Intertwined Orders and the Physics of High Temperature Superconductors †
Abstract
Contents | ||
1. | Introduction................................................................................................................................................................................................................ | 2 |
2. | What is a Superconductor......................................................................................................................................................................................... | 2 |
2.1. Ginzburg-Landau Description of the Superconducting State......................................................................................................................... | 3 | |
2.2. Landau Fermi Liquids......................................................................................................................................................................................... | 3 | |
2.3. BCS Theory........................................................................................................................................................................................................... | 5 | |
3. | High Temperature Superconductors are Different............................................................................................................................................... | 7 |
4. | Electronic Liquid-Crystal Phases............................................................................................................................................................................ | 9 |
5. | Competing Orders..................................................................................................................................................................................................... | 13 |
6. | Pair Density Waves and Intertwined Orders......................................................................................................................................................... | 15 |
6.1. Intertwined Orders in La2−xBaxCuO4.............................................................................................................................................................. | 15 | |
6.2. The Pair-Density Wave State............................................................................................................................................................................... | 17 | |
6.3. Landau Theory Picture of the PDW State.......................................................................................................................................................... | 18 | |
6.4. Topological Excitations of the PDW Superconductor...................................................................................................................................... | 21 | |
6.5. Thermal Phase Transitions and the Role of Dimensionality............................................................................................................................ | 24 | |
7. | Microscopic Models of Intertwined Orders.......................................................................................................................................................... | 28 |
8. | Discussion and Conclusions.................................................................................................................................................................................... | 29 |
9. | References................................................................................................................................................................................................................... | 30 |
1. Introduction
2. What Is a Superconductor
2.1. Ginzburg-Landau Description of the Superconducting State
2.2. Landau Fermi Liquids
2.3. BCS Theory
3. High Temperature Superconductors Are Different
4. Electronic Liquid-Crystal Phases
5. Competing Orders
6. Pair Density Waves and Intertwined Orders
6.1. Intertwined Orders in La2−xBaxCuO4
6.2. The Pair-Density Wave State
6.3. Landau Theory Picture of the PDW State
6.4. Topological Excitations of the PDW Superconductor
- Abrikosov vortices with topological charges (i.e., with ), and the short-distance behavior and , and carry quantized magnetic flux .
- Double dislocations with topological charges (i.e., with ). Here too and . Figure 12 shows a double dislocation.
- Half-vortices with topological charges (i.e., with and or and ), and carry half-quantized magnetic flux . Hence, half-vortices are bound to single dislocations with Figure 13 depicts a half-vortex. For the half vortex with , we must have and , and similarly for the other cases. Notice that this implies that the core of the half-vortex of a PDW has FF superconducting order and necessarily breaks inversion symmetry. The structure of the two components of the PDW in the core of a half-vortex is shown in Figure 14 (from Ref. [107]).
6.5. Thermal Phase Transitions and the Role of Dimensionality
7. Microscopic Models of Intertwined Orders
8. Discussion and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1T-TiSe2 | -TiSe2 |
BaFeAs122 | Ba(Fe1−xCox)2As2 |
BSCCO | Bi2Sr2CaCu2O8+δ |
BSNA | Ba1−xSrxNi2As2 |
CDW | Charge Density Wave |
EuRbFeAs | EuRbFe4As4 |
FF | Fulde-Ferrell |
FFLO | Fulde-Ferrell-Larkin-Ovchinnikov |
HTSC | High-Temperature Superconductor |
LBCO | La2−xBaxCuO4 |
LBCO-1/8 | La1.875Ba0.125CuO4 |
LESCO | La1.8−xEu0.2SrxCuO4 |
LNSCO | La1.6−xNd0.4SrxCuO4 |
LO | Larkin-Ovchinnikov |
LSCO | La2−xSrxCuO4 |
NbSe2 | NbSe2 |
PDW | Pair Density Wave |
SDW | Spin Density Wave |
SC | Superconductor |
YBCO | YBa2Cu3O6+x |
UTe2 | UTe2 |
References
- Fradkin, E. Field Theories of Condensed Matter Physics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Landau, L.D. The Theory of a Fermi Liquid. Sov. Phys. JETP 1957, 3, 920–925. [Google Scholar]
- Pines, D.; Noziéres, P. The Theory of Quantum Liquids: Normal Fermi Liquids; Addison-Wesley Publishing Company: Redwood City, CA, USA, 1966. [Google Scholar]
- Baym, G.; Pethick, C.J. Landau Fermi Liquid Theory; John Wiley & Sons: New York, NY, USA, 1991. [Google Scholar]
- de Gennes, P.-G. Superconductivity of Metals and Alloys; Advanced Book Program, Perseus Books: Reading, MA, USA, 1999. [Google Scholar]
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of Superconductivity. Phys. Rev. 1957, 108, 1175–1204. [Google Scholar] [CrossRef]
- Schrieffer, J.R. Theory of Superconductivity; Addison-Wesley: Redwood City, CA, USA, 1964. [Google Scholar]
- Nambu, Y.; Jona-Lasinio, G. Dynamical Model of Elementary particles Based on an Analogy with Superconductivity. I. Phys. Rev. 1961, 122, 345. [Google Scholar] [CrossRef]
- Higgs, P.W. Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett. 1964, 13, 508. [Google Scholar] [CrossRef]
- Steven, W. A Model of Leptons. Phys. Rev. Lett. 1967, 19, 1264. [Google Scholar] [CrossRef]
- Abdus, S. Weak and Electromagnetic Interactions. Conf. Proc. C 1968, 680519, 367–377. [Google Scholar]
- Susskind, L. Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory. Phys. Rev. D 1979, 20, 2619. [Google Scholar] [CrossRef]
- Alford, M.; Bowers, J.A.; Rajagopal, K. Crystalline color superconductivity. Phys. Rev. D 2001, 63, 074016. [Google Scholar] [CrossRef]
- Alford, M. Color-Superconducting Quark Matter. Annu. Rev. Nucl. Part. Sci. 2001, 51, 131. [Google Scholar] [CrossRef]
- Leggett, A.J. A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys. 1975, 47, 331–414. [Google Scholar] [CrossRef]
- Bednorz, J.G.; Müller, K.A. Possible highTc superconductivity in the Ba-La-Cu-O system. Z. FÜ Phys. Condens. Matter 1986, 64, 189–193. [Google Scholar] [CrossRef]
- Emery, V.J.; Kivelson, S.A. Superconductivity in Bad Metals. Phys. Rev. Lett. 1995, 74, 3253–3256. [Google Scholar] [CrossRef] [PubMed]
- Cooper, S.L.; Klein, M.V.; Pazol, B.G.; Rice, J.P.; Ginsberg, D.M. Raman scattering from superconducting gap excitations in single-crystal YBa2Cu3O7-δ. Phys. Rev. B 1988, 37, 5920–5923. [Google Scholar] [CrossRef] [PubMed]
- Damascelli, A.; Hussain, Z.; Shen, Z.X. Angle-resolved potoemission studies of the cuprate superconductors. Rev. Mod. Phys. 2003, 75, 473. [Google Scholar] [CrossRef]
- Vig, S.; Kogar, A.; Mitrano, M.; Husain, A.; Venema, L.; Rak, M.; Mishra, V.; Johnson, P.; Gu, G.; Fradkin, E.; et al. Measurement of the dynamic charge response of materials using low-energy, momentum-resolved electron energy-loss spectroscopy (M-EELS). SciPost Phys. 2017, 3, 026. [Google Scholar] [CrossRef]
- Abbamonte, P.; Fink, J. Collective Charge Excitations Studied by Electron Energy-Loss Spectroscopy. Annu. Rev. Condens. Matter Phys. 2025, 16, 465–480. [Google Scholar] [CrossRef]
- Hartnoll, S.A.; Mackenzie, A.P. Colloquium: Planckian dissipation in metals. Rev. Mod. Phys. 2022, 94, 041002. [Google Scholar] [CrossRef]
- Esterlis, I.; Schmalian, J. Quantum Critical Eliashberg Theory. arXiv 2025, arXiv:2506.11952. [Google Scholar]
- Wollman, D.A.; Van Harlingen, D.J.; Ginsberg, D.M.; Leggett, A.J. Experimantal determinantion of the superconducting pairing state in YBa2Cu3O7-δ from the phase-coherence of YBa2Cu3O7-δ-Pb dc SQUIDS. Phys. Rev. Lett. 1993, 71, 2134. [Google Scholar] [CrossRef] [PubMed]
- Kirtley, J.R.; Tsuei, C.C.; Sun, J.Z.; Chi, C.C.; Yu-Jahnes, L.S.; Gupta, A.; Rupp, M.; Ketchen, M.B. Symmetry of the order parameter in the high-Tc superconductor YBa2Cu3O7-δ. Nature 1995, 373, 225. [Google Scholar] [CrossRef]
- Hoffman, J.E.; Hudson, E.W.; Lang, K.M.; Madhavan, V.; Eisaki, H.; Uchida, S.; Davis, J. A Four Unit Cell Periodic Pattern of Quasi-Particle States Surrounding Vortex Cores in Bi2Sr2CaCu2O8+y. Science 2002, 295, 466. [Google Scholar] [CrossRef] [PubMed]
- Aubin, H.; Behnia, K.; Ribault, M.; Gagnon, R.; Taillefer, L. Angular Position of Nodes in the Superconducting Gap of YBa2Cu3O7-δ. Phys. Rev. Lett. 1997, 78, 2624. [Google Scholar] [CrossRef]
- Tranquada, J.M.; Sternlieb, B.J.; Axe, J.D.; Nakamura, Y.; Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 1995, 375, 561–563. [Google Scholar] [CrossRef]
- Abbamonte, P.; Rusydi, A.; Smadici, S.; Gu, G.D.; Sawatzky, G.A.; Feng, D.L. Spatially modulated ‘Mottness’ in La2-xBaxCuO4. Nat. Phys. 2005, 1, 155–158. [Google Scholar] [CrossRef]
- Hayden, S.M.; Tranquada, J.M. Charge Correlations in Cuprate Superconductors. Annu. Rev. Condens. Matter Phys. 2024, 15, 215–235. [Google Scholar] [CrossRef]
- Hinkov, V.; Haug, D.; Fauqué, B.; Bourges, P.; Sidis, Y.; Ivanov, A.; Bernhard, C.; Lin, C.T.; Keimer, B. Electronic Liquid Crystal State in the High-Temperature Superconductor YBa2Cu3O6.45. Science 2008, 319, 597. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Laliberté, N.D.L.F.; Daou, R.; LeBeuf, D.; Ramshaw, B.J.; Liang, R.; Bonn, D.A.; Hardy, W.H.; Proust, C.; Sheikin, I.; et al. Nernst effect in the cuprate superconductor YBa2Cu3O7-δ: Broken rotational and translational symmetries. Phys. Rev. B 2011, 84, 014507. [Google Scholar] [CrossRef]
- Kivelson, S.A.; Bindloss, I.; Fradkin, E.; Oganesyan, V.; Tranquada, J.; Kapitulnik, A.; Howald, C. How to detect fluctuating stripes in high tempertature superconductors. Rev. Mod. Phys. 2003, 75, 1201–1241. [Google Scholar] [CrossRef]
- Imry, Y.; Ma, S.K. Random-Field Instability of the Ordered State of Continuous Symmetry. Phys. Rev. Lett. 1975, 35, 1399–1401. [Google Scholar] [CrossRef]
- Efetov, K.B.; Larkin, A.I. Charge-density wave in a random potential. J. Exp. Theor. Phys. Soviet Jetp 1977, 45, 1236. [Google Scholar]
- Tranquada, J.M.; Axe, J.D.; Ichikawa, N.; Moodenbaugh, A.R.; Nakamura, Y.; Uchida, S. Coexistence of, and Competition between, Superconductivity and Charge-Stripe Order in La1.6-xNd0.4SrxCuO4. Phys. Rev. Lett. 1997, 78, 338–341. [Google Scholar] [CrossRef]
- Kivelson, S.A.; Fradkin, E.; Emery, V.J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 1998, 393, 550–553. [Google Scholar] [CrossRef]
- Chaikin, P.M.; Lubensky, T.C. Principles of Condensed Matter Physics; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- deGennes, P.G.; Prost, J. The Physics of Liquid Crystals, 2nd ed.; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Emery, V.J.; Kivelson, S.A. Frustrated electronic phase separation and high-temperature superconductors. Phys. C 1993, 209, 597–621. [Google Scholar] [CrossRef]
- Halperin, B.I.; Nelson, D.R. Theory of Two-Dimensional Melting. Phys. Rev. Lett. 1978, 41, 121–124. [Google Scholar] [CrossRef]
- Young, A.P. Melting and the vector Coulomb gas in two dimensions. Phys. Rev. B 1979, 19, 1855–1866. [Google Scholar] [CrossRef]
- Kosterlitz, J.M.; Thouless, D.J. Order, metastability and phase transitions in two-dimensional systems. J. Phys. Solid State Phys. 1973, 6, 1181. [Google Scholar] [CrossRef]
- Sun, K.; Fregoso, B.M.; Lawler, M.J.; Fradkin, E. Fluctuating Stripes in Strongly Correlated electron Systems and the Nematic-Smectic quantum phase transition. Phys. Rev. B 2008, 78, 085124. [Google Scholar] [CrossRef]
- Oganesyan, V.; Kivelson, S.A.; Fradkin, E. Quantum theory of a nematic Fermi fluid. Phys. Rev. B 2001, 64, 195109. [Google Scholar] [CrossRef]
- Kivelson, S.A.; Fradkin, E.; Geballe, T.H. Quasi-one-dimensional dynamics and nematic phases in the two-dimensional Emery model. Phys. Rev. B 2004, 69, 144505. [Google Scholar] [CrossRef]
- Wu, C.; Sun, K.; Fradkin, E.; Zhang, S.C. Fermi liquid instabilities in the spin channel. Phys. Rev. B 2007, 75, 115103. [Google Scholar] [CrossRef]
- Šmejkal, L.; Sinova, J.; Jungwirth, T. Beyond Conventional Ferromagnetism and Antiferromagnetism: A Phase with Nonrelativistic Spin and Crystal Rotation Symmetry. Phys. Rev. X 2022, 12, 031042. [Google Scholar] [CrossRef]
- Jungwirth, T.; Fernandes, R.M.; Fradkin, E.; MacDonald, A.H.; Sinova, J.; Šmejkal, L. Altermagnetism: An unconventional spin-ordered phase of matter. Newton 2025, 100162. [Google Scholar] [CrossRef]
- Nie, L.; Tarjus, G.; Kivelson, S.A. Quenched disorder and vestigial nematicity in the pseudogap regime of the cuprates. Proc. Natl. Acad. Sci. USA 2014, 111, 7980. [Google Scholar] [CrossRef] [PubMed]
- Emery, V.J.; Fradkin, E.; Kivelson, S.A.; Lubensky, T.C. Quantum Theory of the Smectic Metal State in Stripe Phases. Phys. Rev. Lett. 2000, 85, 2160. [Google Scholar] [CrossRef] [PubMed]
- Granath, M.; Oganesyan, V.; Kivelson, S.A.; Fradkin, E.; Emery, V.J. Nodal quasi-particles and coexisting orders in striped superconductors. Phys. Rev. Lett. 2001, 87, 167011. [Google Scholar] [CrossRef] [PubMed]
- Arrigoni, E.; Fradkin, E.; Kivelson, S.A. Mechanism of High Temperature Superconductivity in a striped Hubbard Model. Phys. Rev. B 2004, 69, 214519. [Google Scholar] [CrossRef]
- Kivelson, S.A.; Fradkin, E. How optimal inhomogeneity produces high temperature superconductivity. In Handbook of High Temperature Superconductivity; Schrieffer, J.R., Brooks, J., Eds.; Springer: New York, NY, USA, 2007; pp. 569–595. [Google Scholar]
- Fradkin, E.; Kivelson, S.A.; Tranquada, J.M. Colloquium: Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 2015, 87, 457–482. [Google Scholar] [CrossRef]
- Lilly, M.P.; Cooper, K.B.; Eisenstein, J.P.; Pfeiffer, L.N.; West, K.W. Evidence for an Anisotropic State of Two-Dimensional Electrons in High Landau Levels. Phys. Rev. Lett. 1999, 82, 394–397. [Google Scholar] [CrossRef]
- Du, R.; Tsui, D.; Stormer, H.; Pfeiffer, L.; Baldwin, K.; West, K. Strongly anisotropic transport in higher two-dimensional Landau levels. Solid State Commun. 1999, 109, 389–394. [Google Scholar] [CrossRef]
- Schreiber, K.A.; Csáthy, G.A. Competition of Pairing and Nematicity in the Two-Dimensional Electron Gas. Annu. Rev. Condens. Matter Phys. 2020, 11, 17–35. [Google Scholar] [CrossRef]
- Fradkin, E.; Kivelson, S.A. Liquid-crystal phases of quantum Hall systems. Phys. Rev. B 1999, 59, 8065–8072. [Google Scholar] [CrossRef]
- Borzi, R.A.; Grigera, S.A.; Farrell, J.; Perry, R.S.; Lister, S.J.S.; Lee, S.L.; Tennant, D.A.; Maeno, Y.; Mackenzie, A.P. Formation of a Nematic Fluid at High Fields in Sr3Ru2O7. Science 2007, 315, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.M.; Orth, P.P.; Schmalian, J. Vestigial Order in Quantum Materials: Nematicity and Beyond. Annu. Rev. Condens. Matter Phys. 2019, 10, 133–154. [Google Scholar] [CrossRef]
- Fradkin, E.; Kivelson, S.A.; Lawler, M.J.; Eisenstein, J.P.; Mackenzie, A.P. Nematic Fermi Fluids in Condensed Matter Physics. Annu. Rev. Condens. Matter Phys. 2010, 1, 153. [Google Scholar] [CrossRef]
- Ravenhall, D.G.; Pethick, C.J.; Wilson, J.R. Structure of Matter below Nuclear Saturation Density. Phys. Rev. Lett. 1983, 50, 2066–2069. [Google Scholar] [CrossRef]
- Lorenz, C.P.; Ravenhall, D.G.; Pethick, C.J. Neutron star crusts. Phys. Rev. Lett. 1993, 70, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Kosterlitz, J.M.; Nelson, D.R.; Fisher, M.E. Bicritical and tetracritical points in anisotropic antiferromagnetic systems. Phys. Rev. B 1976, 13, 412. [Google Scholar] [CrossRef]
- Liu, X.; Chong, Y.X.; Sharma, R.; Davis, J.C.S. Discovery of a Cooper-pair density wave state in a transition-metal dichalcogenide. Science 2021, 372, 1447–1452. [Google Scholar] [CrossRef]
- Kivelson, S.A.; Lee, D.H.; Fradkin, E.; Oganesyan, V. Competing order in the mixed state of high-temperature superconductors. Phys. Rev. B 2002, 66, 144516. [Google Scholar] [CrossRef]
- Lake, B.; Rønnow, H.M.; Christensen, N.B.; Aeppli, G.; Lefmann, K.; McMorrow, D.F.; Vorderwisch, P.; Smeibidl, P.; Mangkorntong, N.; Sasagawa, T.; et al. Antiferromagnetic order induced by an applied magnetic field in a high temperature superconductor. Nature 2002, 415, 299. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, D.; Berg, E.; Sachdev, S. Nematic order in the vicinity of a vortex in superconducting FeSe. Phys. Rev. B 2011, 84, 205113. [Google Scholar] [CrossRef]
- Yan, S.; Iaia, D.; Morosan, E.; Fradkin, E.; Abbamonte, P.; Madhavan, V. Influence of Domain Walls in the Incommensurate Charge Density Wave State of Cu Intercalated 1T-TiSe2. Phys. Rev. Lett. 2017, 118, 106405. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Collini, J.; Sun, S.X.L.; Mitrano, M.; Guo, X.; Eckberg, C.; Paglione, J.; Fradkin, E.; Abbamonte, P. Multiple Charge Density Waves and Superconductivity Nucleation at Antiphase Domain Walls in the Nematic Pnictide Ba1-xSrxNi2As2. Phys. Rev. Lett. 2021, 127, 027602. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Su, L.; Castro Neto, A.H.; Pereira, V.M. Discommensuration-driven superconductivty in the charge density wave phases of transition-metal dichalcogenides. Phys. Rev. B 2019, 99, 1211108(R). [Google Scholar] [CrossRef]
- Berg, E.; Fradkin, E.; Kivelson, S.A.; Tranquada, J.M. Striped superconductors: How spin, charge and superconducting orders intertwine in the cuprates. New J. Phys. 2009, 11, 115004. [Google Scholar] [CrossRef]
- Hücker, M.; Zimmermann, M.v.; Gu, G.D.; Xu, Z.J.; Wen, J.S.; Xu, G.; Kang, H.J.; Zheludev, A.; Tranquada, J.M. Stripe order in superconducting La2-x Bax CuO4 (0.095 < x < 0.155). Phys. Rev. B 2011, 83, 104506. [Google Scholar] [CrossRef]
- Fujita, M.; Goka, H.; Yamada, K.; Tranquada, J.M.; Regnault, L.P. Stripe order, depinning, and fluctuations in La1.875Ba0.125CuO4 and La1.875Ba0.075Sr0.050CuO4. Phys. Rev. B 2004, 70, 104517. [Google Scholar] [CrossRef]
- Lee, S.; Huang, E.W.; Johnson, T.A.; Guo, X.; Husain, A.A.; Mitrano, M.; Lu, K.; Zakrzewski, A.V.; de la Peña, G.A.; Peng, Y.; et al. Generic character of charge and spin density waves in superconducting cuprates. Proc. Natl. Acad. Sci. USA 2022, 119, e2119429119. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.; Fumagalli, R.; Rossi, M.; Lorenzana, J.; Seibold, G.; Yakhou-Harris, F.; Kummer, K.; Brookes, N.B.; Gu, G.D.; Braicovich, L.; et al. Formation of Incommensurate Charge Density Waves in Cuprates. Phys. Rev. X 2019, 9, 031042. [Google Scholar] [CrossRef]
- Li, Q.; Hücker, M.; Gu, G.D.; Tsvelik, A.M.; Tranquada, J.M. Two-Dimensional Superconducting Fluctuations in Stripe-Ordered La1.875Ba0.125CuO4. Phys. Rev. Lett. 2007, 99, 067001. [Google Scholar] [CrossRef] [PubMed]
- Tranquada, J.M.; Gu, G.D.; Hücker, M.; Kang, H.J.; Klingerer, R.; Li, Q.; Wen, J.S.; Xu, G.Y.; Zimmermann, M.v. Evidence for unusual superconducting correlations coexisting with stripe order in La1.875Ba0.125CuO4. Phys. Rev. B 2008, 78, 174529. [Google Scholar] [CrossRef]
- Tajima, S.; Noda, T.; Eisaki, H.; Uchida, S. c-Axis Optical Response in the Static Stripe Ordered Phase of the Cuprates. Phys. Rev. Lett. 2001, 86, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Hücker, M.; Zimmermann, M.v.; Xu, Z.J.; Wen, J.S.; Gu, G.D.; Tranquada, J.M. Enhanced charge stripe order of superconducting La2-xBaxCuO4 in a magnetic field. Phys. Rev. B 2013, 87, 014501. [Google Scholar] [CrossRef]
- Schafgans, A.A.; LaForge, A.D.; Dordevic, S.V.; Qazilbash, M.M.; Padilla, W.J.; Burch, K.S.; Li, Z.Q.; Komiya, S.; Ando, Y.; Basov, D.N. Towards two-dimensional superconductivity in La2-xSrxCuO4 in a moderate magnetic field. Phys. Rev. Lett. 2010, 104, 157002. [Google Scholar] [CrossRef] [PubMed]
- Berg, E.; Fradkin, E.; Kim, E.A.; Kivelson, S.A.; Oganesyan, V.; Tranquada, J.M.; Zhang, S.C. Dynamical Layer Decoupling in a Stripe-Ordered High-Tc Superconductor. Phys. Rev. Lett. 2007, 99, 127003. [Google Scholar] [CrossRef] [PubMed]
- Larkin, A.I.; Ovchinnikov, Y.N. Inhomogeneous state of superconductors. Sov. Phys. JETP 1965, 20, 762–769. [Google Scholar]
- Himeda, A.; Kato, T.; Ogata, M. Stripe States with Spatially Oscillating d-Wave Superconductivity in the Two-Dimensional t-t′-J Model. Phys. Rev. Lett. 2002, 88, 117001. [Google Scholar] [CrossRef] [PubMed]
- Corboz, P.; Rice, T.M.; Troyer, M. Competing states in the t-J model: Uniform d-wave state versus stripe state. Phys. Rev. Lett. 2014, 113, 046402. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Oh, D.; Kang, M.; Zhao, H.; Ortiz, B.R.; Oey, Y.; Fang, S.; Ren, Z.; Jozwiak, C.; Bostwick, A.; et al. Small Fermi Pockets Intertwined with Charge Stripes and Pair Density Wave Order in a Kagome Superconductor. Phys. Rev. X 2023, 13, 031030. [Google Scholar] [CrossRef]
- Aishwarya, A.; May-Mann, J.; Raghavan, A.; Nie, L.; Romanelli, M.; Ran, S.; Saha, S.R.; Paglione, J.; Butch, N.P.; Fradkin, E.; et al. Magnetic-field-sensitive charge density waves in the superconductor UTe2. Nature 2023, 618, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Carroll, J.P.; Wang, S.; Ran, S.; Broyles, C.; Siddiquee, H.; Butch, N.P.; Saha, S.R.; Paglione, J.; Davis, J.C.S.; et al. Detection of a pair density wave state in UTe2. Nature 2023, 618, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Blackwell, R.; Thinel, M.; Handa, T.; Ishida, S.; Zhu, X.; Iyo, A.; Eisaki, H.; Pasupathy, A.N.; Fujita, K. Smectic pair-density-wave order in EuRbFe4As4. Nature 2023, 618, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Fulde, P.; Ferrell, R.A. Superconductivity in a Strong Spin-Exchange Field. Phys. Rev. 1964, 135, A550–A563. [Google Scholar] [CrossRef]
- Casalbuoni, R.; Nardulli, G. Inhomogeneous superconductivity in condensed matter and QCD. Rev. Mod. Phys. 2004, 76, 263–320. [Google Scholar] [CrossRef]
- Agterberg, D.F.; Tsunetsugu, H. Dislocations and vortices in pair-density-wave superconductors. Nat. Phys. 2008, 4, 639. [Google Scholar] [CrossRef]
- Agterberg, D.F.; Garaud, J. Checkerboard order in vortex cores from pair-density-wave superconductivity. Phys. Rev. B 2015, 91, 104512. [Google Scholar] [CrossRef]
- Berg, E.; Fradkin, E.; Kivelson, S.A. Theory of the Striped Superconductor. Phys. Rev. B 2009, 79, 064515. [Google Scholar] [CrossRef]
- Agterberg, D.F.; Davis, J.S.; Edkins, S.D.; Fradkin, E.; Harlingen, D.J.V.; Kivelson, S.A.; Lee, P.A.; Radzihovsky, L.; Tranquada, J.M.; Wang, Y. The Physics of Pair-Density Waves: Cuprate Superconductors and Beyond. Annu. Rev. Condens. Matter Phys. 2020, 11, 231–270. [Google Scholar] [CrossRef]
- Soto-Garrido, R.; Cho, G.Y.; Fradkin, E. Quasi-one-dimensional pair density wave superconducting state. Phys. Rev. B 2015, 91, 195102. [Google Scholar] [CrossRef]
- Brydon, P.M.R.; Agterberg, D.F.; Menke, H.; Timm, C. Bogoliubov Fermi surfaces: General theory, magnetic order, and topology. Phys. Rev. B 2018, 98, 224509. [Google Scholar] [CrossRef]
- Hamilton, D.R.; Gu, G.D.; Fradkin, E.; Harlingen, D.J.V. Signatures of pair-density wave order in phase-sensitive measurements of La2-x-Nb Josephson junctions and SQUIDs. arXiv 2018, arXiv:1811.02048. [Google Scholar]
- Wu, Y.M.; Chubukov, A.V.; Wang, Y.; Kivelson, S.A. Time-reversal symmetry breaking, collective modes, and Raman spectrum in pair-density-wave states. arXiv 2025, arXiv:2501.14138. [Google Scholar]
- Hamidian, M.H.; Edkins, S.D.; Fujita, K.; Kostin, A.; Mackenzie, A.P.; Eisaki, H.; Uchida, S.; Lawler, M.J.; Kim, E.A.; Sachdev, S.; et al. Magnetic-field Induced Interconversion of Cooper Pairs and Density Wave States within Cuprate Composite Order. arXiv, 2015; unpublished. [Google Scholar]
- Chen, W.; Ren, W.; Kennedy, N.; Hamidian, M.H.; Uchida, S.; Eisaki, H.; Johnson, P.D.; O’Mahony, S.M.; Davis, J.C.S. Identification of a nematic pair density wave state in Bi2Sr2CaCu2O8+x. Proc. Natl. Acad. Sci. USA 2022, 119, e2206481119. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, E.; Ivashko, O.; Campillo, E.; von Zimmermann, M.; Liang, R.; Bonn, D.A.; Hardy, W.N.; Chang, J.; Forgan, E.M.; Hayden, S.M. Searching for the signature of a pair density wave in YBa2Cu3O6.67 using high energy X-ray diffraction. arXiv 2023, arXiv:2310.18302. [Google Scholar]
- Edkins, S.D.; Kostin, A.; Fujita, K.; Mackenzie, A.P.; Eisaki, H.; Uchida, S.; Lawler, M.J.; Kim, E.A.; Davis, J.; Hamidian, M.H. Magnetic-Field Induced Pair Density Wave in the Cuprate Vortex Halo. Science 2019, 364, 976. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kivelson, S.A.; Wang, T.; Ikeda, Y.; Taniguchi, T.; Fujita, M.; Kao, C.C. Pair-density wave signature observed by x-ray scattering in La-based high-Tc cuprates. arXiv 2023, arXiv:2310.19907. [Google Scholar]
- Berg, E.; Fradkin, E.; Kivelson, S.A. Charge 4e superconductivity from pair density wave order in certain high temperature superconductors. Nat. Phys. 2009, 5, 830–833. [Google Scholar] [CrossRef]
- Rosales, M.; Fradkin, E. Electronic structure of topological defects in the pair density wave superconductor. Phys. Rev. B 2024, 110, 214508. [Google Scholar] [CrossRef]
- Ge, J.; Wang, P.; Xing, Y.; Yin, Q.; Wang, A.; Shen, J.; Lei, H.; Wang, Z.; Wang, J. Charge-4e and Charge-6e Flux Quantization and Higher Charge Superconductivity in Kagome Superconductor Ring Devices. Phys. Rev. X 2024, 14, 021025. [Google Scholar] [CrossRef]
- Babaev, E. Vortices with Fractional Flux in Two-Gap Superconductors and in Extended Faddeev Model. Phys. Rev. Lett. 2002, 89, 067001. [Google Scholar] [CrossRef] [PubMed]
- Agterberg, D.F.; Geracie, M.; Tsunetsugu, H. Conventional and charge-six superfluids from melting hexagonal Fulde-Ferrell-Larkin-Ovchinnikov phases in two dimensions. Phys. Rev. B 2011, 84, 014513. [Google Scholar] [CrossRef]
- Mukerjee, S.; Xu, C.; Moore, J.E. Topological Defects and the Superfluid Transition of the s=1 Spinor Condensate in Two Dimensions. Phys. Rev. Lett. 2006, 97, 120406. [Google Scholar] [CrossRef] [PubMed]
- Radzihovsky, L.; Vishwanath, A. Quantum Liquid Crystals in an Imbalanced Fermi Gas: Fluctuations and Fractional Vortices in Larkin-Ovchinnikov States. Phys. Rev. Lett. 2009, 103, 010404. [Google Scholar] [CrossRef] [PubMed]
- Vakaryuk, V.; Leggett, A.J. Spin Polarization of Half-Quantum Vortex in Systems with Equal Spin Pairing. Phys. Rev. Lett. 2009, 103, 057003. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.H.; Wang, Y.; Fradkin, E. Pair-Density-Wave Order and Paired Fractional Quantum Hall Fluids. Phys. Rev. X 2019, 9, 021047. [Google Scholar] [CrossRef]
- Wang, Y.; Edkins, S.D.; Hamidian, M.H.; Davis, J.C.S.; Fradkin, E.; Kivelson, S.A. Pair density waves in superconducting vortex halos. Phys. Rev. B 2018, 97, 174510. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, Y.H.; Senthil, T.; Lee, P.A. Pair-density waves, charge-density waves, and vortices in high-Tc cuprates. Phys. Rev. B 2018, 97, 174511. [Google Scholar] [CrossRef]
- Calabrese, P.; Pelissetto, A.; Rossi, P.; Vicari, E. Field Theory Results for Three-Dimensional Systems with Complex Symmetries. Int. J. Mod. Phys. B 2003, 17, 5829–5838. [Google Scholar] [CrossRef]
- Golubović, L.; Kostić, D. Partially ordered states in Ginzburg-Landau-Wilson models with cubic-type anisotropy. Phys. Rev. B 1988, 38, 2622–2634. [Google Scholar] [CrossRef] [PubMed]
- Mross, D.F.; Senthil, T. Spin- and Pair-Density-Wave Glasses. Phys. Rev. X 2015, 5, 031008. [Google Scholar] [CrossRef]
- Fradkin, E. Quantum Field Theory: An Integrated Approach; Princeton University Press: Princeton, NJ, USA, 2023. [Google Scholar]
- José, J.V.; Kadanoff, L.P.; Kirkpatrick, S.; Nelson, D.R. Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model. Phys. Rev. B 1977, 16, 1217. [Google Scholar] [CrossRef]
- Kadanoff, L.P. Multicritical behavior at the Kosterlitz-Thouless critical point. Ann. Phys. 1979, 120, 39. [Google Scholar] [CrossRef]
- Fradkin, E. Field theoretic aspects of condensed matter physics: An overview. In Encyclopedia of Condensed Matter Physics, 2nd ed.; Chakraborty, T., Ed.; Academic Press: Oxford, UK, 2024; pp. 27–131. [Google Scholar] [CrossRef]
- Kondev, J.; Henley, C.L. Kac-Moody symmetries of critical ground states. Nucl. Phys. B 1996, 464, 540. [Google Scholar] [CrossRef]
- Lee, D.H.; Grinstein, G. Strings in two-dimensional classical XY models. Phys. Rev. Lett. 1985, 55, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Grinstein, G.; Toner, J. Commensurate and Incommensurate Vortices in Two-Dimensional XY Models. Phys. Rev. Lett. 1986, 56, 2318. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Lamacraft, A.; Fendley, P. Boson Pairing and Unusual Criticality in a Generalized XY Model. Phys. Rev. Lett. 2011, 107, 240601. [Google Scholar] [CrossRef] [PubMed]
- Jaefari, A.; Lal, S.; Fradkin, E. Charge-density wave and superconductor competition in stripe phases of high-temperature superconductors. Phys. Rev. B 2010, 82, 144531. [Google Scholar] [CrossRef]
- Noack, R.M.; White, S.R.; Scalapino, D.J. The Doped Two-Chain Hubbard Model. Europhys. Lett. (EPL) 1995, 30, 163. [Google Scholar] [CrossRef]
- White, S.R.; Scalapino, D.J. Density Matrix Renormalization Group Study of the Striped Phase in the 2D t-J Model. Phys. Rev. Lett. 1998, 80, 1272. [Google Scholar] [CrossRef]
- Zheng, B.X.; Chung, C.M.; Corboz, P.; Ehlers, G.; Qin, M.P.; Noack, R.M.; Shi, H.; White, S.R.; Zhang, S.; Chan, G.K.L. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 2017, 358, 1155. [Google Scholar] [CrossRef] [PubMed]
- Arovas, D.P.; Berg, E.; Kivelson, S.A.; Raghu, S. The Hubbard Model. Annu. Rev. Condens. Matter Phys. 2022, 13, 239–274. [Google Scholar] [CrossRef]
- Berg, E.; Fradkin, E.; Kivelson, S.A. Pair-Density-Wave Correlations in the Kondo-Heisenberg Model. Phys. Rev. Lett. 2010, 105, 146403. [Google Scholar] [CrossRef] [PubMed]
- Jaefari, A.; Fradkin, E. Pair-density-wave superconducting order in two-leg ladders. Phys. Rev. B 2012, 85, 035104. [Google Scholar] [CrossRef]
- Loder, F.; Kampf, A.P.; Kopp, T. Superconducting state with a finite-momentum pairing mechanism in zero external magnetic field. Phys. Rev. B 2010, 81, 020511. [Google Scholar] [CrossRef]
- Loder, F.; Graser, S.; Schmid, M.; Kampf, A.P.; Kopp, T. Modeling of Superconducting Stripe Phases in High-Tc Cuprates. New J. Phys. 2011, 13, 113037. [Google Scholar] [CrossRef]
- Lee, P.A. Amperean pairing and the pseudogap phase of cuprate superconductors. Phys. Rev. X 2014, 4, 031017. [Google Scholar] [CrossRef]
- Wårdh, J.; Granath, M. Effective model for a supercurrent in a pair-density wave. Phys. Rev. B 2017, 96, 224503. [Google Scholar] [CrossRef]
- Ponsioen, B.; Chung, S.S.; Corboz, P. Superconducting stripes in the hole-doped three-band Hubbard model. Phys. Rev. B 2023, 108, 205154. [Google Scholar] [CrossRef]
- Verstraete, F.; Murg, V.; Cirac, J. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 2008, 57, 143. [Google Scholar] [CrossRef]
- Huang, K.S.; Han, Z.; Kivelson, S.A.; Yao, H. Pair-Density-Wave in the Strong Coupling Limit of the Holstein-Hubbard model. NPJ Quantum Mater. 2022, 7, 17. [Google Scholar] [CrossRef]
- Jiang, H.C. Pair density wave in the doped three-band Hubbard model on two-leg square cylinders. Phys. Rev. B 2023, 107, 214504. [Google Scholar] [CrossRef]
- Soto-Garrido, R.; Fradkin, E. Pair-density-wave superconducting states and electronic liquid-crystal phases. Phys. Rev. B 2014, 89, 165126. [Google Scholar] [CrossRef]
- Zou, X.; Fernandes, R.M.; Fradkin, E. Superconducting States of Metallic Altermagnets. 2025; in preparation. [Google Scholar]
- Anderson, P.W. The Resonating Valence Bond State in La2CuO4 and Superconductivity. Science 1987, 235, 1196. [Google Scholar] [CrossRef] [PubMed]
- Kivelson, S.A.; Rokhsar, D.; Sethna, J.P. Topology of the resonating valence-bond state: Solitons and high Tc superconductivity. Phys. Rev. B 1987, 35, 8865. [Google Scholar] [CrossRef] [PubMed]
- Rokhsar, D.; Kivelson, S.A. Superconductivity and the Quantum Hard-Core Dimer Gas. Phys. Rev. Lett. 1988, 61, 2376. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, G.; Anderson, P.W. Gauge theory of high-temperature superconductors and strongly correlated Fermi systems. Phys. Rev. B 1988, 37, 580. [Google Scholar] [CrossRef] [PubMed]
- Fradkin, E. The Spectrum of Short Range Resonating Valence Bond Theories. In Field Theories in Condensed Matter Physics, A Workshop, Proceedings of the Johns Hopkins Workshop on Field Theories in Condensed Matter Physics, Baltimore, MD, USA, 1–17 June 1988; Tešanović, Z., Ed.; Addison-Wesley: Redwood City, CA, USA, 1990; p. 73. [Google Scholar]
- Fradkin, E.; Kivelson, S. Short Range Resonating Valence Bond Theories and Superconductivity. Mod. Phys. Lett. B 1990, 4, 225. [Google Scholar] [CrossRef]
- Moessner, R.; Sondhi, S.L. Resonating Valence Bond Phase in the Triangular Lattice Quantum Dimer Model. Phys. Rev. Lett. 2001, 86, 1881. [Google Scholar] [CrossRef] [PubMed]
- Moessner, R.; Sondhi, S.L.; Fradkin, E. Short-Ranged Resonating Valence Bond Physics, Quantum Dimer Models, and Ising Gauge Theories. Phys. Rev. B 2001, 65, 024504. [Google Scholar] [CrossRef]
- Affleck, I.; Marston, J.B. Large-N limit of the Heisenberg-Hubbard Model: Implications for High-Tc Superconductors. Phys. Rev. B 1988, 37, 3774. [Google Scholar] [CrossRef] [PubMed]
- Read, N.; Sachdev, S. Valence Bond and Spin Singlet Ground States of Low Dimensional Quantum Antiferromagnets. Phys. Rev. Lett. 1989, 62, 1694. [Google Scholar] [CrossRef] [PubMed]
- Read, N.; Sachdev, S. Large-N Expansion for Frustrated Quantum Antiferromagnets. Phys. Rev. Lett. 1991, 66, 1773. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, S.; Read, N. Large N expansion for frustrated and doped quantum antiferromagnets. Int. J. Mod. Phys. B 1991, 5, 219. [Google Scholar] [CrossRef]
- Wen, X.G.; Wilczek, F.; Zee, A. Chiral spin states and superconductivity. Phys. Rev. B 1989, 39, 11413. [Google Scholar] [CrossRef] [PubMed]
- Kalmeyer, V.; Laughlin, R.B. Equivalence of the resonating-valence-bond and fractional quantum Hall states. Phys. Rev. Lett. 1987, 59, 2095. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Gong, S.S.; Sheng, D.N. Quantum Phase Diagram and Spontaneously Emergent Topological Chiral Superconductivity in Doped Triangular-Lattice Mott Insulators. Phys. Rev. Lett. 2023, 130, 136003. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.A.; Nagaosa, N.; Wen, X.G. Doping a Mott Insulator: Physics of High Temperature Superconductivity. Rev. Mod. Phys. 2006, 78, 17. [Google Scholar] [CrossRef]
- Jiang, H.C.; Kivelson, S.A. High Temperature Superconductivity in a Lightly Doped Quantum Spin Liquid. Phys. Rev. Lett. 2021, 127, 097002. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fradkin, E. Intertwined Orders and the Physics of High Temperature Superconductors. Particles 2025, 8, 70. https://doi.org/10.3390/particles8030070
Fradkin E. Intertwined Orders and the Physics of High Temperature Superconductors. Particles. 2025; 8(3):70. https://doi.org/10.3390/particles8030070
Chicago/Turabian StyleFradkin, Eduardo. 2025. "Intertwined Orders and the Physics of High Temperature Superconductors" Particles 8, no. 3: 70. https://doi.org/10.3390/particles8030070
APA StyleFradkin, E. (2025). Intertwined Orders and the Physics of High Temperature Superconductors. Particles, 8(3), 70. https://doi.org/10.3390/particles8030070