, M.H.; Mylotte, R.; Swift, R.S. Humin: Its composition and importance in soil organic matter. Adv. Agron. 2017, 143, 47–138. [Google Scholar]
- Liu, S.; Zhu, Y.; Liao, Y.; Wang, H.; Liu, Q.; Ma, L.; Wang, C. Advances in understanding the humins: Formation, prevention and application. Appl. Energy Combust. Sci. 2022, 10, 100062. [Google Scholar] [CrossRef]
- Mija, A.; van Der Waal, J.C.; Pin, J.M.; Guigo, N.; de Jong, E. Humins as promising material for producing sustainable polysaccharide-derived building materials. Acad. J. Civ. Eng. 2015, 33, 116–121. [Google Scholar]
- Sangregorio, A.; Guigo, N.; van der Waal, J.C.; Sbirrazzuoli, N. All ‘green’composites comprising flax fibres and humins’ resins. Compos. Sci. Technol. 2019, 171, 70–77. [Google Scholar] [CrossRef]
- Chen, X.; Pizzi, A.; Essawy, H.; Fredon, E.; Gerardin, C.; Guigo, N.; Sbirrazzuoli, N. Non-Furanic Humins-Based Non-Isocyanate Polyurethane (NIPU) Thermoset Wood Adhesives. Polymers 2021, 13, 372. [Google Scholar] [CrossRef]
- Li, K.; Geng, X.; Simonsen, J.; Karchesy, J. Novel wood adhesives from condensed tannins and polyethylenimine. Int. J. Adhes. Adhes. 2004, 24, 327–333. [Google Scholar] [CrossRef]
- Oktay, S.; Pizzi, A.; Köken, N.; Bengü, B. Tannin-based wood panel adhesives. Int. J. Adhes. Adhes. 2024, 130, 103621. [Google Scholar] [CrossRef]
- Calvez, I.; Garcia, R.; Koubaa, A.; Landry, V.; Cloutier, A. Recent Advances in Bio-Based Adhesives and Formaldehyde-Free Technologies for Wood-Based Panel Manufacturing. Curr. For. Rep. 2024, 10, 386–400. [Google Scholar] [CrossRef]
- Santulli, C. Beyond buttons: Repurposing of casein-based materials in education and industry—A review. Acad. Mater. Sci. 2024, 1, 3. [Google Scholar] [CrossRef]
- Dunky, M. Applications and Industrial Implementations of Naturally-Based Adhesives. In Biobased Adhesives: Sources, Characteristics and Applications; Scrivener Publishing LL: Beverly, MA, USA, 2023; pp. 659–704. [Google Scholar]
- Zhou, Y.; Li, C.; Xu, D.; Wang, Z.; Chen, Z.; Lei, H.; Du, G. A tannin–oxidized glucose wood adhesive with high performance. Ind. Crops Prod. 2024, 222, 119603. [Google Scholar] [CrossRef]
- Borah, N.; Karak, N. Tannic acid based bio-based epoxy thermosets: Evaluation of thermal, mechanical, and biodegradable behaviors. J. Appl. Polym. Sci. 2022, 139, 51792. [Google Scholar] [CrossRef]
- Aristri, M.A.; Lubis, M.A.R.; Iswanto, A.H.; Fatriasari, W.; Sari, R.K.; Antov, P.; Gajtanska, M.; Papadopoulos, A.N.; Pizzi, A. Bio-based polyurethane resins derived from tannin: Source, synthesis, characterisation, and application. Forests 2021, 12, 1516. [Google Scholar] [CrossRef]
- Aristri, M.A.; Lubis, M.A.R.; Laksana, R.P.B.; Sari, R.K.; Iswanto, A.H.; Kristak, L.; Antov, P.; Pizzi, A. Thermal and mechanical performance of ramie fibers modified with polyurethane resins derived from acacia mangium bark tannin. J. Mater. Res. Technol. 2022, 18, 2413–2427. [Google Scholar] [CrossRef]
- Liu, F.; Wang, S.; Chen, S. Adsorption behavior of Au (III) and Pd (II) on persimmon tannin functionalized viscose fiber and the mechanism. Int. J. Biol. Macromol. 2020, 152, 1242–1251. [Google Scholar] [CrossRef]
- Nicollin, A.; Kueny, R.; Toniazzo, L.; Pizzi, A. High density biocomposite from natural fibers and tannin resin. J. Adhes. Sci. Technol. 2012, 26, 1537–1545. [Google Scholar] [CrossRef]
- Wedaïna, A.G.; Pizzi, A.; Nzie, W.; Danwe, R.; Konai, N.; Amirou, S.; Segovia, C.; Kueny, R. Performance of unidirectional biocomposite developed with Piptadeniastrum Africanum tannin resin and Urena Lobata fibers as reinforcement. J. Renew. Mater. 2021, 9, 477–493. [Google Scholar]
- Taoga, M.M.; Ebanda, F.B.; Pizzi, A.; Ndiwe, B.; Noah, P.M.A.; Essome Mbang, J.P.; Kimbi, K.K.; Akwo, E.T.; Segovia, C. Influence of the Sampling Area on the Chemical, Physical, and Mechanical Properties of Grewia bicolor (GB) Fiber for Potential Use in the Reinforcement of Tannin Matrix Composites. J. Nat. Fib. 2024, 21, 2346121. [Google Scholar] [CrossRef]
- Guo, J.; Sun, W.; Kim, J.P.; Lu, X.; Li, Q.; Lin, M.; Mrowczynski, O.; Rizk, E.B.; Cheng, J.; Qian, G.; et al. Development of tannin-inspired antimicrobial bioadhesives. Acta Biomater. 2018, 72, 35–44. [Google Scholar] [CrossRef]
- Tabassum, Z.; Girdhar, M.; Anand, A.; Kumari, N.; Sood, B.; Malik, T.; Kumar, A.; Mohan, A. Trash to treasure: Advancing resource efficiency using waste-derived fillers as sustainable reinforcing agents in bioplastics. Mater. Adv. 2025, 6, 527–546. [Google Scholar] [CrossRef]
- Akash, P. Bioplastics from Waste Biomass: Paving the Way for a Sustainable Future. Int. J. Res. Appl. Sci. Eng. Technol. 2024, 12, 10–22214. [Google Scholar] [CrossRef]
- de Hoyos-Martínez, P.L.; Merle, J.; Labidi, J.; Charrier–El Bouhtoury, F. Tannins extraction: A key point for their valorization and cleaner production. J. Clean. Prod. 2019, 206, 1138–1155. [Google Scholar] [CrossRef]
- Naima, R.; Oumam, M.; Hannache, H.; Sesbou, A.; Charrier, B.; Pizzi, A.; Charrier–El Bouhtoury, F. Comparison of the impact of different extraction methods on polyphenols yields and tannins extracted from Moroccan Acacia mollissima barks. Ind. Crops Prod. 2015, 70, 245–252. [Google Scholar] [CrossRef]
- Pizzi, A.; Laborie, M.P.; Candan, Z. A Review on Sources, Extractions and Analysis Methods of a Sustainable Biomaterial: Tannins. J. Renew. Mater. 2024, 12, 397–425. [Google Scholar] [CrossRef]
- Konai, N.; Pizzi, A.; Raidandi, D.; Lagel, M.C.; L’Hostis, C.; Saidou, C.; Hamido, A.; Abdalla, S.; Bahabri, F.; Ganash, A. Aningre (Aningeria spp.) tannin extract characterization and performance as an adhesive resin. Ind. Crops Prod. 2015, 77, 225–231. [Google Scholar] [CrossRef]
- Romero, R.; Gonzalez, T.; Urbano, B.F.; Segura, C.; Pellis, A.; Vera, M. Exploring tannin structures to enhance enzymatic polymerization. Front. Chem. 2025, 13, 1555202. [Google Scholar] [CrossRef]
- Silva, S.B.; Freitas, O.M.; Vieira, E.F.; Delerue-Matos, C.; Domingues, V.F. A comprehensive review on valorization of chestnut processing wastes into bio-based composites and bioplastics. Polym. Compos. 2025; ahead of print. [Google Scholar] [CrossRef]
- Mhlabeni, T.L.; Chemere, E.B.; Jamiru, T.; Mhike, W. Flame retardancy of biopolymers enhanced by bio-based flame retardants: A review. J. Fire Sci. 2025, 43, 79–114. [Google Scholar] [CrossRef]
Part of the Plant | Botanical Species | Properties | Ref. |
---|---|---|---|
Bark | Mimosa (Acacia mearnsii) | Inhibition of the growth of intestinal bacteria | [23] |
Spruce (Picea abies) | Extraction of a mixture of tannins and sugars | [24] | |
Siberian conifers | Residue tan as a source of raw cellulosic product | [25] | |
Buds | Persimmon | Variable level of astringency, which may have mechanical and antibacterial significance | [26] |
Grapevine | Phenolic content increases during annual growth cycle | [27] | |
Leaves | Oak | Seasonality: condensed tannins appear in late May, while hydrolysable tannins are present throughout the season. | [28] |
Mangrove | Immediate lability of tannins from the leaves | [29] | |
Cassava (Manihot esculenta) | Need for detoxification through alkaline extraction | [30] | |
Guava (Psydium guayava) | Wide antibacterial action against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillum niger, and Candida albicans | [31] | |
Roots | Rosaceae | Antibacterial action of the roots of five species of Rosaceae | [32] |
Lawsonia inermis | Possible synthesis of galloylglucoses | [33] | |
Seeds | Faba (Vicia faba) | Seed with less tannins are softer, take more water, and leach more solutes | [34] |
Raspberry and grape | Anti-inflammatory and antioxidant activity of raspberry tannins much higher than that of grape ones | [35] | |
Stems | Casuarina equisetifolia | Antioxidant tannins from both stem’s bark and fine roots | [36] |
Acacia Confusa | Condensed tannins with different polymer chain length (3–11 molecules for leaf and root bark; a maximum of 12 molecules for stem bark) | [37] | |
Wood | Castanea spp. | Complete extraction of tannins from the surface surrounding the cell’s lumen, yet they remain partially unextracted from the cell corners and intercellular voids | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santulli, C.; Gabrielli, S.; Roselli, G. Use and Roles of Tannins in Polysaccharide-Based Bioplastics and Biocomposites. Organics 2025, 6, 19. https://doi.org/10.3390/org6020019
Santulli C, Gabrielli S, Roselli G. Use and Roles of Tannins in Polysaccharide-Based Bioplastics and Biocomposites. Organics. 2025; 6(2):19. https://doi.org/10.3390/org6020019
Chicago/Turabian StyleSantulli, Carlo, Serena Gabrielli, and Graziella Roselli. 2025. "Use and Roles of Tannins in Polysaccharide-Based Bioplastics and Biocomposites" Organics 6, no. 2: 19. https://doi.org/10.3390/org6020019
APA StyleSantulli, C., Gabrielli, S., & Roselli, G. (2025). Use and Roles of Tannins in Polysaccharide-Based Bioplastics and Biocomposites. Organics, 6(2), 19. https://doi.org/10.3390/org6020019