Previous Issue
Volume 8, August
 
 

Smart Cities, Volume 8, Issue 5 (October 2025) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
23 pages, 2028 KB  
Article
A Driving Simulator-Based Assessment of Traffic Calming Measures at High-to-Low Speed Transition Zones
by Ali Pirdavani, Mahdi Sadeqi Bajestani, Maarten Mantels and Thibaut Spooren
Smart Cities 2025, 8(5), 147; https://doi.org/10.3390/smartcities8050147 - 11 Sep 2025
Abstract
Effective speed management at urban entry points is essential for ensuring traffic safety and supporting sustainable mobility in smart cities. This study contributes to urban mobility planning by using a high-fidelity driving simulation to evaluate gateway designs that enhance safety and behavioral compliance [...] Read more.
Effective speed management at urban entry points is essential for ensuring traffic safety and supporting sustainable mobility in smart cities. This study contributes to urban mobility planning by using a high-fidelity driving simulation to evaluate gateway designs that enhance safety and behavioral compliance at built-up entry zones. Seven gateway configurations, comprising physical (i.e., chicanes, road narrowing) and psychological (i.e., transverse markings, avenue planting) speed calming measures, were evaluated against a reference scenario. A total of 54 participants completed a 14 km simulated route under standardized conditions, with vehicle speed, acceleration/deceleration, and lateral position continuously recorded. The strongest effects were observed in designs featuring chicanes, which achieved the largest speed reductions but also induced abrupt deceleration. In contrast, the combination of road narrowing and transverse markings resulted in a smoother and more gradual deceleration, minimizing driver discomfort and lateral instability. Psychological measures alone, such as avenue planting, had a limited impact on speed behavior. These findings highlight the importance of combining physical and psychological traffic calming measures to create effective, perceptually engaging transitions that promote safer and more consistent driver responses. Full article
Show Figures

Figure 1

30 pages, 4219 KB  
Article
Digital Twinning Mechanism and Building Information Modeling for a Smart Parking Management System
by Jerahmeel K. Coching, Robert Kerwin C. Billones, Allysa Kate M. Brillantes, Sharina Yunus, Vicente A. Pitogo and Roman Senkerik
Smart Cities 2025, 8(5), 146; https://doi.org/10.3390/smartcities8050146 - 9 Sep 2025
Viewed by 430
Abstract
Parking space shortages are attributed to an increased density of vehicle presence in the urban context, necessitating the implementation of effective parking management strategies, especially in areas where facility expansion is constrained by limited land availability. Many parking facilities remain operationally inefficient and [...] Read more.
Parking space shortages are attributed to an increased density of vehicle presence in the urban context, necessitating the implementation of effective parking management strategies, especially in areas where facility expansion is constrained by limited land availability. Many parking facilities remain operationally inefficient and underutilized due to manual VP methods and having little access to parking resource utilization data. This study develops a DT-based SPMS integrating machine vision, data modeling, and DT technology to automate facility management operations. The system uses YOLOv7 for vehicle and License Plate Detection (LPD), and Deep Text Recognition–Scene Text Recognition (DTR-STR) for license plate recognition (LPR). The findings indicate an 89.89% accuracy for VP- and LPR-based occupancy tracking tasks, and 94.86% for vehicle detection or VD-based occupancy tracking. The system in the built environment comprises three features: (1) automated VP at parking entry and exit points, (2) occupancy monitoring through LPR, (3) Object Detection (OD) for occupancy tracking. The 3D BIM DT model in Autodesk Revit processes inference data from machine vision models to visualize parking activity. Full article
Show Figures

Graphical abstract

36 pages, 4953 KB  
Article
Can Proxy-Based Geospatial and Machine Learning Approaches Map Sewer Network Exposure to Groundwater Infiltration?
by Nejat Zeydalinejad, Akbar A. Javadi, Mark Jacob, David Baldock and James L. Webber
Smart Cities 2025, 8(5), 145; https://doi.org/10.3390/smartcities8050145 - 5 Sep 2025
Viewed by 1387
Abstract
Sewer systems are essential for sustainable infrastructure management, influencing environmental, social, and economic aspects. However, sewer network capacity is under significant pressure, with many systems overwhelmed by challenges such as climate change, ageing infrastructure, and increasing inflow and infiltration, particularly through groundwater infiltration [...] Read more.
Sewer systems are essential for sustainable infrastructure management, influencing environmental, social, and economic aspects. However, sewer network capacity is under significant pressure, with many systems overwhelmed by challenges such as climate change, ageing infrastructure, and increasing inflow and infiltration, particularly through groundwater infiltration (GWI). Current research in this area has primarily focused on general sewer performance, with limited attention to high-resolution, spatially explicit assessments of sewer exposure to GWI, highlighting a critical knowledge gap. This study responds to this gap by developing a high-resolution GWI assessment. This is achieved by integrating fuzzy-analytical hierarchy process (AHP) with geographic information systems (GISs) and machine learning (ML) to generate GWI probability maps across the Dawlish region, southwest United Kingdom, complemented by sensitivity analysis to identify the key drivers of sewer network vulnerability. To this end, 16 hydrological–hydrogeological thematic layers were incorporated: elevation, slope, topographic wetness index, rock, alluvium, soil, land cover, made ground, fault proximity, fault length, mass movement, river proximity, flood potential, drainage order, groundwater depth (GWD), and precipitation. A GWI probability index, ranging from 0 to 1, was developed for each 1 m × 1 m area per season. The model domain was then classified into high-, intermediate-, and low-GWI-risk zones using K-means clustering. A consistency ratio of 0.02 validated the AHP approach for pairwise comparisons, while locations of storm overflow (SO) discharges and model comparisons verified the final outputs. SOs predominantly coincided with areas of high GWI probability and high-risk zones. Comparison of AHP-weighted GIS output clustered via K-means with direct K-means clustering of AHP-weighted layers yielded a Kappa value of 0.70, with an 81.44% classification match. Sensitivity analysis identified five key factors influencing GWI scores: GWD, river proximity, flood potential, rock, and alluvium. The findings underscore that proxy-based geospatial and machine learning approaches offer an effective and scalable method for mapping sewer network exposure to GWI. By enabling high-resolution risk assessment, the proposed framework contributes a novel proxy and machine-learning-based screening tool for the management of smart cities. This supports predictive maintenance, optimised infrastructure investment, and proactive management of GWI in sewer networks, thereby reducing costs, mitigating environmental impacts, and protecting public health. In this way, the method contributes not only to improved sewer system performance but also to advancing the sustainability and resilience goals of smart cities. Full article
Show Figures

Figure 1

26 pages, 9425 KB  
Article
Detection and Localization of the FDI Attacks in the Presence of DoS Attacks in Smart Grid
by Rajendra Shrestha, Manohar Chamana, Olatunji Adeyanju, Mostafa Mohammadpourfard and Stephen Bayne
Smart Cities 2025, 8(5), 144; https://doi.org/10.3390/smartcities8050144 - 1 Sep 2025
Viewed by 372
Abstract
Smart grids (SGs) are becoming increasingly complex with the integration of communication, protection, and automation technologies. However, this digital transformation has introduced new vulnerabilities, especially false data injection attacks (FDIAs) and Denial of Service (DoS) attacks. FDIAs can subtly corrupt measurement data, misleading [...] Read more.
Smart grids (SGs) are becoming increasingly complex with the integration of communication, protection, and automation technologies. However, this digital transformation has introduced new vulnerabilities, especially false data injection attacks (FDIAs) and Denial of Service (DoS) attacks. FDIAs can subtly corrupt measurement data, misleading operators without triggering traditional bad data detection (BDD) methods in state estimation (SE), while DoS attacks disrupt the availability of sensor data, affecting grid observability. This paper presents a deep learning-based framework for detecting and localizing FDIAs, including under DoS conditions. A hybrid CNN, Transformer, and BiLSTM model captures spatial, global, and temporal correlations to forecast measurements and detect anomalies using a threshold-based approach. For further detection and localization, a Multi-layer Perceptron (MLP) model maps forecast errors to the compromised sensor locations, effectively complementing or replacing BDD methods. Unlike conventional SE, the approach is fully data-driven and does not require knowledge of grid topology. Experimental evaluation on IEEE 14–bus and 118–bus systems demonstrates strong performance for the FDIA condition, including precision of 0.9985, recall of 0.9980, and row-wise accuracy (RACC) of 0.9670 under simultaneous FDIA and DoS conditions. Furthermore, the proposed method outperforms existing machine learning models, showcasing its potential for real-time cybersecurity and situational awareness in modern SGs. Full article
Show Figures

Figure 1

30 pages, 2137 KB  
Review
A SPAR-4-SLR Systematic Review of AI-Based Traffic Congestion Detection: Model Performance Across Diverse Data Types
by Doha Bakir, Khalid Moussaid, Zouhair Chiba, Noreddine Abghour and Amina El omri
Smart Cities 2025, 8(5), 143; https://doi.org/10.3390/smartcities8050143 - 30 Aug 2025
Viewed by 455
Abstract
Traffic congestion remains a major urban challenge, impacting economic productivity, environmental sustainability, and commuter well-being. This systematic review investigates how artificial intelligence (AI) techniques contribute to detecting traffic congestion. Following the SPAR-4-SLR protocol, we analyzed 44 peer-reviewed studies covering three data categories—spatiotemporal, probe, [...] Read more.
Traffic congestion remains a major urban challenge, impacting economic productivity, environmental sustainability, and commuter well-being. This systematic review investigates how artificial intelligence (AI) techniques contribute to detecting traffic congestion. Following the SPAR-4-SLR protocol, we analyzed 44 peer-reviewed studies covering three data categories—spatiotemporal, probe, and hybrid/multimodal—and four AI model types—shallow machine learning (SML), deep learning (DL), probabilistic reasoning (PR), and hybrid approaches. Each model category was evaluated against metrics such as accuracy, the F1-score, computational efficiency, and deployment feasibility. Our findings reveal that SML techniques, particularly decision trees combined with optical flow, are optimal for real-time, low-resource applications. CNN-based DL models excel in handling unstructured and variable environments, while hybrid models offer improved robustness through multimodal data fusion. Although PR methods are less common, they add value when integrated with other paradigms to address uncertainty. This review concludes that no single AI approach is universally the best; rather, model selection should be aligned with the data type, application context, and operational constraints. This study offers actionable guidance for researchers and practitioners aiming to build scalable, context-aware AI systems for intelligent traffic management. Full article
(This article belongs to the Special Issue Cost-Effective Transportation Planning for Smart Cities)
Show Figures

Figure 1

37 pages, 1347 KB  
Systematic Review
Threat Modeling and Attacks on Digital Twins of Vehicles: A Systematic Literature Review
by Uzair Muzamil Shah, Daud Mustafa Minhas, Kashif Kifayat, Khizar Ali Shah and Georg Frey
Smart Cities 2025, 8(5), 142; https://doi.org/10.3390/smartcities8050142 - 28 Aug 2025
Viewed by 395
Abstract
This systematic literature review pioneers the synthesis of cybersecurity challenges for automotive digital twins (DTs), a critical yet underexplored frontier in connected vehicle security. The notion of digital twins, which act as simulated counterparts to real-world systems, is revolutionizing secure system design within [...] Read more.
This systematic literature review pioneers the synthesis of cybersecurity challenges for automotive digital twins (DTs), a critical yet underexplored frontier in connected vehicle security. The notion of digital twins, which act as simulated counterparts to real-world systems, is revolutionizing secure system design within the automotive sector. As contemporary vehicles become more dependent on interconnected electronic systems, the likelihood of cyber threats is escalating. This comprehensive literature review seeks to analyze existing research on threat modeling and security testing in automotive digital twins, aiming to pinpoint emerging patterns, evaluate current approaches, and identify future research avenues. Guided by the PRISMA framework, we rigorously analyze 23 studies from 882 publications to address three research questions: (1) How are threats to automotive DTs identified and assessed? (2) What methodologies drive threat modeling? Lastly, (3) what techniques validate threat models and simulate attacks? The novelty of this study lies in its structured classification of digital twin types (physics based, data driven, hybrid), its inclusion of a groundbreaking threat taxonomy across architectural layers (e.g., ECU tampering, CAN-Bus spoofing), the integration of the 5C taxonomy with layered architectures for DT security testing, and its analysis of domain-specific tools such as VehicleLang and embedded intrusion detection systems. The findings expose significant deficiencies in the strength and validation of threat models, highlighting the necessity for more adaptable and comprehensive testing methods. By exposing gaps in scalability, trust, and safety, and proposing actionable solutions aligned with UNECE R155, this SLR delivers a robust framework to advance secure DT development, empowering researchers and industry to fortify vehicle resilience against evolving cyber threats. Full article
20 pages, 1880 KB  
Article
A Bunch of Gaps: Factors Behind Service Reliability in Chicago’s High-Frequency Transit Network
by Joseph Rodriguez, Haris N. Koutsopoulos and Jinhua Zhao
Smart Cities 2025, 8(5), 141; https://doi.org/10.3390/smartcities8050141 - 28 Aug 2025
Viewed by 1286
Abstract
Frequent transit services in urban areas have the potential to increase their accessibility to transit-dependent riders and reduce congestion by attracting new ridership through a modal shift. However, bus services operating in mixed traffic face operational challenges that reduce reliability and hinder their [...] Read more.
Frequent transit services in urban areas have the potential to increase their accessibility to transit-dependent riders and reduce congestion by attracting new ridership through a modal shift. However, bus services operating in mixed traffic face operational challenges that reduce reliability and hinder their attractiveness. The sources of unreliability can range from local-level conditions, like the road infrastructure, to higher-level decisions, like the service plan. For the effective planning of improvement strategies, both scales of analysis must be considered. This paper uses a novel modeling framework to understand reliability by analyzing the route and segment factors separately. The Chicago Transit Authority (CTA) bus network is used as a case study for the analysis. The data reflect the operational, demand, and urban conditions of 50 high-frequency bus routes. At the route level, we use the coefficient of headway variation as the dependent variable and diverse route characteristics as explanatory variables. The results indicate that the most significant contributors to the variability of headways are variability in schedules and dispatching at terminals. It is also found that driver experience impacts reliability and that east–west routes are more unreliable than north–south routes. At the segment level, we use data from trips involved in bunching and gaps. As the dependent variable, a novel measure is formulated to capture how quickly bunching or gaps are formed. The bunching and gap events are treated as separate regression models. Findings suggest that link and dwell time variability are the most significant contributors to gap and bunching formation. In terms of infrastructure, bus lane segments reduce gap formations, and left turns increase bunching and gap formations. The insights presented can inform improvements in service and transit infrastructure planning to improve transit level of service (LOS) and support the future of sustainable, smart cities. Full article
(This article belongs to the Special Issue Cost-Effective Transportation Planning for Smart Cities)
Show Figures

Figure 1

24 pages, 5949 KB  
Article
Green Smart Museums Driven by AI and Digital Twin: Concepts, System Architecture, and Case Studies
by Ran Bi, Chenchen Song and Yue Zhang
Smart Cities 2025, 8(5), 140; https://doi.org/10.3390/smartcities8050140 - 24 Aug 2025
Viewed by 641
Abstract
In response to the urgent global call for “dual carbon” targets, the sustainable transformation of public museums has become a focal issue in both academic research and engineering practice. This study proposes and empirically validates an integrated management framework that unites digital twin [...] Read more.
In response to the urgent global call for “dual carbon” targets, the sustainable transformation of public museums has become a focal issue in both academic research and engineering practice. This study proposes and empirically validates an integrated management framework that unites digital twin modeling, artificial intelligence, and green energy systems for next-generation green smart museums. A unified, closed-loop platform for data-driven, adaptive management is implemented and statistically validated across distinct deployment scenarios. Empirical evaluation is conducted through the comparative analysis of three representative museum cases in China, each characterized by a distinct integration pathway: (A) advanced digital twin and AI management with moderate green energy adoption; (B) large-scale renewable energy integration with basic AI and digitalization; and (C) the comprehensive integration of all three dimensions. Multi-dimensional data on energy consumption, carbon emissions, equipment reliability, and visitor satisfaction are collected and analyzed using quantitative statistical techniques and performance indicator benchmarking. The results reveal that the holistic “triple synergy” approach in Case C delivers the most balanced and significant gains, achieving up to 36.7% reductions in energy use and 41.5% in carbon emissions, alongside the highest improvements in operational reliability and visitor satisfaction. In contrast, single-focus strategies show domain-specific advantages but also trade-offs—for example, Case B achieved high energy and carbon savings but relatively limited visitor satisfaction gains. These findings highlight that only coordinated, multi-technology integration can optimize performance across both environmental and experiential dimensions. The proposed framework provides both a theoretical foundation and practical roadmap for advancing the digital and green transformation of public cultural buildings, supporting broader carbon neutrality and sustainable development objectives. Full article
(This article belongs to the Special Issue Big Data and AI Services for Sustainable Smart Cities)
Show Figures

Figure 1

Previous Issue
Back to TopTop