Previous Issue
Volume 8, June
 
 

Particles, Volume 8, Issue 3 (September 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
27 pages, 10006 KiB  
Article
Beam Emittance and Bunch Length Diagnostics for the MIR-FEL Beamline at Chiang Mai University
by Kittipong Techakaew, Kanlayaporn Kongmali, Siriwan Pakluea and Sakhorn Rimjaem
Particles 2025, 8(3), 64; https://doi.org/10.3390/particles8030064 (registering DOI) - 21 Jun 2025
Abstract
The generation of high-quality mid-infrared free-electron laser (MIR-FEL) radiation depends critically on precise control of electron beam parameters, including energy, energy spread, transverse emittance, bunch charge, and bunch length. At the PBP-CMU Electron Linac Laboratory (PCELL), effective beam diagnostics are essential for optimizing [...] Read more.
The generation of high-quality mid-infrared free-electron laser (MIR-FEL) radiation depends critically on precise control of electron beam parameters, including energy, energy spread, transverse emittance, bunch charge, and bunch length. At the PBP-CMU Electron Linac Laboratory (PCELL), effective beam diagnostics are essential for optimizing FEL performance. However, dedicated systems for direct measurement of transverse emittance and bunch length at the undulator entrance have been lacking. This paper addresses this gap by presenting the design, simulation, and analysis of diagnostic stations for accurate characterization of these parameters. A two-quadrupole emittance measurement system was developed, enabling independent control of beam-focusing in both transverse planes. An analytical model was formulated specifically for this configuration to enhance emittance reconstruction accuracy. Systematic error analysis was conducted using ASTRA beam dynamics simulations, incorporating 3D field maps from CST Studio Suite and fully including space-charge effects. Results show that transverse emittance values as low as 0.15 mm·mrad can be measured with less than 20% error when the initial RMS beam size is under 2 mm. Additionally, quadrupole misalignment effects were quantified, showing that alignment within ±0.95 mm limits systematic errors to below 33.3%. For bunch length measurements, a transition radiation (TR) station coupled with a Michelson interferometer was designed. Spectral and interferometric simulations reveal that transverse beam size and beam splitter properties significantly affect measurement accuracy. A 6% error due to transverse size was identified, while Kapton beam splitters introduced additional systematic distortions. In contrast, a 6 mm-thick silicon beam splitter enabled accurate, correction-free measurements. The finite size of the radiator was also found to suppress low-frequency components, resulting in up to 10.6% underestimation of bunch length. This work provides a practical and comprehensive diagnostic framework that accounts for multiple error sources in both transverse emittance and bunch length measurements. These findings contribute valuable insight for the beam diagnostics community and support improved control of beam quality in MIR FEL systems. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
9 pages, 583 KiB  
Article
Porting MADGRAPH to FPGA Using High-Level Synthesis (HLS)
by Héctor Gutiérrez Arance, Luca Fiorini, Alberto Valero Biot, Francisco Hervás Álvarez, Santiago Folgueras, Carlos Vico Villalba, Pelayo Leguina López, Arantza Oyanguren Campos, Valerii Kholoimov, Volodymyr Svintozelskyi and Jiahui Zhuo
Particles 2025, 8(3), 63; https://doi.org/10.3390/particles8030063 - 20 Jun 2025
Abstract
The escalating demand for data processing in particle physics research has spurred the exploration of novel technologies to enhance the efficiency and speed of calculations. This study presents the development of an implementation of MADGRAPH, a widely used tool in particle collision simulations, [...] Read more.
The escalating demand for data processing in particle physics research has spurred the exploration of novel technologies to enhance the efficiency and speed of calculations. This study presents the development of an implementation of MADGRAPH, a widely used tool in particle collision simulations, to Field Programmable Gate Array (FPGA) using High-Level Synthesis (HLS). This research presents a proof of concept limited to a single, relatively simple process e+eμ+μ. The experimental evaluation methodology is described, focusing on performance comparison between traditional CPU implementations, GPU acceleration, and the new FPGA approach. This study describes the complex process of adapting MADGRAPH to FPGA using HLS, focusing on optimizing algorithms for parallel processing. These advancements could enable faster execution of complex simulations, highlighting FPGA’s crucial role in advancing particle physics research. The encouraging results obtained in this proof of concept prove potential interest in testing the performance of the FPGA implementation of more complex processes. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop