Selected Papers from the 22nd International Conference on Recent Progress in Many-Body Theories

A special issue of Particles (ISSN 2571-712X).

Deadline for manuscript submissions: 30 April 2025 | Viewed by 1742

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Facility for Rare Isotope Beams (FRIB) and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
Interests: many-body theory; computational physics; nuclear many-body problem; nuclear structure problems

E-Mail Website
Guest Editor
Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
Interests: quantum many-body theory; nuclear physics

E-Mail Website
Guest Editor
Department of Physics, Indiana University, Bloomington, IN 47405, USA
Interests: quantum many-particle and field theory; condensed matter physics; strongly interacting systems; quantum information science

E-Mail Website
Guest Editor
Institut für Physik, Universität Rostock, 18051 Rostock, Germany
Interests: quantum statistical many-body theory; plasmas; strongly correlated quantum systems

Special Issue Information

Dear Colleagues,

This Special Issue will host selected papers from the 22nd International Conference on Recent Progress in Many-Body Theories, which will be held in Tsukuba, Japan, from 23 September 2024 to 27 September 2024 (https://project.ccs.tsukuba.ac.jp/event/23/). The Article Processing Charge (APC) for submissions from the workshop will be waived, and publication will be free of charge.

Prof. Dr. Armen Sedrakian
Prof. Dr. Morten Hjorth-Jensen
Prof. Dr. Takashi Nakatsukasa
Prof. Dr. Gerardo Ortiz
Dr. Heidi Reinholz
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Particles is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • computational quantum many-body physics
  • condensed matter physics
  • non-equilibrium many-body phenomena
  • nuclear and subnuclear physics
  • quantum chemistry and atomic and molecular physics
  • quantum fluids and ultracold gases
  • quantum information and computation
  • other topics in new frontiers

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 349 KiB  
Article
Surrogate Model for In-Medium Similarity Renormalization Group Method Using Dynamic Mode Decomposition
by Sota Yoshida
Particles 2025, 8(1), 13; https://doi.org/10.3390/particles8010013 - 9 Feb 2025
Viewed by 651
Abstract
I propose a data-driven surrogate model for the In-Medium Similarity Renormalization Group (IMSRG) method using Dynamic Mode Decomposition (DMD). First, the Magnus formulation of the IMSRG is leveraged to represent the unitary transformation of many-body operators of interest. Then, snapshots of these operators [...] Read more.
I propose a data-driven surrogate model for the In-Medium Similarity Renormalization Group (IMSRG) method using Dynamic Mode Decomposition (DMD). First, the Magnus formulation of the IMSRG is leveraged to represent the unitary transformation of many-body operators of interest. Then, snapshots of these operators at different flow parameters are decomposed by DMD to approximate the IMSRG flow in a latent space. The resulting emulator accurately reproduces the asymptotic flow behavior while lowering computational costs. I demonstrate that the DMD-based emulator results in a three to five times speedup compared to the full IMSRG calculation in a few test cases based on the ground state properties of 56Ni, 16O, and 40Ca in realistic nuclear interactions. While this is still not an acceleration that is significant enough to enable us to fully quantify, e.g., statistical uncertainties using Bayesian methods, this work offers a starting point for constructing efficient surrogate models for the IMSRG. Full article
Show Figures

Figure 1

25 pages, 9252 KiB  
Article
Extensions of the Variational Method with an Explicit Energy Functional for Nuclear Matter with Spin-Orbit Force
by Kento Kitanaka, Toshiya Osuka, Tetsu Sato, Hayate Ichikawa and Masatoshi Takano
Particles 2025, 8(1), 11; https://doi.org/10.3390/particles8010011 - 7 Feb 2025
Viewed by 492
Abstract
Two extensions of the variational method with explicit energy functionals (EEFs) with respect to the spin-orbit force were performed. In this method, the energy per nucleon of nuclear matter is explicitly expressed as a functional of various two-body distribution functions, starting from realistic [...] Read more.
Two extensions of the variational method with explicit energy functionals (EEFs) with respect to the spin-orbit force were performed. In this method, the energy per nucleon of nuclear matter is explicitly expressed as a functional of various two-body distribution functions, starting from realistic nuclear forces. The energy was then minimized by solving the Euler–Lagrange equation for the distribution functions derived from the EEF. In the first extension, an EEF of symmetric nuclear matter at zero temperature was constructed using the two-body central, tensor, and spin-orbit nuclear forces. The energy per nucleon calculated using the Argonne v8’ two-body nuclear potential was found to be lower than those calculated using other many-body methods, implying that the energy contribution caused by the spin-orbit correlation, whose relative orbital angular momentum operator acts on other correlations, is necessary. In a subsequent extension, the EEF of neutron matter at zero temperature, including the spin-orbit force, was extended to neutron matter at finite temperatures using the method by Schmidt and Pandharipande. The thermodynamic quantities of neutron matter calculated using the Argonne v8’ nuclear potential were found to be reasonable and self-consistent. Full article
Show Figures

Figure 1

Back to TopTop