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Highlights
What are the main findings?

e  The proposed feature-level VICP framework consistently outperforms state-of-the-art
baselines on the DAIR-V2X-C dataset, achieving higher AP3p and APpry.

o  Experiments show that RFR delivers the largest gain, UWF improves robustness via
adaptive uncertainty weighting, and CDCA enhances feature calibration.

What is the implication of the main finding?

o  Cooperative perception effectively overcomes occlusion and blind-spot limitations of
vehicle-centric systems.

e  The proposed model provides a reference for scalable and generalizable deployment
of cooperative perception within smart city infrastructure.

Abstract

As vehicle-centric perception struggles with occlusion and dense traffic, vehicle-infrastructure
cooperative perception (VICP) offers a viable route to extend sensing coverage and ro-
bustness. This study proposes a feature-level VICP framework that fuses vehicle- and
roadside-derived visual features via V2X communication. The model integrates four com-
ponents: regional feature reconstruction (RFR) for transferring region-specific roadside cues,
context-driven channel attention (CDCA) for channel recalibration, uncertainty-weighted
fusion (UWF) for confidence-guided weighting, and point sampling voxel fusion (PSVF)
for efficient alignment. Evaluated on the DAIR-V2X-C benchmark, our method consistently
outperforms state-of-the-art feature-level fusion baselines, achieving improved AP3p and
APggy (reported settings: 16.31% and 21.49%, respectively). Ablations show RFR provides
the largest single-module gain +3.27% AP3p and +3.85% APpry, UWF yields substantial
robustness gains, and CDCA offers modest calibration benefits. The framework enhances
occlusion handling and cross-view detection while reducing dependence on explicit camera
calibration, supporting more generalizable cooperative perception.

Keywords: vehicle-infrastructure cooperative perception; 3D object detection; smart city
infrastructure; fusion-based perception

1. Introduction

As autonomous driving advances toward higher levels of automation, monocular,
vehicle-centric perception encounters inherent limitations in scenarios characterized by
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occlusions, dense traffic participants, and complex environments. Such limitations often
result in incomplete environmental perception, which is crucial to address because unde-
tected road users or obstacles can compromise the safety and reliability of autonomous
driving systems. Vehicle-infrastructure cooperative perception (VICP) has thus emerged
as a promising paradigm to overcome these challenges. The development of V2I com-
munication provides the prerequisite infrastructure for high-level vehicle-infrastructure
information fusion, enabling the timely and reliable exchange of data between vehicles
and roadside units [1]. By integrating the macroscopic, global information acquired by
roadside infrastructure sensors (e.g., fixed cameras and LiDAR) with the local, dynamic
data provided by onboard sensors, VICP mitigates the blind spots inherent to single-vehicle
systems [2]. This cooperative framework not only enhances the completeness of environ-
mental perception but also fortifies the robustness and integrity of the overall sensing
architecture, establishing VICP as a critical direction for transcending the constraints of
standalone perception.

Fusion methodologies in vehicle-infrastructure collaborative perception are broadly
classified into three categories: early, intermediate, and late fusion [3]. Early fusion operates
at the data level by directly combining raw sensor inputs, such as images and point
clouds, preserving maximal information content but imposing stringent demands on
bandwidth and sensor synchronization [4]. Late fusion, in contrast, performs independent
detection at each sensing endpoint and subsequently merges object-level outputs, which
minimizes computational overhead but limits the exploitation of complementary sensor
details [5,6]. Intermediate fusion occupies the middle ground: local feature extraction is
performed onboard, followed by cross-domain feature alignment and fusion. By balancing
representational richness with communication efficiency [7,8], intermediate fusion has
become the prevailing focus of contemporary research.

However, implementing effective feature-level fusion in VICP faces several critical
challenges, as illustrated in Figure 1. Precise alignment between heterogeneous sensors is
often impeded by spatio-temporal asynchrony and viewpoint mismatch [9]. Meanwhile,
the inherently multi-scale and complementary features from different sources can introduce
semantic noise if fused improperly [10]. In addition, many existing approaches rely on
external priors (e.g., geometric calibration or known camera poses), which compromises
robustness and generalization in real-world deployments where strict sensor synchro-
nization may not hold. Moreover, most static fusion schemes neglect source-dependent
uncertainty, hindering truly reliable and adaptive information integration. Therefore, it
is crucial to address these limitations to achieve a reliable and generalizable cooperative
perception system.
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Figure 1. A visual example of VICP.

Recent advances in visual fusion and attention modeling have provided effective
paradigms for enhancing perception reliability in complex multi-source environments.
Specifically, some research has demonstrated that incorporating spatiotemporal inter-
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actions and adaptive attention can substantially enhance perception robustness under
occlusion and dynamic illumination [11]. Similarly, multi-scale transformer-based fusion
models [12,13] highlight the importance of scale-aware representation and hierarchical
feature refinement, while context-aware recalibration strategies [14] have been shown
to effectively suppress semantic noise in cross-domain or occluded scenarios. Collec-
tively, these studies reveal three key principles: (1) adaptive feature alignment across
heterogeneous domains, (2) context-driven attention to balance multi-scale semantics, and
(3) confidence-aware fusion to mitigate uncertainty in dynamic conditions.

In contrast to prior cooperative perception frameworks, such as V2X-ViT [§],
CoBEVT [15], and EMIFF [16], which primarily rely on multi-view attention or BEV-based
feature alignment, our proposed framework removes dependence on explicit geometric cal-
ibration and fixed fusion heuristics. While V2X-ViT and CoBEVT enhance inter-view inter-
action through cross-attention and transformer structures, they still assume synchronized,
high-quality inputs and lack adaptive mechanisms to handle feature-level uncertainty or
degraded sensor observations. EMIFF improves efficiency through intermediate fusion but
uses static weighting strategies that limit adaptability in dynamic, heterogeneous traffic
conditions. Thus, existing frameworks have yet to fully resolve the issues of misalignment
and uncertainty in cooperative perception, underscoring the necessity for a more adaptive
and robust solution.

To address these limitations, this work integrates deformable attention, contextual
channel adaptation, and uncertainty-driven fusion into a unified cooperative perception
framework, thereby enhancing the robustness, adaptability, and interpretability of vehicle-
infrastructure feature fusion. The main contributions can be summarized as follows:

e A feature-level vehicle-infrastructure perception framework is proposed and experi-
mentally validated, demonstrating superior occlusion handling and adaptability.

e  This study proposes a confidence-map-based regional feature reconstruction (RFR)
that decouples roadside features and uses deformable attention to reconstruct and
augment onboard features, thereby improving onboard representation and cross-
view detection.

e A context-driven channel attention (CDCA) module is proposed to exploit global
image-level context for adaptive, channel-wise recalibration of multi-scale features
on both vehicle and roadside sensors, thereby eliminating reliance on external
calibration parameters.

e  An uncertainty-weighted fusion (UWF) mechanism is designed to estimate voxel-
level uncertainty across heterogeneous feature sources and to allocate fusion weights
dynamically based on confidence, significantly enhancing robustness under noise,
occlusion, and projection errors.

The remainder of this paper is organized as follows. Section 2 reviews recent work on
vision-based 3D object detection, vehicle-infrastructure cooperative perception, channel
recalibration, and uncertainty-driven fusion. Section 3 presents the proposed methodology,
including feature representation and regional feature reconstruction, the context-driven
channel attention module, and the uncertainty-weighted fusion mechanism. Section 4
describes the experimental setup and reports comparative results on public datasets. Finally,
Section 5 concludes the study and discusses directions for future research.

2. Related Work
2.1. Vision-Based 3D Object Detection

Convolutional neural networks (CNNs) have significantly advanced object detection
by learning hierarchical feature representations that generalize across complex scenes.
Traditional 2D detectors, such as R-CNN [17], Faster R-CNN [18], SSD [19], and YOLO [20],
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achieve high accuracy for planar localization but do not recover depth. In applications
such as autonomous driving, accurate 3D localization in a real-world coordinate frame
is essential for safe navigation. Monocular 3D detection addresses this need despite its
inherent ill-posedness due to missing stereo information.

Monocular methods follow two main strategies. Anchor-based approaches regress
object centers and dimensions against predefined 3D priors. For example, M3D RPN
incorporates both 2D and 3D geometric constraints in a region proposal network to predict
volumetric boxes [21]. Keypoint-based techniques estimate 2D projections of critical 3D
points and predict depth offsets. SMOKE [22] predicts the projected center and depth offset
of each 3D box, while CenterLoc3D [23] regresses object centroids and eight corners with
multi-scale feature fusion to improve precision.

To mitigate depth ambiguity, depth augmented pipelines supply auxiliary spatial cues.
D4LCN uses predicted depth maps and dilated convolutions to approximate 3D structure
from 2D images [24]. Pseudo LiDAR converts depth estimates into pseudo point clouds
so that LiDAR detectors can operate on monocular inputs, and later extensions enrich
these clouds with RGB color data or semantic labels [25,26]. Prior-driven methods refine
detection further by introducing shape and ground plane priors. Deep MANTA matches
2D detections with 3D CAD templates to reconstruct object geometry [27]. Mono3D++
jointly optimizes unsupervised monocular depth, ground plane constraints, and vehicle
shape priors to enhance 3D box accuracy [28].

Bird’s eye view (BEV) representations have emerged as an effective solution for monoc-
ular 3D detection. Transformer-based approaches, such as DETR3D, index 2D features with
sparse 3D queries and apply camera transformations for 3D prediction [29]. Depth-based
methods lift image features into BEV by predicting per-pixel depth values [30]. BEVDepth
projects features into voxels and aggregates them into the BEV plane while learning cam-
era parameters as attention weights [31]. Building on these foundations, the recently
studied GraphBEV [32] introduces graph-structured reasoning to capture spatial relation-
ships among projected BEV tokens across views. BEVFusion4D have further advanced
multi-view feature alignment and temporal modeling [33], and BEVFusion4D extends BEV
representation to the temporal domain for 4D scene understanding, these methods have
further advanced multi-view feature alignment and temporal modeling. Collectively, these
methods demonstrate that BEV transformation provides a robust intermediate space for
multi-view stitching and long-range perception, which conceptually supports the voxel-
based alignment strategy adopted in this study. Calibration-free methods, such as CBR,
separate perspective features into front view and BEV representations with multi-layer
perceptrons and enhance BEV through cross-view matching [34]. Despite these advances,
reliance on depth estimation or calibration priors still limits robustness in heterogeneous
real-world deployments.

2.2. Vehicle-Infrastructure Cooperative Perception

Advances in V2X communications enable vehicles to exchange raw sensor data with
each other or with roadside units (RSUs), improving coverage and redundancy. Early V2V
systems demonstrated that sharing camera or LiDAR streams extends sensing range but
remains vulnerable to communication delays and occlusions [35]. Roadside infrastructure
offers a complementary global context with stable power, wide fields of view, and robust
environmental tolerance, significantly enhancing detection reliability.

Cooperative perception methods may be categorized according to the fusion stage.
Data level fusion aligns and concatenates raw sensor streams from vehicles and infrastruc-
ture into a common reference frame, maximizing information retention but demanding
high bandwidth and strict synchronization [36]. Object-level fusion merges only final detec-
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tion outputs, such as bounding boxes and confidence scores, minimizing communication
overhead but sacrificing complementary low-level features and suffering when individual
detections are unreliable [37]. Feature-level fusion extracts intermediate representations
locally and then aligns and merges them within a unified coordinate system, reducing
transmission while preserving complementary multi-source information, and has become
the prevailing paradigm [3].

Early feature-level fusion relied on simple concatenation or linear weighting. As
feature diversity increased, these static rules proved inadequate. More recent methods
exploit graph convolution and attention. EMIFF introduces camera-aware channel mask-
ing to weight multi-scale features [16]. V2X-ViT alternates heterogeneous multi-agent
self-attention with multi-scale windowed attention to capture inter-agent and intra-agent
interactions [8]. ViT-FuseNet applies cross-attention across point cloud and image modal-
ities for global spatial coupling [38]. Region-based strategies address overlapping and
non-overlapping fields of view, and auxiliary losses, such as mutual information mini-
mization and information gain, have been introduced to supervise fusion [39-41]. These
advances improve performance, but dependence on precise calibration or fixed fusion rules
limits resilience under heterogeneous deployment conditions.

Prior works such as EMIFF and V2X-ViT primarily rely on either enhanced attention
patterns to aggregate features across agents or static calibration priors to drive alignment.
These approaches improve global information flow but can fail when cross-view semantics
conflict, such as roadside-exclusive structures imprinted into fused features, or when
calibration is unreliable.

2.3. Channel Recalibration and Uncertainty Driven Fusion

Channel attention enhances feature discrimination by adaptively weighting channel re-
sponses. SE models global channel importance using squeeze and excitation operations [42];
CBAM adds spatial attention to refine channel modulation [43]. Both are designed for
single-view inputs and do not capture semantic dependencies across multiple viewpoints.
Recent cross-view channel attention methods, such as ICAFusion [44], align inter-view
features but still depend on rigid calibration priors, limiting generalization.

Uncertainty estimation is crucial when fusing multiple source features of varying
reliability. Bayesian deep learning quantifies aleatoric and epistemic uncertainties to inform
model confidence [45]. Voxel-level uncertainty has been used to adjust fusion weights
dynamically in CenterFusion [46] and BEVFusion [47]. Bayesian deep learning captures
both epistemic uncertainty, from model parameters, and aleatoric uncertainty, from data
noise, yielding calibrated confidence estimates. Most fusion approaches, however, use
these confidences only at the final decision stage and ignore them during feature fusion,
preventing uncertainty from guiding intermediate representation learning [48].

Current channel calibration and uncertainty-aware methods remain inadequate for
cooperative perception. Channel attention modules often ignore cross-view context and
depend on fixed geometric priors, while uncertainty estimates are applied only after fusion,
offering no guidance during feature integration. Effective fusion in heterogeneous, partially
calibrated, and dynamic vehicle-infrastructure systems, therefore, requires embedding both
semantic context and uncertainty guidance directly into feature-level processing.

Aligned with recent advances in visual fusion and attention modeling, which show
that multi-scale transformer fusion emphasizes scale-aware representation and hierar-
chical refinement, context-aware recalibration effectively suppresses semantic noise in
cross-domain settings. We aim to propose a calibration-agnostic, context-driven chan-
nel reweighting mechanism for cooperative perception by aggregating global descriptors
from both infrastructure and vehicle streams and learning shared attention coefficients.
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Furthermore, unlike geometry-guided fusion methods that rely on camera intrinsic or
extrinsic calibration to establish spatial correspondence, our method is fully data-driven
and calibration-free, making it inherently robust to spatial misalignment, synchronization
error, and limited calibration diversity.

3. Methods

This work is inspired by the pipelines of EMIFF [12] and other state-of-the-art VICP
studies. It aims to further improve detection accuracy while relaxing the reliance on bur-
densome roadside camera calibration and enhancing scene generalization. Leveraging
V2X communication to fuse vehicle- and infrastructure-side features, the overall frame-
work comprises five main modules: regional feature reconstruction (RFR), which spa-
tially decouples roadside information and directionally augments onboard representations;
context-driven channel attention (CDCA), which exploits global image-level context for
adaptive channel-wise recalibration; uncertainty-weighted fusion (UWF), which estimates
voxel-level uncertainty across heterogeneous feature sources and dynamically allocates
fusion weights by confidence; and point sampling voxel fusion (PSVF), which efficiently
aligns and merges sampled point features with voxel representations. The full architecture
and module details are illustrated in Figure 2.
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Figure 2. Framework of the proposed model.
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To better illustrate the synergy of the proposed framework, we emphasize that the
four modules are designed to operate in a complementary manner rather than as isolated
components. The backbone and FPN establish a unified multi-scale representation that
ensures consistent feature hierarchies across infrastructure and vehicle views. On this
foundation, the RFR module performs spatial alignment and compensates for geometric
discrepancies, providing spatially coherent intermediate features.

Building upon these aligned representations, the CDCA module adaptively recali-
brates channel responses according to the global semantic context extracted from both
streams. This process effectively suppresses redundant or misaligned feature activations
and enhances semantic consistency prior to fusion. The refined contextual features are then
passed to the UWF module, which estimates voxel-level confidence and assigns adaptive
weights to each source. The synergy between CDCA’s semantic calibration and UWF’s un-
certainty weighting allows the framework to jointly reduce fusion noise and mitigate spatial
misalignment, yielding more stable and interpretable representations than the standalone
attention or fusion modules used in prior studies.

3.1. Feature Representation and Regional Feature Reconstruction

Inspired by recent work such as SETR-Net [49], which highlights the effectiveness of
enhancing a single feature representation while leveraging temporal recurrence for robust
context modeling, we design our feature extraction pipeline to favor semantically rich,
context-aware recalibration over purely multi-scale fusion strategies. During multi-scale
feature extraction, vehicle-mounted and roadside images are processed through a shared
ResNet-101 [50] backbone augmented with a Feature Pyramid Network (FPN), yielding
three levels of pyramid features { foenss fin f,s} (s =3, 4, 5). Low-level features empha-
size texture and edge information, facilitating fine-grained object localization, whereas
high-level features capture global semantics, aiding robust detection in complex scenes.
This multi-scale architecture balances representational richness with computational ef-
ficiency and provides diverse resolution cues for subsequent alignment and fusion. To
address spatiotemporal asynchrony between the two streams, deformable convolutions
perform pixel-level geometric correction, effectively mitigating projection shifts induced by
timing offsets.

To deeply integrate heterogeneous perceptions from vehicle-mounted and roadside
sensors while accounting for their spatial distributions, we introduce a region-based fea-
ture reconstruction method grounded in probabilistic confidence maps. First, confidence
maps are generated for both streams to spatially decouple roadside features. Then, a
deformable attention mechanism reconstructs vehicle-side features within these decoupled
regions, substantially enhancing feature representation and adaptability under real-world
deployment conditions.

As shown in Figure 3, considering that some regions in roadside features do not
provide significant gains for improving vehicle-side perception performance, the regional
decoupling module generates a corresponding confidence map P € REXWx1 for the input
vehicle-side or roadside image feature F € RH¥>*W*C through 1 x 1 convolution and
Sigmoid function mapping. Each value in the confidence map reflects the probability
estimate of a target existing at the corresponding position in the scene:

Pveh/inf = U(Conv(Pveh/inf)) (1)

where Fy, and Fj,; denote the vehicle-side and roadside feature maps, and F,; and
Fis correspond to the vehicle-side and roadside probability confidence maps. Conv(-)
represents a 1 x 1 convolutional layer; and o (-) is the Sigmoid activation function.
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Figure 3. Regional decoupling structure.

In object detection tasks, regions containing potential targets typically carry higher
information value and are critical for downstream perception and decision-making. The
introduction of probabilistic confidence maps serves as a spatial attention mechanism,
enabling the network to adaptively prioritize these high-confidence regions and enhance
perception performance. Building upon this, the roadside features are spatially decoupled
to generate a shared perception mask c¢; and an exclusive perception mask ¢;, both are
defined with respect to the vehicle-centric coordinate system. These masks are designed
to capture the common and distinctive components of vehicle-infrastructure perception,
respectively. This process can be formally expressed as follows:

¢i = find (Pveh O Py f) )

ei = fina(1 = Poep) () Pins 3)

where the thresholding function fy;;(-) binarizes the probabilistic confidence maps: it
outputs 1 if the input probability exceeds the corresponding threshold 7. or 7. Using this
binary mask, the roadside features can be spatially decoupled as follows:

Fie = ¢i () Fins 4)

Fie = ¢; () Fins 6)

where F; . and F;, denote the shared-region and exclusive-region feature representations,
respectively. This region-based decoupling strategy enables downstream vehicle-side
perception to learn consistent embeddings from homologous features while exploiting
complementary features to significantly amplify perceptual gains.

The binary decoupling in Equations (2)—(5) uses thresholds 7. or T, to separate shared
and exclusive perception regions. Conceptually, a lower threshold increases included region
coverage, while a higher threshold enforces strict sparsity, which may risk omission of
weak but informative cues. We selected the default values 1. = 7, = 0.01 as a conservative
operating point that retains weak target-supporting features in low-contrast roadside
views and suppresses homogeneous background activations produced by the Sigmoid
output of the 1 x 1 confidence predictor. To validate robustness to threshold choice, we
performed a structured sensitivity analysis on the validation split: thresholds were swept
over {0.001, 0.005, 0.01, 0.02, 0.05}. For each threshold pair, we measured APgry, AP3p
and the proportion of the feature map area selected by the binary mask. The analysis
shows that model performance exhibits a broad plateau at approximately T € [0.005,0.02],
indicating insensitivity to small threshold perturbations; the chosen T = 0.01 represents a
stable trade-off between recall of weak cues and background suppression.
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To address feature misalignment caused by dynamic scene changes and object motion,
a deformable attention-based feature reconstruction module is proposed in Figure 4. The
module comprises two parallel branches, one aggregating exclusive-area features with
vehicle-side features, and the other aggregating common-area features with vehicle-side
features. Although both branches share an identical network topology, they learn inde-
pendent parameter sets. The key components are referred to as exclusive-area feature
aggregation (EFA) [51] and common-area feature aggregation (CFA) [52], respectively.

Fiz Common-Area l :
7| Feature Agaregation —'| Add & Norm Feed Forward '—-l Add & Norm }—l

Adaptive
Fusion

q ive-
Excusive-Area Add & Norm Feed Forward Add & Norm
Feature Aggregation

F o T

ie k

Figure 4. Regional reconstruction structure.

Taking the EFA module as an example, the vehicle-side feature map F,,, € RHXWxC jg
first projected through an embedding layer to generate the query vectors Q € RN1*C, where
N, denotes the number of query tokens, determined by the positions in the probabilistic
confidence map that exceed the confidence threshold.

A positional embedding is then generated for each query via a linear transformation.
For every query position, the network predicts a set of sampling offsets through a linear
layer to dynamically adjust the sampling locations. Based on the reference point positions

RNg*KXC 3re extracted

and their learned offsets, the corresponding feature values V €
from the roadside feature map Fj,; € RIXWXC \where K is the predefined number of
sampling keys.

A cross-attention fusion is performed between the query vectors Q and the sampled
feature values V to generate the enhanced feature representation Fy;. Specifically, within the
cross-attention block, the feature values V are linearly transformed into keys and values,
and the similarity between Q and the keys is computed to produce attention weights
through an activation function, which are then applied to the values. The output Fy; of the
cross-attention block is linearly transformed and integrated into the original vehicle-side
feature F,,j, to obtain the exclusive-area feature representation F,,, .. The generation process

of Fy,p, . follows the workflow illustrated in Figure 5.

Fren F"'e
Position
Embedding
Query Ny X C
Embeddin
£ Query HXWXC
HXWXxC
>l Linear Linear
Cross Filling | F,ep,
Reference Attention
Points
Fi. % Faue
Value Sampling Value Linear
E—— 3
Embedding NyxKxC
HXWXC

Figure 5. Exclusive-Area Feature Aggregation Structure.

Following EFA and CFA, their outputs F, . and F, . are each passed througha 3 x 3
convolution to produce weight maps A, and A.. These maps enable adaptive fusion of



Smart Cities 2025, 8,171

10 of 22

the two feature streams, effectively leveraging the complementary strengths of distinct
perceptual regions to enhance vehicle-side feature representation:

Féeh:ABOFv,CﬂLAC@Fv,c (6)

3.2. Context-Driven Channel Attention

In previous studies, spatial geometric priors were typically injected into the network
through the intrinsic and extrinsic parameters of cameras to guide feature recalibration.
However, this method is highly dependent on the accuracy of external calibration, often
leading to performance fluctuations in practical deployment due to calibration errors
or synchronization issues. To address these shortcomings, this study proposes a CDCA
module whose workflow comprises the following:

CDCA takes as input the infrastructure features F;, s and the preliminary enhanced
vehicle features F/ ,. Global average pooling (GAP) and global max pooling (GMP) are

applied on each feature tensor F {Fin 7 F eh} to obtain channel descriptors:
Ogvg = GAP(F) )

Omax = GMP(F) ®)

where [v,wg ; vmax] are concatenated along the channel dimension, and then pass through
a two-layer MLP, with a bottleneck ratio r, followed by ReLU and Sigmoid activations to
produce the attention weights:

z = 0 (Wad (Wi [0avg; Umax] ) ) € RE 9)

Next, we proceed with the intelligent recalibration of the channels by performing
element-wise multiplication on F; multiplying F with z, we obtain the recalibrated features:

F=z(DF (10)

The above recalibration is independently applied to and F;,¢ and F},, producing IN-"Z-n f

and vaeh for subsequent alignment and UWF processing.

The channel logits are computed from compact global descriptors obtained by spatial
pooling: for a feature map F € {Fm £ El, }, we form descriptors by GAP and GMP and
feed their concatenation to a small two-layer bottleneck MLP. Concretely, the following
is obtained:

z = Sigmoid( MLP(|GAP(F), GMP(F)])) (11)

The MLP uses a bottleneck ratio (r = 16) with shared weights across streams; to
mitigate overfitting we apply dropout (rate = 0.1) and weight decay. In practice the MLP
can be implemented as 1 x 1 convolutions on the pooled descriptors for efficiency; CDCA
is applied independently at each FPN level and yields per-stream attention vectors.

The CDCA module is completely driven by global contextual data, without the need
for external parameters, and has stronger robustness and generalization ability under
heterogeneous and asynchronous deployment conditions.

3.3. Uncertainty-Weighted Fusion Mechanism

To enable adaptive fusion of heterogeneous features in the voxel domain, we
introduce an UWF mechanism. Multi-scale features recalibrated by CDCA are pro-
jected onto a common 3D voxel grid, yielding vehicle-side voxel features V,, and
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infrastructure-side voxel features Vj,,;. In our implementation, selected pixels are
inverse-projected via X = 7 !(u,d(u)) and assigned to voxel indices by (i,j, k) =
(x = Xmin) /Vx, (Y — Ymin) /Oy, (2 — Zmin) / 02 before per-voxel aggregation. Voxel-wise un-
certainty oy is estimated either via variance across multiple frame projections or through a
lightweight MLP regressor. This uncertainty is then mapped to a confidence weight:

Wy = exp(—aoy), « >0 (12)

which governs the relative contribution of each stream. The fused voxel representation is
obtained by the following:

Vfuse<v) = Wy Vyen(v) + (1 — wv)vinf(v) (13)

By dynamically modulating fusion weights according to feature reliability, UWF
effectively mitigates the impact of noise, occlusion, and projection errors, thereby enhancing
the robustness and discriminative power of the fused representation. The resulting voxel
tensor Vs, is subsequently processed by a 3D convolutional network and a BEV detection
head to produce accurate 3D object predictions.

3.4. Point Sampling Voxel Fusion

To ensure reproducibility and computational efficiency in lifting image features into
the shared voxel representation, we implement PSVF that concentrates representational
capacity on pixels identified as informative by the RFR confidence map, which maps
sampled pixels into a 3D voxel grid and emits compact per-voxel descriptors with sampling-
confidence summaries consumed by the UWF stage. PSVF samples a bounded set of pixel
locations from each selected feature map using a mixture strategy: most samples are
drawn by importance sampling from the RFR confidence distribution C(u), which is the
probabilistic map produced by Equation (1), while a small fraction is drawn uniformly to
preserve coverage of low-confidence areas. Concretely, importance sampling probabilities
are formed as pjy,(u) o C(u)", where the exponent a controls concentration on high-
confidence pixels; a uniform fallback fraction B prevents complete neglect of low-confidence
regions. Empirically, modest values of « and small B balance robustness and selectivity.

Each sampled pixel u is associated with a depth proxy d(u), which is the predicted
depth, stereo estimate, or scene prior, and is inverse-projected to a 3D point in the sensor
frame via Xsensor = 711 (1,d(u)). The point is transformed to the common/world frame by
the sensor extrinsic Tgepsor—sworld, Yi€lding Xsensor—worid- Xsensor Voxel indices are obtained
with the convention.

i_[x_xmin],]-_[y_ymin},k_ {Z_Zmin] (14)

Uy vy [

where (x,v,2) = Xuorid: (Xmins Ymins Zmin) denote the voxel grid origin and (vy, vy, v;) the
voxel sizes. Points outside the grid bounds are discarded. The voxelization and filling
process are illustrated in Figure 6. To bound memory and latency, each voxel collects up to
a fixed cap N, points. Within each voxel, collected point features { f, } are aggregated with
a learnable per-point weighting. A shallow MLP produces scalar scores s, = MLP(F;),
which are normalized by a softmax to obtain attention weights a,,. The voxel descriptor is

the weighted sum:
Ny

Fooxel = 2 an fn (15)

n=1
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Figure 6. Voxel filling diagram.

PSVF also computes a concise confidence summary for each voxel, for example,
¢ = [max,a,, meany,a,|, which quantifies sampling concentration and provides an eviden-
tial cue. The aggregated voxel descriptor and its confidence summary are concatenated and
provided as inputs to the UWF uncertainty regressor, thereby enabling UWF to consider
both feature content and sampling reliability when producing fusion weights. In practice,
this design enables the fusion module to down-weight voxels with diffuse or noisy evidence
even when scattered point activations exist. According to the experiment, the parameters
are set to the following: per-frame sample budget Nj,x = 2048, per-voxel cap N, = 8, con-
fidence exponent a# = 2, and uniform fallback fraction g = 0.1. To evaluate sensitivity, we
recommend sweeping Ny, € {1024, 2048, 4096}, N, € {4, 8, 16}, and B € {0, 0.1, 0.2},
and recording AP3p and APgry on a per-frame latency to guide deployment tradeoffs.

4. Dataset Description and Experimental Setup
4.1. Dataset Description

DAIR-V2X constitutes China’s inaugural public large-scale vehicle-infrastructure col-
laborative multi-modal dataset, acquired within Beijing’s advanced autonomous driving
demonstration zone. It encompasses complex urban environments, including intersections
and roundabouts, under diverse meteorological conditions. Through rigorous spatiotem-
poral synchronization with microsecond-level precision, the dataset comprises 72,890 valid
frames sampled at 10 Hz from 100 continuous 20 s sequences, partitioned into three subsets:
the vehicle-infrastructure collaborative set (DAIR-V2X-C, comprising 40481 image-point
cloud pairs), infrastructure-only set (DAIR-V2X-I), and vehicle-only set (DAIR-V2X-V).

Annotations employ LiDAR-coordinated 2D-3D joint labeling across 15 obstacle
categories (e.g., pedestrians, vehicles). Each frame integrates 3D bounding boxes (position,
dimensions, orientation), 2D image annotations, occlusion levels, truncation states, and
cross-frame tracking identifiers. This protocol yields over 1.2 million high-quality 3D
annotations spanning 230,000 unique instances, establishing foundational benchmarks for
collaborative perception research.

4.2. Experimental Settings

In this study, all experiments were conducted on a single server equipped with
8 NVIDIA GeForce RTX 3090 GPUs and an Intel Xeon Gold 5320 CPU to ensure repro-
ducibility and fair comparison. The software environment comprised Ubuntu 20.04, CUDA
11.6 with CuDNN 8.3, and Python 3.7. The model was implemented in pyTorch 1.9.1, with
data preprocessing and visualization facilitated by OpenCV 4.7 and Matplotlib 3.5.2.

The experiments were implemented based on the MMDetection3D framework (version
1.4.0, Multimedia Laboratory, The Chinese University of Hong Kong, Hong Kong, China)
with its default training configurations. The proposed model was trained for 20 epochs with
a batch size of 8, using the AdamW optimizer with an initial learning rate of 1 x 1073 and
a weight decay of 0.0001. The RepeatDataset strategy in MMDetection3D was employed
to maintain data balance, where each scene was repeated three times per epoch. The
detection head adopted Rotated Non-Maximum Suppression (NMS) to filter redundant
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bounding boxes and generate the final predictions. It is worth noting that only vehicles
were considered as the detection category in this study.

4.3. Evaluation Metrics

For the 3D object detection task, evaluation follows standard object detection protocols,
using Precision, Recall, and Average Precision (AP) to quantify detection accuracy. AP
measures the area under the Precision, Recall curve and is typically evaluated at specific
Intersection over Union (IoU) thresholds, such as AP@0.5 or AP@0.7, to ensure sufficient
spatial overlap between predictions and ground truth.

In 3D detection, two complementary AP metrics are commonly reported: APggy,
which assesses localization accuracy on the BEV plane, and AP3p, which further incor-
porates the predicted bounding box’s height and center position, providing a stricter
evaluation of volumetric precision. The mean Average Precision (mAP) represents the
overall performance averaged across all object categories, which is defined as the arith-
metic mean of AP values over all classes and provides a holistic assessment of a detector’s
performance. It is calculated as follows:

1 Neis

Y AP; (16)

cls j—1

mAP =

where Nj; represents the number of target categories, and AP; is the AP value of the target
in the ith category.

For transparency and to facilitate reproducibility, we provide here the mathematical
definition and computational steps for the 3D IoU used in our experiments. A 3D bounding
box B is parameterized as (xc, Ye, z¢, I, w, h, 0), where (xc, yc, z¢) is the box center in
world coordinates, I, w, h denote length, width, and height, and 6 is the yaw around
the vertical axis. The 3D IoU between two boxes, ground truth BS and prediction B?, is

defined as
~ Vol(BEN BP)

loUsp (B, BY) = 4 g U B)

(17)

The intersection volume computation is implemented by decomposing each box into
a vertical prism: (i) compute the 2D polygon intersection area An between the yaw-rotated
rectangles on the ground plane, and (ii) compute the overlapped height interval as follows:

Hn = max (O, min (zfop,zfop) — max (zfop,zfop» (18)
where ztp = zc + h/2, zpot = zc — h/2. Thus,
Vol (B N BP) = An-Hn (19)

Because the 2D polygon intersection An depends on the yaw 6, small heading errors
Af can reduce An nonlinearly for elongated objects. For small angular perturbations, a
first-order approximation yields the following:

AAn ~ —k(1, w,0) | A (20)

where k(-) is a scene and geometry dependent factor larger for high aspect ratio boxes and
for near-edge alignments; this explains why IoU drops faster for orientation-biased cases.
Consequently, AP3p is more sensitive to heading errors than APpry, which ignores height
and, to a lesser extent, vertical misalignment.

The BEV projection discards height information by evaluating the IoU of 3D bounding
boxes projected onto the ground plane. Mathematically, this renders the BEV IoU invariant
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to pure vertical displacements, tolerating height errors that do not alter the 2D footprint.
This makes APggy a valid and efficient metric for ground-level path planning, where lateral
and longitudinal extents are primary constraints. In contrast, the full 3D IoU is sensitive to
orientation and height, making A Psp indispensable for tasks requiring volumetric precision,
such as vertical clearance assessment. We, therefore, report both metrics: APggy to quantify
planning-centric horizontal localization and AP3p to quantify full spatial fidelity.

5. Results and Analysis
5.1. Analysis of Comparative Experimental Results

To rigorously evaluate the proposed method, we performed comparative experiments
on the DAIR-V2X-C dataset against leading vision-based cooperative 3D object detection
frameworks. In the first set of experiments, we assessed single-agent perception by adapting
our network to vehicle-only and infrastructure-only workflows: we retained the feature-
extraction and BEV-encoding modules while removing the region-level reconstruction
branch, yielding the configurations denoted Ours_Veh and Ours_Inf, which we compared
to the corresponding EMIFF_Veh and EMIFF_Inf baselines.

Next, decision-level fusion was implemented using the official DAIR-V2X fusion
protocol: EMIFF_Veh and EMIFF_Inf were merged to form the baseline decision-level
fusion (DL) configuration, and Ours_Veh and Ours_Inf were fused in the same manner to
produce our decision-level fusion variant. Finally, we evaluated the full feature-level fusion
(FL) capability of our model against representative feature-level fusion methods, including
EMIFF [16] and QUEST [53]. All comparisons focus exclusively on the car category, with
detection accuracy measured by mean Average Precision (mAP) in both 3D and BEV
projections at IoU thresholds of 0.3 and 0.5. Communication overhead accompanying each
setting is also reported. Quantitative results are summarized in Table 1.

Table 1. Detection results for different types of models.

AP3p(%) APggy(%)

Type Model Toly 5 Tolly 5 Toly s Tolly 5
Sinole Ve, EMIFF_Veh 14.62 7.92 15.77 9.65
gle- Ours_Veh 14.78 8.26 15.99 9.61
Single Inf  EMIFF_Inf 2227 8.40 23.41 13.34
gle~ Ours_Inf 21.34 8.28 23.12 13.05

EMIFF_Veh
oL nd Inf 26.22 11.60 29.25 16.44
Ours_Veh 26.65 12.08 29.86 16.73

and Inf

EMIFF 30.24 15.07 33.73 20.74
FL QUEST 33.30 14.10 39.40 20.30
Ours 31.01 15.76 33.38 21.02

Experimental results demonstrate that, for all evaluated models and IoU thresholds,
the mean Average Precision in AP3p is systematically lower than in APgpy. This dis-
parity arises because 3D detection must recover object height information, substantially
increasing model complexity and learning difficulty; in typical traffic scenarios, however,
all objects lie on a common ground plane, so height contributes minimally to planning and
decision-making.

Moreover, both the baseline EMIFF models and the proposed method exhibit infe-
rior single-agent performance on the vehicle side compared to the infrastructure side.
This degradation is primarily due to the vehicle-mounted camera’s limited field of view
and susceptibility to occlusion, which reduces data quality. Consequently, supplement-
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ing vehicle perception with infrastructure imagery yields significant practical benefits,
as cooperative perception consistently outperforms vehicle-only detection under any
fusion strategy.

Regarding fusion strategies, FL incurs higher communication overhead—owing to
the transmission of full feature maps—than DL, which exchanges only detection outputs.
Nevertheless, FL achieves superior accuracy by more effectively leveraging multi-source
contextual semantics. Under FL, the proposed method surpasses both EMIFF and QUEST
across all IoU thresholds. At IoU = 0.5, our model attains an AP3p of 15.76%, compared
to 15.07% for EMIFF and 14.10% for QUEST; similarly, APpgy reaches 21.02%, exceeding
the baselines. These results validate that the introduced BEV-encoding strategy enhances
height information utilization, thereby improving 3D detection performance.

To investigate the influence of backbone depth on object detection performance,
ResNet-50 [54], ResNet-101 [50], and VGG-16 [55] were adopted as the feature extraction
networks for both the EMIFF baseline and the proposed method. The mAP is evaluated at
IoU thresholds of 0.3 and 0.5. The results are summarized in Table 2.

Table 2. Detection performance across different feature extraction backbones.

AP3p(%) APpgy(%)
Backbone Toly 5 Toly s Toly s Toly 5 Param  GFLOPS

VGG16_EMIFF 28.12 14.27 30.45 17.05 138.36M  152.30
VGG16_Ours 28.85 14.88 31.12 17.64 143.73M  135.98
Res50_EMIFF 30.24 15.07 33.38 20.74 49.33M 123.76
Res101_EMIFF 31.13 15.84 34.68 21.30 87.31M 201.46
Res50_Ours 31.01 15.76 33.73 21.02 54.72M 107.44
Res101_Ours 31.58 16.31 34.16 21.49 92.66M 184.93

In vehicle-infrastructure cooperative object detection tasks, the choice of backbone
network exerts a profound influence on overall performance. Compared with the shallow
VGG16, ResNet architectures leverage residual connections to deliver substantially richer
feature representations. In particular, the deeper ResNet101 extracts more discriminative
high-level semantic features, boosting the EMIFF baseline’s average precision by 0.89% and
its average recall by 0.77%, while our proposed model achieves corresponding gains of
0.57% and 0.55%. However, these accuracy improvements incur a marked computational
overhead: our model’s parameter count rises from 54.72 million to 92.66 million and its
GFLOPs increase from 107.44 billion to 184.93 billion, whereas the EMIFF baseline grows
from 49.33 million to 87.31 million parameters and from 123.76 to 201.46 GFLOPs. Such
an almost two-fold expansion in model size and inference workload challenges the strict
real-time and resource-constrained requirements of intelligent transportation systems.
Accordingly, to strike the optimal balance between detection accuracy and computational
efficiency, this study adopts ResNet-50 as the feature extraction backbone.

To further verify computational efficiency, local inference tests were conducted with-
out deployment acceleration. All evaluations were performed on the workstation de-
scribed in Section 4.2. Two input resolutions (1280 x 720 and 1920 x 1080) were tested,
and the corresponding inference results are shown in Table 3. We report the FPS of the
Backbone + FPN stage, the overall Total FPS, and the Total Latency (ms). Each measurement
was averaged over 300 frames, after 100 warm-up frames, using CUDA events. The results
show that Res50_Ours achieves near real-time performance on a single GTX 3090, while
Res101_Ours maintains reasonable latency with improved accuracy.
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Table 3. Inference results under different input resolutions.

Model Input Backbone + FPN Total Total Latency
Resolution FPS 1 FPS 1 (ms) |
1280 x 720 42.6 34.1 29.3
Res50_Ours 1950 % 1080 334 26.8 37.3
1280 x 720 31.7 25.5 39.2
Resl01_Ours 1950 « 1080 25.6 213 169

5.2. Ablation Study

To verify the effectiveness of each module in the proposed model, we designed ablation
experiments to evaluate the impact of the RFR module, the camera parameter embedding
module, its alternative based on global image-level context for adaptive recalibration
(i.e., CDCA), and the UWF module on both 3D object detection and BEV object detection
performance. The results are reported in Table 4.

Table 4. Ablation results on model architecture, where symbol 4/ indicates that the corresponding
module is enabled.

Camera Parameter AP3p (%) APggy(%)
RER Embedding CDCA UWF [ lhys  IoUps IolUps IolUps
vV vV 27.53 12.89 30.13 17.46
Vv 27.86 13.04 30.39 17.64
Vv Vv Vv 31.03 15.18 33.85 21.07
vV vV 29.69 14.84 32.72 19.30
vV vV Vv 31.58 16.31 34.16 21.49

At an IoU threshold of 0.5, replacing the camera parameter embedding module with
the CDCA module yields relative improvements of 0.15% in AP3p and 0.18% in APggy.
Although the gains are modest, they are notable given the simplicity of the module and
its ability to eliminate the need for rule-based camera parameter settings across different
scenes, thereby facilitating model transferability. The UWF module, by estimating voxel-
level uncertainty across heterogeneous feature sources and dynamically allocating fusion
weights, provides a more substantial benefit, improving AP3;p and APpry by 1.47% and
2.19%, respectively. Most importantly, the RFR module achieves the largest improvements,
with AP3p and APpry increasing by 3.27% and 3.85%, respectively, demonstrating that
region-wise reconstruction of onboard features using roadside information significantly
enhances model performance.

To further assess the role of the PSVF module, we compared it against two alternative
voxelization schemes: (1) uniform voxel sampling, which randomly samples pixels with
equal probability, and (2) full-grid voxelization, which converts all projected points into
voxels without sampling.

As summarized in Table 5, PSVF achieves the highest efficiency and accuracy trade-off.
Specifically, compared with full-grid voxelization, PSVF reduces total latency by 26%, while
also slightly outperforming uniform sampling in both AP3p and APggy metrics. The results
confirm that PSVF provides a compact yet informative voxel representation, effectively
concentrating computational resources on salient high-confidence regions identified by the
RFR confidence maps. This design preserves the structural integrity of the fusion pipeline
while delivering significant gains in efficiency and detection performance.
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Table 5. Comparison of different voxel construction strategies in the fusion stage.

Total
Voxelization Total AP3p(%) APppy(%)
Strategy Param GFLOPS FPS 1 Latency @loly s @loly 5
(ms) |
Full-grid 934M  189.7 224 47.5 15.89 21.27
voxelization
Uniform voxel o) o 4065 25.1 08 16.02 21.33
sampling
PSVF (ours)  927M 1849 31.7 39.2 16.31 21.49

5.3. Visualization

To demonstrate the detection performance of the proposed model, we present its detec-
tion results across different scenarios from three perspectives: the onboard camera view, the
roadside camera view, and the ego-centric BEV. We also provide a performance comparison
under identical scene settings between a single-vehicle detector, baseline methods, and
our proposed model; the results are shown in Figures 7-9. In the visualizations, green
bounding boxes denote ground truth, red bounding boxes denote predicted detections, and
the blue point indicates the ego vehicle’s position.

Scene 1
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Figure 7. Visualization of results across different scenarios, where green bounding boxes represent
ground truth and red bounding boxes denote the predicted results.

In sparse traffic-flow scenarios, the proposed model achieves accurate detection for
the vast majority of vehicles. In dense traffic-flow scenarios, our model not only effectively
identifies mutually occluded vehicles but also detects vehicles that lie outside the onboard
camera’s field of view, as indicated by the circled region in Scene 3 of Figure 7. However,
there remain some missed detections in areas roughly 30m ahead of the ego vehicle and
about 25 m laterally beyond the ego sensing range, indicating that long-range perception
remains an area for improvement.

Across identical traffic scenes, observable differences exist between the baseline and
our proposed model. As shown in Figure 8, EMIFF effectively fuses roadside perception
data and partially mitigates the beyond-ego-field-of-view detection problem, substantially
improving the detection of occluded vehicles and enabling more comprehensive perception
in complex environments such as intersections. Nevertheless, EMIFF still exhibits small
but systematic biases in orientation estimation and localization when processing occluded
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targets, which is likely attributable to insufficient modeling of voxel-level uncertainty
across heterogeneous feature sources. By fully leveraging roadside augmentation and
complementary information, our proposed model achieves significant improvements in
both detection accuracy and spatial coverage.
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Figure 8. Visual comparison of proposed model and baselines, where green bounding boxes represent
ground truth and red bounding boxes denote the predicted results.

Veh-only
DAIR-V2X-V

Bev-vision

Veh-Inf
DAIR-V2X-C

Bev-vision

Figure 9. Visual comparison of DAIR-V2X-V and DAIR-V2X-C, where green bounding boxes repre-
sent ground truth and red bounding boxes denote the predicted results.

To further validate the generalizability of the proposed framework, we additionally
compare the single-vehicle detection model trained on DAIR-V2X-V with the vehicle-
infrastructure cooperative model trained on DAIR-V2X-C under identical driving scenes.

As shown in Figure 9, the single-vehicle model exhibits severe performance degrada-
tion when target vehicles are partially or fully occluded by leading traffic, resulting in clear
missed detections within the blind area of the onboard camera. In contrast, the cooperative
perception model effectively compensates for these occlusions by integrating roadside vi-
sual cues, enabling accurate long-range detection and complete spatial coverage. This com-
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parison provides intuitive evidence that feature-level vehicle-infrastructure fusion signifi-
cantly enhances robustness and perception completeness in complex traffic environments.

6. Conclusions

This study proposed a feature-level VICP framework that integrates vehicle- and
roadside-derived features through V2X communication. The framework combines RFR,
CDCA, UWE, and PSVF to jointly address occlusion, calibration dependency, and feature
heterogeneity. Comprehensive experiments on the DAIR-V2X-C benchmark demonstrated
consistent improvements over state-of-the-art baselines, while ablation studies confirmed
the complementary contributions of each module. These findings establish VICP as an
effective means to extend sensing coverage and enhance robustness, offering a practical
reference for scalable deployment within smart city infrastructure.

While attention mechanisms and uncertainty weighting have been applied inde-
pendently in prior VICP works (e.g., EMIFF uses multi-scale fusion and channel mask-
ing; V2X-ViT applies multi-agent attention), our contribution is twofold and integrative:
(1) RFR performs explicit spatial decoupling between shared and exclusive perception
regions, which prevents misleading roadside-exclusive semantics from contaminating
vehicle-side embeddings during cross-view reconstruction; and (2) the combination of
CDCA and UWF acts at complementary granularities, CDCA provides channel-wise se-
mantic rebalancing conditioned on global context, whereas UWF controls voxel-level fusion
strength according to estimated uncertainty. The synergy of these components yields
robustness to viewpoint mismatch and noisy inputs that is not achieved by standalone
attention modules or by post-hoc weighting alone.

Future research will extend this work in three directions: integrating additional sensing
modalities such as radar and event cameras, improving real-time efficiency and communica-
tion adaptability for large-scale V2X networks, and exploring cross-domain generalization
to ensure reliable operation under diverse environmental and traffic conditions. Despite
the promising results, the current framework still relies on high-quality temporal synchro-
nization in the DAIR-V2X-C dataset, which may constrain its scalability to heterogeneous
infrastructures and complex traffic scenarios. Moreover, long-range object perception re-
mains challenging due to reduced feature consistency and signal attenuation across sensing
modalities. Furthermore, the robustness of the current framework could be affected under
conditions of significant motion blur or temporal asynchrony, which were not the focus
of this study. Enhancing temporal alignment and mitigating these effects represent key
objectives for future work, along with improving generalization and deployment feasibility
in real-world cooperative perception systems.
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