Open AccessArticle
An Analytical Thermal Model for Coaxial Magnetic Gears Considering Eddy Current Losses
by
Panteleimon Tzouganakis, Vasilios Gakos, Christos Papalexis, Christos Kalligeros, Antonios Tsolakis and Vasilios Spitas
Modelling 2025, 6(4), 114; https://doi.org/10.3390/modelling6040114 (registering DOI) - 25 Sep 2025
Abstract
This work presents an analytical 2D model for estimating eddy current losses in the permanent magnets (PMs) of a coaxial magnetic gear (CMG), with a focus on loss minimization through magnet segmentation. The model is applied under various operating conditions, including different rotational
[...] Read more.
This work presents an analytical 2D model for estimating eddy current losses in the permanent magnets (PMs) of a coaxial magnetic gear (CMG), with a focus on loss minimization through magnet segmentation. The model is applied under various operating conditions, including different rotational speeds, load levels, and segmentation configurations, to derive empirical expressions for eddy current losses in both the inner and outer rotors. A 1D lumped-parameter thermal model is then used to predict the steady-state temperature of the PMs, incorporating empirical correlations for the thermal convection coefficient. Both models are validated against finite element analysis (FEA) simulations. The analytical eddy current loss model exhibits excellent agreement, with a maximum error of 2%, while the thermal model shows good consistency, with a maximum temperature deviation of 5%. The results confirm that eddy current losses increase with rotational speed but can be significantly reduced through magnet segmentation. However, achieving an acceptable thermal performance at high speeds may require a large number of segments, particularly in the outer rotor, which could influence the manufacturing cost and complexity. The proposed models offer a fast and accurate tool for the design and thermal analysis of CMGs, enabling early-stage optimization with minimal computational effort.
Full article