Previous Issue
Volume 7, March
 
 

Acoustics, Volume 7, Issue 2 (June 2025) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 3040 KiB  
Article
Improvement of Sound-Absorbing Dips in Nonwoven Fabric Sheet with Back Air Space: Division of Back Air Space by Additional Nonwoven Fabric Sheet
by Shuichi Sakamoto, Kodai Sato, Gaku Muroi, Yusuke Nakao, Kaito Kuboki and Nobuhito Taguchi
Acoustics 2025, 7(2), 25; https://doi.org/10.3390/acoustics7020025 - 30 Apr 2025
Viewed by 43
Abstract
This study was conducted to improve the sound absorption dips in nonwoven fabric sheets with a back air space. Considering the particle velocity distribution in the back air space, another nonwoven sheet was added to divide the air space into layers. The sound [...] Read more.
This study was conducted to improve the sound absorption dips in nonwoven fabric sheets with a back air space. Considering the particle velocity distribution in the back air space, another nonwoven sheet was added to divide the air space into layers. The sound absorption coefficient of the sound-absorbing structure was theoretically derived using the transfer matrix method. The nonwoven sheet model with the Rayleigh model and the air space behind the nonwoven sheet were mathematically represented using the transfer matrix. The transfer function method was employed to combine the transfer matrices to obtain the sound absorption coefficient. A two-microphone acoustic impedance tube was used to measure the sound absorption coefficient, and the theoretical and experimental values were compared. The sound absorption dip of the first order was improved by placing a nonwoven sheet at a position half the thickness of the back air space. It was theoretically predicted that placing the nonwoven sheet at 1/4 of the back air space thickness from the rigid wall would improve the first- and second-order sound absorption dips. By selecting the conditions, a similar trend was observed during the experiments. The study shows that the higher the ventilation resistance of the added nonwoven fabric sheet, the more improved the sound absorption dip. Full article
13 pages, 9188 KiB  
Article
Sound Absorption of Hydroponically Grown Plants
by Gino Iannace, Antonella Bevilacqua, Amelia Trematerra and Giovanni Amadasi
Acoustics 2025, 7(2), 24; https://doi.org/10.3390/acoustics7020024 - 23 Apr 2025
Viewed by 217
Abstract
Hydroponics is a method of growing plants without soil and serves as an efficient agricultural production system. Compared to traditional farming, hydroponic crops offer significant water savings while also reducing the need for chemical pesticides by eliminating soil-borne diseases and pests. Additionally, hydroponic [...] Read more.
Hydroponics is a method of growing plants without soil and serves as an efficient agricultural production system. Compared to traditional farming, hydroponic crops offer significant water savings while also reducing the need for chemical pesticides by eliminating soil-borne diseases and pests. Additionally, hydroponic materials are being studied as a potential food source for space missions and as a substitute for industrially produced animal feed during winter. This paper explores the acoustic absorption properties of green materials derived from hydroponic systems. The roots of wheat grown in a porous layer formed a rigid skeleton structure. After drying, test specimens were prepared for acoustic measurements, undertaken using an impedance tube, to assess the material’s sound absorption performance. The results indicate optimal absorption around 600 Hz and 2000 Hz, reaching α = 0.95–1.0, which is significant. A brief description of the substrate layers is also provided. Full article
Show Figures

Figure 1

23 pages, 13788 KiB  
Article
The Sonoscape of a Rural Town in the Mediterranean Region: A Case Study of Fivizzano
by Almo Farina and Timothy C. Mullet
Acoustics 2025, 7(2), 23; https://doi.org/10.3390/acoustics7020023 - 22 Apr 2025
Viewed by 186
Abstract
The sonoscape of a small town at the foot of the Northern Apennines Mountains in north–central Italy was studied using a regular grid of automatic recording devices, which collected ambient sounds during the spring of 2024. The study area is characterized by high [...] Read more.
The sonoscape of a small town at the foot of the Northern Apennines Mountains in north–central Italy was studied using a regular grid of automatic recording devices, which collected ambient sounds during the spring of 2024. The study area is characterized by high landscape heterogeneity, a result of widespread suburban agricultural abandonment and urban development. Sonic data were analyzed using the Sonic Heterogeneity Index and nine derivative metrics. The sonic signatures from 26 stations exhibited distinct, spatially explicit patterns that were hypothesized to be related to a set of 11 landcover types and seven landscape metrics. The unique sound profile of each sample site was consistent with the emerging heterogeneity of landcover typical of many Mediterranean regions. Some sonic indices exhibited stronger correlations with landscape metrics than others. In particular, the Effective Number of Frequency Bins Ratio (ENFBr) and Sheldon’s Evenness (E) proved particularly effective at revealing the link between sonic processes and landscape patterns. The sonoscape and landscape displayed correlations significantly aligned with their variability, highlighting the ecological heterogeneity of the sonic and physical domains in the study area. This case study underscores the importance of selecting appropriate metrics to describe complex ecological processes, such as the relationships and cause-and-effect dynamics of environmental sounds among human altered landscapes. Full article
Show Figures

Figure 1

13 pages, 1582 KiB  
Article
Numerical Study on Sharp Defect Evaluation Using Higher Order Modes Cluster (HOMC) Guided Waves and Machine Learning Models
by Jing Xiao and Fangsen Cui
Acoustics 2025, 7(2), 22; https://doi.org/10.3390/acoustics7020022 - 17 Apr 2025
Viewed by 188
Abstract
The inspection of corrosion and pitting-type defects is critical in the petrochemical, marine, and offshore industries. Guided wave inspection is widely used to detect these flaws and control operational costs. Higher order modes cluster (HOMC) guided waves, composed of higher-order Lamb wave modes, [...] Read more.
The inspection of corrosion and pitting-type defects is critical in the petrochemical, marine, and offshore industries. Guided wave inspection is widely used to detect these flaws and control operational costs. Higher order modes cluster (HOMC) guided waves, composed of higher-order Lamb wave modes, offer enhanced resolution compared to low-frequency guided waves. They exhibit minimal dispersion, reduced sensitivity to surface features such as T-joints, and retain most of their energy upon interacting with surface defects. This study employs two-dimensional finite element simulations to investigate the propagation and interaction of HOMC guided waves with defects in a T-joint and an aluminum plate. Both conventional fitting methods and machine learning (ML) models are used to estimate the depth of sharp defects reaching up to half the plate thickness. The results demonstrate that both approaches can utilize data from defects of one width to predict the depth of defects with a different width. The ML model outperforms the fitting method, achieving higher prediction accuracy while reducing dependence on expert knowledge. The developed method shows strong potential for characterizing sharp defects of varying widths, closely resembling real-world pitting corrosion scenarios. Full article
Show Figures

Figure 1

29 pages, 3169 KiB  
Review
Recent Developments in Investigating and Understanding Impact Sound Annoyance—A Literature Review
by Martina Marija Vrhovnik and Rok Prislan
Acoustics 2025, 7(2), 21; https://doi.org/10.3390/acoustics7020021 - 14 Apr 2025
Viewed by 240
Abstract
Impact sound, particularly prevalent indoors, emerges as a major source of annoyance necessitating a deeper and more comprehensive understanding of its implications. This literature review provides a systematic overview of recent research developments in the study of impact sound annoyance, focusing on advances [...] Read more.
Impact sound, particularly prevalent indoors, emerges as a major source of annoyance necessitating a deeper and more comprehensive understanding of its implications. This literature review provides a systematic overview of recent research developments in the study of impact sound annoyance, focusing on advances in the assessment of impact sound perception through laboratory listening testing and standardization efforts. This review provides a detailed summary of the listening setup, assessment procedure and key findings of each study. The studied correlations between SNQs and annoyance ratings are summarized and key research challenges are highlighted. Among the studies, considerable research effort has focused on the assessment of walking impact sound and the use of spectrum adaptation terms, albeit with inconsistent outcomes. Comparison with the previous literature also shows the influence of spatial and temporal characteristics of impact sound sources on perceived annoyance, with higher spatial fidelity leading to higher annoyance ratings. Furthermore, it has been shown that the consideration of non-acoustic factors such as noise sensitivity and visual features are important for the assessment. This review provides a comprehensive overview of recent advances in the understanding and assessment of impact sound annoyance and provides information for future research directions and standardization efforts. Full article
(This article belongs to the Special Issue Vibration and Noise (2nd Edition))
Show Figures

Figure 1

18 pages, 976 KiB  
Article
A Z-Test-Based Evaluation of a Least Mean Square Filter for Noise Reduction
by Alan Rodríguez Bojorjes, Abel Garcia-Barrientos, Marco Cárdenas-Juárez, Ulises Pineda-Rico, Armando Arce, Sharon Macias Velasquez and Obed Pérez Cortés
Acoustics 2025, 7(2), 20; https://doi.org/10.3390/acoustics7020020 - 14 Apr 2025
Viewed by 197
Abstract
This paper presents a comprehensive evaluation using a Z-test to assess the effectiveness of an adaptive Least Mean Squares (LMS) filter driven by the Steepest Descent Method (SDM). The study utilizes a male voice recording, captured in a controlled studio environment, to which [...] Read more.
This paper presents a comprehensive evaluation using a Z-test to assess the effectiveness of an adaptive Least Mean Squares (LMS) filter driven by the Steepest Descent Method (SDM). The study utilizes a male voice recording, captured in a controlled studio environment, to which persistent Gaussian noise was intentionally introduced, simulating real-world interference. All signal processing methods were implemented accordingly in MATLAB.version: 9.13.0 (R2022b), Natick, MA, USA: The MathWorks Inc.; 2022. The adaptive filter demonstrated a significant improvement of 20 dB in Signal-to-Noise Ratio (SNR) following the initial optimization of the filter parameter μ. To further assess the LMS filter’s performance, an empirical experiment was conducted with 30 young adults, aged between 20 and 30 years, who were tasked with qualitatively distinguishing between the clean and noise-corrupted signals (blind test). The quantitative analysis and statistical evaluation of the participants’ responses revealed that a significant majority, specifically 80%, were able to reliably identify the noise-affected and filtered signals. This outcome highlights the LMS filter’s potential—despite the slow convergence of the SDM—for enhancing signal clarity in noise-contaminated environments, thus validating its practical application in speech processing and noise reduction. Full article
(This article belongs to the Special Issue Developments in Acoustic Phonetic Research)
Show Figures

Figure 1

19 pages, 13274 KiB  
Article
Prediction of Degradation of Concrete Surface Layer Using Neural Networks Applied to Ultrasound Propagation Signals
by Evgenia Kirillova, Alexey Tatarinov, Savva Kovalenko and Genadijs Shahmenko
Acoustics 2025, 7(2), 19; https://doi.org/10.3390/acoustics7020019 - 14 Apr 2025
Viewed by 252
Abstract
The aim of this article is the development of a new artificial intelligence (AI) system for the condition assessment of concrete structures. To study the process of concrete degradation, the so-called spatiotemporal waveform profiles were obtained, which are sets of ultrasonic signals acquired [...] Read more.
The aim of this article is the development of a new artificial intelligence (AI) system for the condition assessment of concrete structures. To study the process of concrete degradation, the so-called spatiotemporal waveform profiles were obtained, which are sets of ultrasonic signals acquired by stepwise surface profiling of the concrete surface. The recorded signals at three frequencies, 50, 100 and 200 kHz, were analyzed and informative areas of the signals were identified. The type of the created neural network is a multilayer perceptron. Stochastic gradient descent was chosen as the learning algorithm. Measurement datasets (test, training and validation) were created to determine two factors of interest—the degree of material degradation (three gradations of material weakening) and the thickness (depth) of the degraded layer varied gradually from 3 to 40 mm from the surface. This article proves that the training datasets were sufficient to obtain acceptable results. The built networks correctly predicted the degree of degradation for all elements of the test dataset. The relative error in prediction of a thickness of degraded layer did not exceed 3% in the case of a thickness of 25 mm. It is shown that the results for the Fourier amplitude spectra are significantly worse than the results of neural networks built based on information about the measured signals themselves. Full article
Show Figures

Figure 1

31 pages, 10256 KiB  
Article
Impact of Motorway Speed Management on Environmental Noise: Insights from High-Resolution Monitoring
by Ayan Chakravartty, Dilum Dissanayake and Margaret C. Bell
Acoustics 2025, 7(2), 18; https://doi.org/10.3390/acoustics7020018 - 28 Mar 2025
Viewed by 365
Abstract
This study explores the impact of road transport on the environment, focusing on noise pollution. Using high-resolution, one-minute data from a low-cost environmental sensor, this research examines traffic flow dynamics, meteorological influences, and their relationship to noise along a major transport corridor. The [...] Read more.
This study explores the impact of road transport on the environment, focusing on noise pollution. Using high-resolution, one-minute data from a low-cost environmental sensor, this research examines traffic flow dynamics, meteorological influences, and their relationship to noise along a major transport corridor. The methodology combines cluster analysis and descriptive statistics to evaluate the effects of deploying a Smart Motorway Variable Speed Limit (SMVSL) system over a six-month monitoring period. Results indicate that SMVSL systems not only smooth traffic flow but also significantly reduce noise variability, particularly during peak hours, thus mitigating noise peaks associated with adverse health outcomes. LAeq values were found to differ modestly between day and night, with clustering revealing a reduction in extreme noise events (LAmax > 70 dB(A)) in SMVSL scenarios dominated by heavy goods vehicles. This study further identifies associations between unmanaged speed regimes and elevated noise levels, enriching our understanding of the environmental impacts of unregulated traffic conditions. These findings inform sustainable planning and policy strategies aimed at improving urban environmental quality and enhancing public health outcomes. Full article
(This article belongs to the Special Issue Vibration and Noise (2nd Edition))
Show Figures

Figure 1

10 pages, 705 KiB  
Article
Enhancement of Subharmonic Intensity in a Cavity Filled with Bubbly Liquid Through Its Nonlinear Resonance Shift
by María Teresa Tejedor-Sastre and Christian Vanhille
Acoustics 2025, 7(2), 17; https://doi.org/10.3390/acoustics7020017 - 28 Mar 2025
Viewed by 227
Abstract
The aim of this study is to examine the behavior of subharmonics in a one-dimensional cavity filled with a bubbly liquid, leveraging the nonlinear softening phenomenon of the medium at high amplitudes to enhance subharmonic generation. To this purpose, we use a numerical [...] Read more.
The aim of this study is to examine the behavior of subharmonics in a one-dimensional cavity filled with a bubbly liquid, leveraging the nonlinear softening phenomenon of the medium at high amplitudes to enhance subharmonic generation. To this purpose, we use a numerical model developed previously that solves a coupled differential system formed by the wave equation and a Taylor-expanded Rayleigh–Plesset equation. This system describes the nonlinear mutual interaction between ultrasound and bubble vibrations. We carry out several different simulations to measure the response of the subharmonic component f/2 and the acoustic source frequency signal f when the cavity is excited over a range around the linear resonance frequency of the cavity (the resonance value obtained at low pressure amplitudes). Different source amplitudes in three different kinds of medium are used. Our results reveal several new characteristics of subharmonics as follows: their generation is predominant compared to the source frequency; their generation is affected by the softening of the bubbly medium when acoustic pressure amplitudes are raised; this specific behavior is solely an acoustically-related phenomenon; their behavior may indicate that the bubbly liquid medium is undergoing a softening process. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop