Skip Content
You are currently on the new version of our website. Access the old version .

Particles

Particles is an international, open access, peer-reviewed journal covering all aspects of nuclear physics, particle physics and astrophysics science, and is published quarterly online by MDPI.

Quartile Ranking JCR - Q2 (Astronomy and Astrophysics)

All Articles (434)

COMCUBE-S (Compton Telescope CubeSat Swarm) is a proposed mission aimed at understanding the radiation mechanisms of ultra-relativistic jets from Gamma-Ray Bursts (GRBs). It consists of a swarm of 16U CubeSats carrying a state-of-the-art Compton polarimeter and a bismuth germanium oxide (BGO) spectrometer to perform timing, spectroscopic and polarimetric measurements of the prompt emission from GRBs. The mission is currently in a feasibility study phase (Phase A) with the European Space Agency to prepare an in-orbit demonstration. Here, we present the simulation work used to optimise the design and operational concept of the microsatellite constellation, as well as estimate the mission performance in terms of GRB detection rate and polarimetry. We used the MEGAlib software to simulate the response function of the gamma-ray instruments, together with a detailed model for the background particle and radiation fluxes in low-Earth orbit. We also developed a synthetic GRB population model to best estimate the detection rate. These simulations show that COMCUBE-S will detect about 2 GRBs per day, which is significantly higher than that of all past and current GRB missions. Furthermore, simulated performance for linear polarisation measurements shows that COMCUBE-S will be able to uniquely distinguish between competing models of the GRB prompt emission, thereby shedding new light on some of the most fundamental aspects of GRB physics.

6 February 2026

Representation of the concept of operations of the COMCUBE-S CubeSat swarm.

We investigate primordial black hole (PBH) production via the collapse of supercritical domain walls in a quadratic f(R)-gravity model with tensor extensions. The effective field theory for an extra space’s scalar curvature provides a foundation for the formation of these dense walls. In our work, domain walls are found to be supercritical. Their properties were extensively studied in the literature, where it was demonstrated that they create wormholes and escape into baby universes through them. Closure of the wormhole leads to black hole creation, providing a mechanism for the production of primordial black holes in our model. We calculate the mass spectrum of such black holes and mass distribution within clusters of them. When accretion is accounted for, the black holes produced under this mechanism present viable dark matter candidates.

3 February 2026

The microscopic origin of the de Sitter entropy remains a central puzzle in quantum gravity that is related to the cosmological constant problem. Within the paradigm of Holographic Naturalness, we propose that this entropy is carried by a vast number of light, coherent degrees of freedom—called “hairons”—which emerge as the moduli of gravitational instantons on orbifolds. Starting from the Euclidean de Sitter instanton (S4), we construct a new class of orbifold gravitational instantons, S4/ZN, where N corresponds to the de Sitter entropy. We demonstrate that the dimension of the moduli space of these instantons scales linearly with N, and we identify these moduli with the hairon fields. A ZN symmetry, derived from Wilson loops in the instanton background, ensures the distinguishability of these modes, leading to the correct entropy count. The hairons acquire a mass of the order of the Hubble scale and exhibit negligible mutual interactions, suggesting that the de Sitter vacuum is a coherent state, or Bose–Einstein condensate, of these fundamental excitations. Then, we present a novel framework which unifies neutrino mass generation with the cosmological constant through gravitational topology and holography. The small neutrino mass scale emerges naturally from first principles, without requiring new physics beyond the Standard Model and Gravity. The gravitational Chern–Simons structure and its anomaly with neutrinos force a topological Higgs mechanism, leading to neutrino condensation via S4/ZN gravitational instantons. The number of topological degrees of freedom provides both the holographic counting of the de Sitter entropy and a 1/Ninformation see-saw mechanism for neutrino masses. Our framework makes the following predictions: (i) a neutrino superfluid condensation forming Cooper pairs below meV energies, as a viable candidate for cold dark matter; (ii) a possible resolution of the strong CP problem through a QCD composite axion state; (iii) time-varying neutrino masses which track the evolution of dark energy; and (iv) several distinctive signatures in astroparticle physics, ultra-high-energy cosmic rays and high magnetic field experiments.

2 February 2026

This work presents a simulation study of a Timepix3 telescope composed of nine detectors for use as a Compton scatter polarimeter in the energy range of 35–100 keV. Four detectors carry 1 mm thick silicon (Si) sensors and five detectors carry 1 mm thick cadmium telluride (CdTe) sensors. The modulation factor for 100% linearly polarized X-ray beams was found to be μ100>70% in the energy range of 55–80 keV. The quality factor of the polarimeter has its maximum 12.8% at the energy 75 keV. The comparison of quality factors and the calculations of a hypothetical observation of the Crab nebula show that this multilayer Timepix3 approach is competitive with contemporary X-ray polarimeters.

2 February 2026

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Particles - ISSN 2571-712X