Next Issue
Volume 8, June
Previous Issue
Volume 7, December
 
 

Instruments, Volume 8, Issue 1 (March 2024) – 24 articles

Cover Story (view full-size image): Next-generation micro-electronic semiconductor devices will be more complex and three-dimensional, with a nanometer-scale feature size. To guide the manufacturing of these sophisticated devices, powerful non-destructive imaging methods are needed. While it has been shown in proof-of-principle experiments that ptychographic laminography, using coherent hard X-rays, can perform such measurements, the chip-scanning time makes the use of this method impractical at present. This paper presents an attractive solution to this problem by providing a physics-designed hard X-ray free-electron laser based on a regenerative amplifier that yields a coherent flux enhanced by five orders of magnitude. This solution is based on the use of very high-gradient accelerators and short-period undulators. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
18 pages, 8259 KiB  
Article
A Portable Tool for Spectral Analysis of Plant Leaves That Incorporates a Multichannel Detector to Enable Faster Data Capture
by Juan Botero-Valencia, Erick Reyes-Vera, Elizabeth Ospina-Rojas and Flavio Prieto-Ortiz
Instruments 2024, 8(1), 24; https://doi.org/10.3390/instruments8010024 - 17 Mar 2024
Cited by 2 | Viewed by 1842
Abstract
In this study, a novel system was designed to enhance the efficiency of data acquisition in a portable and compact instrument dedicated to the spectral analysis of various surfaces, including plant leaves, and materials requiring characterization within the 410 to 915 nm range. [...] Read more.
In this study, a novel system was designed to enhance the efficiency of data acquisition in a portable and compact instrument dedicated to the spectral analysis of various surfaces, including plant leaves, and materials requiring characterization within the 410 to 915 nm range. The proposed system incorporates two nine-band detectors positioned on the top and bottom of the target surface, each equipped with a digitally controllable LED. The detectors are capable of measuring both reflection and transmission properties, depending on the LED configuration. Specifically, when the upper LED is activated, the lower detector operates without its LED, enabling the precise measurement of light transmitted through the sample. The process is reversed in subsequent iterations, facilitating an accurate assessment of reflection and transmission for each side of the target surface. For reliability, the error estimation utilizes a color checker, followed by a multi-layer perceptron (MLP) implementation integrated into the microcontroller unit (MCU) using TinyML technology for real-time refined data acquisition. The system is constructed with 3D-printed components and cost-effective electronics. It also supports USB or Bluetooth communication for data transmission. This innovative detector marks a significant advancement in spectral analysis, particularly for plant research, offering the potential for disease detection and nutritional deficiency assessment. Full article
(This article belongs to the Special Issue Feature Papers in Instruments 2021–2022)
Show Figures

Figure 1

15 pages, 1552 KiB  
Article
On the Development of Inkjet-Printed Band Pass Filters Based on the Microstrip Hairpin Structure
by Giovanni Gugliandolo, Antonino Quattrocchi, Giuseppe Campobello, Giovanni Crupi and Nicola Donato
Instruments 2024, 8(1), 23; https://doi.org/10.3390/instruments8010023 - 16 Mar 2024
Viewed by 1852
Abstract
In recent years, inkjet printing has emerged as a promising advanced fabrication technology in the field of electronics, offering remarkable advantages in terms of cost-effectiveness, design flexibility, and rapid prototyping. For these reasons, inkjet printing technology has been widely adopted in various applications, [...] Read more.
In recent years, inkjet printing has emerged as a promising advanced fabrication technology in the field of electronics, offering remarkable advantages in terms of cost-effectiveness, design flexibility, and rapid prototyping. For these reasons, inkjet printing technology has been widely adopted in various applications, including printed circuit board fabrication, sensor development (e.g., temperature, humidity, and pressure sensing), and antenna and filter production, up to the microwave frequency range. The present paper is focused on the investigation of a methodology based on Monte Carlo simulations for quantitatively assessing the influence of fabrication tolerances on the performance of inkjet-printed microwave devices. In particular, the proposed methodology is applied to an inkjet-printed hairpin band pass filter specifically tailored for operation in the L band (i.e., from 1 GHz to 2 GHz). The initial design phase involved the use of computer aided design (CAD) software to optimize the geometric dimensions of the designed filter to closely match the desired performance specifications in terms of bandwidth, insertion loss, and return loss. Later, a Monte Carlo analysis was conducted to evaluate the propagation of tolerances in the fabrication process throughout the design and to estimate their effects on device performance. The fabrication process exploited the advanced capabilities of the Voltera inkjet printer, which was used to deposit a silver-based conductive ink on a commercial Rogers substrate. The device’s performance was evaluated by comparing the simulated scattering parameters with those measured on the developed filter using a vector network analyzer (VNA), thus ensuring accurate validation of real-world performance. Full article
Show Figures

Figure 1

9 pages, 2469 KiB  
Article
Production and Processing of the Radionuclide 76Br
by Karsten Franke, Jann Schöngart and Alexander Mansel
Instruments 2024, 8(1), 22; https://doi.org/10.3390/instruments8010022 - 13 Mar 2024
Cited by 1 | Viewed by 1587
Abstract
Four-dimensional visualization, i.e., three-dimensional space plus time, of fluid flow and its interactions in geological materials using positron emission tomography (PET) requires suitable radiotracers that exhibit the desired physicochemical interactions. 76Br is a likely candidate as a conservative tracer in these studies. [...] Read more.
Four-dimensional visualization, i.e., three-dimensional space plus time, of fluid flow and its interactions in geological materials using positron emission tomography (PET) requires suitable radiotracers that exhibit the desired physicochemical interactions. 76Br is a likely candidate as a conservative tracer in these studies. [76Se]CoSe was produced and used as the target material for the production of 76Br via the (p,n) reaction at a Cyclone 18/9 cyclotron. 76Br was separated from the target by thermochromatographic distillation using a semi-automated system, combining a quartz glass apparatus with a synthesis module. 76Br was successfully produced at the cyclotron with a physical yield of 72 MBq/µAh (EOB). The total radiochemical yield of 76Br from the irradiated [76Se]CoSe target (EOS) was 68.6%. A total of 40 MBq–100 MBq n.c.a. 76Br were routinely prepared for PET experiments in 3 mL 20 mM Cl solution. The spatial resolution of a PET scan with 76Br in geological materials was determined to be about 5 mm. The established procedure enables the routine investigation of hydrodynamics by PET techniques in geological materials that strongly sorb commonly used PET tracers such as 18F. Full article
Show Figures

Figure 1

14 pages, 5105 KiB  
Article
Analysis of Near-Field Magnetic Responses on ZrTe5 through Cryogenic Magneto-THz Nano-Imaging
by Samuel Haeuser, Richard H. J. Kim, Joong-Mok Park, Randall K. Chan, Muhammad Imran, Thomas Koschny and Jigang Wang
Instruments 2024, 8(1), 21; https://doi.org/10.3390/instruments8010021 - 5 Mar 2024
Viewed by 1877
Abstract
One manifestation of light-Weyl fermion interaction is the emergence of chiral magnetic effects under magnetic fields. Probing real space magnetic responses at terahertz (THz) scales is challenging but highly desired, as the local responses are less affected by the topologically trivial inhomogeneity that [...] Read more.
One manifestation of light-Weyl fermion interaction is the emergence of chiral magnetic effects under magnetic fields. Probing real space magnetic responses at terahertz (THz) scales is challenging but highly desired, as the local responses are less affected by the topologically trivial inhomogeneity that is ubiquitous in spatially averaged measurements. Here, we implement a cryogenic THz microscopy instrument under a magnetic field environment—a task only recently achieved. We explore the technical approach of this system and characterize the magnetic field’s influence on our AFM operation by statistical noise analysis. We find evidence for local near-field spatial variations in the topological semimetal ZrTe5 up to a 5-Tesla magnetic field and obtain near-field THz spectra to discuss their implications for future studies on the chiral magnetic effect. Full article
Show Figures

Figure 1

15 pages, 1222 KiB  
Review
Scattering Polarimetry in the Hard X-ray Range
by Enrico Costa
Instruments 2024, 8(1), 20; https://doi.org/10.3390/instruments8010020 - 2 Mar 2024
Cited by 1 | Viewed by 1529
Abstract
In one and a half years, the Imaging X-ray Polarimetry Explorer has demonstrated the role and the potentiality of Polarimetry in X-ray Astronomy. The next steps include extension to higher energies. There is margin for an extension of the photoelectric approach up to [...] Read more.
In one and a half years, the Imaging X-ray Polarimetry Explorer has demonstrated the role and the potentiality of Polarimetry in X-ray Astronomy. The next steps include extension to higher energies. There is margin for an extension of the photoelectric approach up to 20–25 keV, but above that energy the only technique is Compton Scattering. Grazing incidence optics can focus photons up to 80 keV, not excluding a marginal extension to 150–200 keV. Given the physical constraints involved, the passage from photoelectric to scattering approach can make less effective the use of optics because of the high background. I discuss the choices in terms of detector design to mitigate the problem and the guidelines for future technological developments. Full article
Show Figures

Figure 1

32 pages, 23973 KiB  
Article
A High-Flux Compact X-ray Free-Electron Laser for Next-Generation Chip Metrology Needs
by James B. Rosenzweig, Gerard Andonian, Ronald Agustsson, Petr M. Anisimov, Aurora Araujo, Fabio Bosco, Martina Carillo, Enrica Chiadroni, Luca Giannessi, Zhirong Huang, Atsushi Fukasawa, Dongsung Kim, Sergey Kutsaev, Gerard Lawler, Zenghai Li, Nathan Majernik, Pratik Manwani, Jared Maxson, Janwei Miao, Mauro Migliorati, Andrea Mostacci, Pietro Musumeci, Alex Murokh, Emilio Nanni, Sean O’Tool, Luigi Palumbo, River Robles, Yusuke Sakai, Evgenya I. Simakov, Madison Singleton, Bruno Spataro, Jingyi Tang, Sami Tantawi, Oliver Williams, Haoran Xu and Monika Yadavadd Show full author list remove Hide full author list
Instruments 2024, 8(1), 19; https://doi.org/10.3390/instruments8010019 - 1 Mar 2024
Cited by 1 | Viewed by 2686
Abstract
Recently, considerable work has been directed at the development of an ultracompact X-ray free-electron laser (UCXFEL) based on emerging techniques in high-field cryogenic acceleration, with attendant dramatic improvements in electron beam brightness and state-of-the-art concepts in beam dynamics, magnetic undulators, and X-ray optics. [...] Read more.
Recently, considerable work has been directed at the development of an ultracompact X-ray free-electron laser (UCXFEL) based on emerging techniques in high-field cryogenic acceleration, with attendant dramatic improvements in electron beam brightness and state-of-the-art concepts in beam dynamics, magnetic undulators, and X-ray optics. A full conceptual design of a 1 nm (1.24 keV) UCXFEL with a length and cost over an order of magnitude below current X-ray free-electron lasers (XFELs) has resulted from this effort. This instrument has been developed with an emphasis on permitting exploratory scientific research in a wide variety of fields in a university setting. Concurrently, compact FELs are being vigorously developed for use as instruments to enable next-generation chip manufacturing through use as a high-flux, few nm lithography source. This new role suggests consideration of XFELs to urgently address emerging demands in the semiconductor device sector, as identified by recent national need studies, for new radiation sources aimed at chip manufacturing. Indeed, it has been shown that one may use coherent X-rays to perform 10–20 nm class resolution surveys of macroscopic, cm scale structures such as chips, using ptychographic laminography techniques. As the XFEL is a very promising candidate for realizing such methods, we present here an analysis of the issues and likely solutions associated with extending the UCXFEL to harder X-rays (above 7 keV), much higher fluxes, and increased levels of coherence, as well as methods of applying such a source for ptychographic laminography to microelectronic device measurements. We discuss the development path to move the concept to rapid realization of a transformative XFEL-based application, outlining both FEL and metrology system challenges. Full article
Show Figures

Figure 1

11 pages, 2551 KiB  
Article
Improving Fabrication and Performance of Additively Manufactured RF Cavities by Employing Co-Printed Support Structures and Their Subsequent Removal
by Michael Mayerhofer, Stefan Brenner, Michael Doppler, Luis Catarino, Stefanie Girst, Vesna Nedeljkovic-Groha and Günther Dollinger
Instruments 2024, 8(1), 18; https://doi.org/10.3390/instruments8010018 - 1 Mar 2024
Cited by 2 | Viewed by 1775
Abstract
The enormous potential of additive manufacturing (AM), particularly laser powder bed fusion (L-PBF), to produce radiofrequency cavities (cavities) has already been demonstrated. However, the required geometrical accuracy for GHz TM010 cavities is currently only achieved by (a) avoiding downskin angles [...] Read more.
The enormous potential of additive manufacturing (AM), particularly laser powder bed fusion (L-PBF), to produce radiofrequency cavities (cavities) has already been demonstrated. However, the required geometrical accuracy for GHz TM010 cavities is currently only achieved by (a) avoiding downskin angles <40, which in turn leads to a cavity geometry with reduced performance, or (b) co-printed support structures, which are difficult to remove for small GHz cavities. We have developed an L-PBF-based manufacturing routine to overcome this limitation. To enable arbitrary geometries, co-printed support structures are used that are designed in such a way that they can be removed after printing by electrochemical post-processing, which simultaneously reduces the surface roughness and thus maximizes the quality factor Q0. The manufacturing approach is evaluated on two TM010 single cavities printed entirely from high-purity copper. Both cavities achieve the desired resonance frequency and a Q0 of approximately 8300. Full article
Show Figures

Figure 1

23 pages, 6158 KiB  
Article
Results and Perspectives of Timepix Detectors in Space—From Radiation Monitoring in Low Earth Orbit to Astroparticle Physics
by Benedikt Bergmann, Stefan Gohl, Declan Garvey, Jindřich Jelínek and Petr Smolyanskiy
Instruments 2024, 8(1), 17; https://doi.org/10.3390/instruments8010017 - 29 Feb 2024
Cited by 1 | Viewed by 2049
Abstract
In space application, hybrid pixel detectors of the Timepix family have been considered mainly for the measurement of radiation levels and dosimetry in low earth orbits. Using the example of the Space Application of Timepix Radiation Monitor (SATRAM), we demonstrate the unique capabilities [...] Read more.
In space application, hybrid pixel detectors of the Timepix family have been considered mainly for the measurement of radiation levels and dosimetry in low earth orbits. Using the example of the Space Application of Timepix Radiation Monitor (SATRAM), we demonstrate the unique capabilities of Timepix-based miniaturized radiation detectors for particle separation. We present the incident proton energy spectrum in the geographic location of SAA obtained by using Bayesian unfolding of the stopping power spectrum measured with a single-layer Timepix. We assess the measurement stability and the resiliency of the detector to the space environment, thereby demonstrating that even though degradation is observed, data quality has not been affected significantly over more than 10 years. Based on the SATRAM heritage and the capabilities of the latest-generation Timepix series chips, we discuss their applicability for use in a compact magnetic spectrometer for a deep space mission or in the Jupiter radiation belts, as well as their capability for use as single-layer X- and γ-ray polarimeters. The latter was supported by the measurement of the polarization of scattered radiation in a laboratory experiment, where a modulation of 80% was found. Full article
Show Figures

Figure 1

21 pages, 4669 KiB  
Review
Structural Health Monitoring of Solid Rocket Motors: From Destructive Testing to Perspectives of Photonic-Based Sensing
by Georgia Korompili, Günter Mußbach and Christos Riziotis
Instruments 2024, 8(1), 16; https://doi.org/10.3390/instruments8010016 - 28 Feb 2024
Cited by 2 | Viewed by 2730
Abstract
In the realm of space exploration, solid rocket motors (SRMs) play a pivotal role due to their reliability and high thrust-to-weight ratio. Serving as boosters in space launch vehicles and employed in military systems, and other critical & emerging applications, SRMs’ structural integrity [...] Read more.
In the realm of space exploration, solid rocket motors (SRMs) play a pivotal role due to their reliability and high thrust-to-weight ratio. Serving as boosters in space launch vehicles and employed in military systems, and other critical & emerging applications, SRMs’ structural integrity monitoring, is of paramount importance. Traditional maintenance approaches often prove inefficient, leading to either unnecessary interventions or unexpected failures. Condition-based maintenance (CBM) emerges as a transformative strategy, incorporating advanced sensing technologies and predictive analytics. By continuously monitoring crucial parameters such as temperature, pressure, and strain, CBM enables real-time analysis, ensuring timely intervention upon detecting anomalies, thereby optimizing SRM lifecycle management. This paper critically evaluates conventional SRM health diagnosis methods and explores emerging sensing technologies. Photonic sensors and fiber-optic sensors, in particular, demonstrate exceptional promise. Their enhanced sensitivity and broad measurement range allow precise monitoring of temperature, strain, pressure, and vibration, capturing subtle changes indicative of degradation or potential failures. These sensors enable comprehensive, non-intrusive monitoring of multiple SRM locations simultaneously. Integrated with data analytics, these sensors empower predictive analysis, facilitating SRM behavior prediction and optimal maintenance planning. Ultimately, CBM, bolstered by advanced photonic sensors, promises enhanced operational availability, reduced costs, improved safety, and efficient resource allocation in SRM applications. Full article
(This article belongs to the Special Issue Photonic Devices Instrumentation and Applications II)
Show Figures

Figure 1

18 pages, 1507 KiB  
Article
A Modified Slicing Method with Multi-Dimensional Unfolding to Measure Hadron-Argon Cross Sections
by Yinrui Liu
Instruments 2024, 8(1), 15; https://doi.org/10.3390/instruments8010015 - 25 Feb 2024
Viewed by 1334
Abstract
Liquid argon technology is widely used by many previous and current neutrino experiments, and it is also promising for future large-scale neutrino experiments. When detecting neutrinos using liquid argon, many hadrons are involved, which can also interact with argon nuclei. In order to [...] Read more.
Liquid argon technology is widely used by many previous and current neutrino experiments, and it is also promising for future large-scale neutrino experiments. When detecting neutrinos using liquid argon, many hadrons are involved, which can also interact with argon nuclei. In order to gain a better understanding of the detection processes, and to simulate neutrino events, knowledge of hadron-argon cross sections is needed. This paper describes a new procedure which improves upon the previous work with multi-dimensional unfolding to measure hadron-argon cross sections in a liquid argon time projection chamber. Through a simplified version of simulation, we demonstrate the validity of this procedure. Full article
Show Figures

Figure 1

14 pages, 6466 KiB  
Article
Improving Cathode Testing with a High-Gradient Cryogenic Normal Conducting RF Photogun
by Gerard Emile Lawler, Fabio Bosco, Martina Carillo, Atsushi Fukasawa, Zenghai Li, Nathan Majernik, Yusuke Sakai, Sami Tantawi, Oliver Williams, Monika Yadav and James Rosenzweig
Instruments 2024, 8(1), 14; https://doi.org/10.3390/instruments8010014 - 24 Feb 2024
Viewed by 1606
Abstract
Future electron accelerator applications such as X-ray free electron lasers and colliders are dependent on significantly increasing beam brightness. With the observation that linac beam manipulation’s best preservation of max brightness is at the cathode, we are incentivized to create an environment where [...] Read more.
Future electron accelerator applications such as X-ray free electron lasers and colliders are dependent on significantly increasing beam brightness. With the observation that linac beam manipulation’s best preservation of max brightness is at the cathode, we are incentivized to create an environment where we can study how to achieve the highest possible photogun brightness. In order to do so, we intend to extract beams from high-brightness photocathodes with the highest achievable accelerating gradients we can manage in a klystron-powered radiofrequency (RF) photogun. We utilize here cryogenic normal conducting cavities to achieve ultra-high gradients via limitation of breakdown rates (BDR). The low temperatures should also reduce cathode emittance by reducing the mean transverse energy (MTE) of electrons near the photoemission threshold. To this end, we have designed and produced a new CrYogenic Brightness-Optimized Radiofrequency Gun (CYBORG) for use in a new beamline at UCLA. We will introduce the enabling RF and photoemission physics as a primer for the new regime of high field low temperature cathodes we intend to enter. We further report the current status of the beamline commissioning, including the cooling of the photogun to 100 K, and producing 0.5 MW of RF feed power, which corresponds to cathode accelerating fields in the range of 80–90 MV/m. We further plan iterative improvements to both to 77 K and 1 MW corresponding to our ultimate goal >120 MV/m. Our discussion will include future beamline tests and the consideration of the initial realization of an ultra-high-gradient photoinjector concept. Full article
Show Figures

Figure 1

11 pages, 3281 KiB  
Article
A Silicon-Photo-Multiplier-Based Camera for the Terzina Telescope on Board the Neutrinos and Seismic Electromagnetic Signals Space Mission
by Leonid Burmistrov
Instruments 2024, 8(1), 13; https://doi.org/10.3390/instruments8010013 - 20 Feb 2024
Viewed by 1629
Abstract
NUSES is a pathfinder satellite project hosting two detectors: Ziré and Terzina. Ziré focuses on the study of protons and electrons below 250 MeV and MeV gamma rays. Terzina is dedicated to the detection of Cherenkov light produced by ultra-high-energy cosmic rays above [...] Read more.
NUSES is a pathfinder satellite project hosting two detectors: Ziré and Terzina. Ziré focuses on the study of protons and electrons below 250 MeV and MeV gamma rays. Terzina is dedicated to the detection of Cherenkov light produced by ultra-high-energy cosmic rays above 100 PeV and ultra-high-energy Earth-skimming neutrinos in the atmosphere, ensuring a large exposure. This work mainly concerns the description of the Cherenkov camera, composed of SiPMs, for the Terzina telescope. To increase the data-taking period, the NUSES orbit will be Sun-synchronous (with a height of about 550 km), thus allowing Terzina to always point toward the dark side of the Earth’s limb. The Sun-synchronous orbit requires small distances to the poles, and as a consequence, we expect an elevated dose to be received by the SiPMs. Background rates due to the dose accumulated by the SiPM would become a dominant contribution during the last two years of the NUSES mission. In this paper, we illustrate the measured effect of irradiance on SiPM photosensors with a variable-intensity beam of 50 MeV protons up to a 30 Gy total integrated dose. We also show the results of an initial study conducted without considering the contribution of solar wind protons and with an initial geometry with Geant4. The considered geometry included an entrance lens as one of the options in the initial design of the telescope. We characterize the SiPM output signal shape with different μ-cell sizes. We describe the developed parametric SiPM simulation, which is a part of the full Terzina simulation chain. Full article
Show Figures

Figure 1

10 pages, 903 KiB  
Article
Manipulation and Wakefield Effects on Multi-Pulse Driver Beams in PWFA Injector Stages
by Fabio Bosco, Gerard Andonian, Obed Camacho, Martina Carillo, Enrica Chiadroni, Anna Giribono, Gerard Lawler, Nathan Majernik, Pratik Manwani, Mauro Migliorati, Andrea Mostacci, Luigi Palumbo, Gilles Jacopo Silvi, Bruno Spataro, Cristina Vaccarezza, Monika Yadav and James Rosenzweig
Instruments 2024, 8(1), 12; https://doi.org/10.3390/instruments8010012 - 20 Feb 2024
Viewed by 1560
Abstract
Particle-driven plasma wakefield acceleration (PWFA) exploits the intense wakefields excited in a plasma by a high-brightness driver beam in order to accelerate a trailing, properly delayed witness electron beam. Such a configuration offers notable advantages in achieving very large accelerating gradients that are [...] Read more.
Particle-driven plasma wakefield acceleration (PWFA) exploits the intense wakefields excited in a plasma by a high-brightness driver beam in order to accelerate a trailing, properly delayed witness electron beam. Such a configuration offers notable advantages in achieving very large accelerating gradients that are suitable for applications in particle colliders and photon production. Moreover, the amplitude of the accelerating fields can be enhanced by resonantly exciting the plasma using a multi-pulse driver beam with a proper time structure. Before the injection into the plasma stage, the pulsed electron beam, conventionally termed the comb beam, is usually produced and pre-accelerated in a radio-frequency (RF) linear accelerator (linac). In this pape, we discuss challenging aspects of the dynamics that comb beams encounter in the RF injector stage preceding the plasma. In particular, the examples we analyze focus on the use of velocity bunching to manipulate the time structure of the beam and the impact of dipole short-range wakefields on the transverse emittances. Indeed, both processes crucially affect the phase space distribution and its quality, which are determinant features for an efficient acceleration in the plasma. In addition, the analyses we present are performed with the custom tracking code MILES, which utilizes semi-analytical models for a simplified evaluation of wakefield effects in the presence of space charge forces. Full article
Show Figures

Figure 1

13 pages, 3383 KiB  
Article
Characterization of a Large Area Hybrid Pixel Detector of Timepix3 Technology for Space Applications
by Martin Farkas, Benedikt Bergmann, Pavel Broulim, Petr Burian, Giovanni Ambrosi, Philipp Azzarello, Lukáš Pušman, Mateusz Sitarz, Petr Smolyanskiy, Daniil Sukhonos and Xin Wu
Instruments 2024, 8(1), 11; https://doi.org/10.3390/instruments8010011 - 14 Feb 2024
Cited by 1 | Viewed by 1969
Abstract
We present the characterization of a highly segmented “large area” hybrid pixel detector (Timepix3, 512 × 512 pixels, pixel pitch 55 µm) for application in space experiments. We demonstrate that the nominal power consumption of 6 W can be reduced by changing the [...] Read more.
We present the characterization of a highly segmented “large area” hybrid pixel detector (Timepix3, 512 × 512 pixels, pixel pitch 55 µm) for application in space experiments. We demonstrate that the nominal power consumption of 6 W can be reduced by changing the settings of the Timepix3 analog front-end and reducing the matrix clock frequency (from the nominal 40 MHz to 5 MHz) to 2 W (in the best case). We then present a comprehensive study of the impact of these changes on the particle tracking performance, the energy resolution and time stamping precision by utilizing data measured at the Super-Proton-Synchrotron (SPS) at CERN and at the Danish Center for Particle Therapy (DCPT). While the impact of the slower sampling frequency on energy measurement can be mitigated by prolongation of the falling edge of the analog signal, we find a reduction of the time resolution from 1.8 ns (in standard settings) to 5.6 ns (in analog low-power), which is further reduced utilizing a lower sampling clock (e.g., 5 MHz, in digital low-power operation) to 73.5 ns. We have studied the temperature dependence of the energy measurement for ambient temperatures between −20 °C and 50 °C separately for the different settings. Full article
Show Figures

Figure 1

16 pages, 4182 KiB  
Article
Radio Frequency Properties of a 3D Printed Klystron Circuit
by Charlotte Wehner, Bradley Shirley, Garrett Mathesen, Julian Merrick, Brandon Weatherford and Emilio Alessandro Nanni
Instruments 2024, 8(1), 9; https://doi.org/10.3390/instruments8010009 - 7 Feb 2024
Cited by 1 | Viewed by 1647
Abstract
The manufacturing of active RF devices like klystrons is dominated by expensive and time-consuming cycles of machining and brazing. In this article, we characterize the RF properties of X-band klystron cavities and an integrated circuit manufactured with a novel additive manufacturing process. Parts [...] Read more.
The manufacturing of active RF devices like klystrons is dominated by expensive and time-consuming cycles of machining and brazing. In this article, we characterize the RF properties of X-band klystron cavities and an integrated circuit manufactured with a novel additive manufacturing process. Parts are 3D printed in 316 L stainless steel with direct metal laser sintering, electroplated in copper, and brazed in one simple braze cycle. Stand-alone test cavities and integrated circuit cavities were measured throughout the manufacturing process. The un-tuned cavity frequency varies by less than 5% of the intended frequency, and Q factors reach above 1200. A tuning study was performed, and unoptimized tuning pins achieved a tuning range of 138 MHz without compromising Q. Klystron system performance was simulated with as-built cavity parameters and realistic tuning. Together, these results show promise that this process can be used to cheaply and quickly manufacture a new generation of highly integrated high power vacuum devices. Full article
Show Figures

Figure 1

15 pages, 2394 KiB  
Review
Production of Medical Radionuclides in the Center for Radiopharmaceutical Tumor Research—A Status Report
by Martin Kreller, Santiago Andrés Brühlmann, Torsten Knieß, Klaus Kopka and Martin Walther
Instruments 2024, 8(1), 10; https://doi.org/10.3390/instruments8010010 - 7 Feb 2024
Viewed by 1852
Abstract
A new Center for Radiopharmaceutical Cancer Research was established at the Helmholtz-Zentrum Dresden-Rossendorf in 2017 to centralize radionuclide and radiopharmaceutical production, as well as enable chemical and biochemical research. Routine production of several radionuclides was put into operation in recent years. We report [...] Read more.
A new Center for Radiopharmaceutical Cancer Research was established at the Helmholtz-Zentrum Dresden-Rossendorf in 2017 to centralize radionuclide and radiopharmaceutical production, as well as enable chemical and biochemical research. Routine production of several radionuclides was put into operation in recent years. We report on the production methods of radiopharmaceutical radionuclides, in particular 11C, 18F, and radio metals like 61Cu, 64Cu, 67Cu, 67Ga, 131Ba, and 133La that are used regularly. In the discussion, we report typical irradiation parameters and achieved saturation yields. Full article
Show Figures

Figure 1

17 pages, 1514 KiB  
Review
Combining Wave and Particle Effects in the Simulation of X-ray Phase Contrast—A Review
by Emilie Pietersoone, Jean Michel Létang, Simon Rit, Emmanuel Brun and Max Langer
Instruments 2024, 8(1), 8; https://doi.org/10.3390/instruments8010008 - 3 Feb 2024
Cited by 3 | Viewed by 1965
Abstract
X-ray phase-contrast imaging (XPCI) is a family of imaging techniques that makes contrast visible due to phase shifts in the sample. Phase-sensitive techniques can potentially be several orders of magnitude more sensitive than attenuation-based techniques, finding applications in a wide range of fields, [...] Read more.
X-ray phase-contrast imaging (XPCI) is a family of imaging techniques that makes contrast visible due to phase shifts in the sample. Phase-sensitive techniques can potentially be several orders of magnitude more sensitive than attenuation-based techniques, finding applications in a wide range of fields, from biomedicine to materials science. The accurate simulation of XPCI allows for the planning of imaging experiments, potentially reducing the need for costly synchrotron beam access to find suitable imaging parameters. It can also provide training data for recently proposed machine learning-based phase retrieval algorithms. The simulation of XPCI has classically been carried out using wave optics or ray optics approaches. However, these approaches have not been capable of simulating all the artifacts present in experimental images. The increased interest in dark-field imaging has also prompted the inclusion of scattering in XPCI simulation codes. Scattering is classically simulated using Monte Carlo particle transport codes. The combination of the two perspectives has proven not to be straightforward, and several methods have been proposed. We review the available literature on the simulation of XPCI with attention given to particular methods, including the scattering component, and discuss the possible future directions for the simulation of both wave and particle effects in XPCI. Full article
Show Figures

Figure 1

10 pages, 4361 KiB  
Article
Hadronic Energy Scale Calibration of Calorimeters in Space Using the Moon’s Shadow
by Alberto Oliva
Instruments 2024, 8(1), 7; https://doi.org/10.3390/instruments8010007 - 27 Jan 2024
Viewed by 1402
Abstract
Calorimetric experiments in space of the current and of the next generation measure cosmic rays directly above TeV on satellites in low Earth orbit. A common issue of these detectors is the determination of the absolute energy scale for hadronic showers above TeV. [...] Read more.
Calorimetric experiments in space of the current and of the next generation measure cosmic rays directly above TeV on satellites in low Earth orbit. A common issue of these detectors is the determination of the absolute energy scale for hadronic showers above TeV. In this work, we propose the use of the Moon–Earth spectrometer technique for the calibration of calorimeters in space. In brief, the presence of the Moon creates a detectable lack of particles in the detected cosmic ray arrival directions. The position of this depletion has an offset with respect to the Moon center due to the deflection effect of the geomagnetic field on the cosmic rays that depends on the energy and the charge of the particle. The developed simulation will explore if, with enough statistics, angular, and energy resolutions, this effect can be exploited for the energy scale calibration of calorimeters on satellites in orbit in Earth’s proximity. Full article
Show Figures

Figure 1

13 pages, 6962 KiB  
Review
Mini-EUSO on Board the International Space Station: Mission Status and Results
by Laura Marcelli
Instruments 2024, 8(1), 6; https://doi.org/10.3390/instruments8010006 - 24 Jan 2024
Cited by 1 | Viewed by 1843
Abstract
The telescope Mini-EUSO has been observing, since 2019, the Earth in the ultraviolet band (290–430 nm) through a nadir-facing UV-transparent window in the Russian Zvezda module of the International Space Station. The instrument has a square field of view of 44°, a spatial [...] Read more.
The telescope Mini-EUSO has been observing, since 2019, the Earth in the ultraviolet band (290–430 nm) through a nadir-facing UV-transparent window in the Russian Zvezda module of the International Space Station. The instrument has a square field of view of 44°, a spatial resolution on the Earth surface of 6.3 km and a temporal sampling rate of 2.5 microseconds. The optics is composed of two 25 cm diameter Fresnel lenses and a focal surface consisting of 36 multi-anode photomultiplier tubes, 64 pixels each, for a total of 2304 channels. In addition to the main camera, Mini-EUSO also contains two cameras in the near infrared and visible ranges, a series of silicon photomultiplier sensors and UV sensors to manage night-day transitions. Its triggering and on-board processing allow the telescope to detect UV emissions of cosmic, atmospheric and terrestrial origin on different time scales, from a few microseconds up to tens of milliseconds. This makes it possible to investigate a wide variety of events: the study of atmospheric phenomena (lightning, transient luminous events (TLEs) such as ELVES and sprites), meteors and meteoroids; the search for nuclearites and strange quark matter; and the observation of artificial satellites and space debris. Mini-EUSO is also potentially capable of observing extensive air showers generated by ultra-high-energy cosmic rays with an energy above 1021 eV and can detect artificial flashing events and showers generated with lasers from the ground. The instrument was integrated and qualified in 2019 in Rome, with additional tests in Moscow and final, pre-launch tests in Baikonur. Operations involve periodic installation in the Zvezda module of the station with observations during the crew night time, with periodic downlink of data samples, and the full dataset being sent to the ground via pouches containing the data disks. In this work, the mission status and the main scientific results obtained so far are presented, in light of future observations with similar instruments. Full article
Show Figures

Figure 1

10 pages, 4817 KiB  
Article
Double Photodiode Readout System for the Calorimeter of the HERD Experiment: Challenges and New Horizons in Technology for the Direct Detection of High-Energy Cosmic Rays
by Pietro Betti, Oscar Adriani, Matias Antonelli, Yonglin Bai, Xiaohong Bai, Tianwei Bao, Eugenio Berti, Lorenzo Bonechi, Massimo Bongi, Valter Bonvicini, Sergio Bottai, Weiwei Cao, Jorge Casaus, Zhen Chen, Xingzhu Cui, Raffaello D’Alessandro, Sebastiano Detti, Carlos Diaz, Yongwei Dong, Noemi Finetti, Valerio Formato, Miguel Angel Velasco Frutos, Jiarui Gao, Francesca Giovacchini, Xiaozhen Liang, Ran Li, Xin Liu, Linwei Lyu, Gustavo Martinez, Nicola Mori, Jesus Marin Munoz, Lorenzo Pacini, Paolo Papini, Cecilia Pizzolotto, Zheng Quan, Junjun Qin, Dalian Shi, Oleksandr Starodubtsev, Zhicheng Tang, Alessio Tiberio, Valerio Vagelli, Elena Vannuccini, Bo Wang, Junjing Wang, Le Wang, Ruijie Wang, Gianluigi Zampa, Nicola Zampa, Zhigang Wang, Ming Xu, Li Zhang and Jinkun Zhengadd Show full author list remove Hide full author list
Instruments 2024, 8(1), 5; https://doi.org/10.3390/instruments8010005 - 22 Jan 2024
Cited by 1 | Viewed by 1888
Abstract
The HERD experiment is a future experiment for the direct detection of high-energy cosmic rays and is to be installed on the Chinese space station in 2027. The main objectives of HERD are the first direct measurement of the knee of the cosmic [...] Read more.
The HERD experiment is a future experiment for the direct detection of high-energy cosmic rays and is to be installed on the Chinese space station in 2027. The main objectives of HERD are the first direct measurement of the knee of the cosmic ray spectrum, the extension of electron+positron flux measurement up to tens of TeV, gamma ray astronomy, and the search for indirect signals of dark matter. The main component of the HERD detector is an innovative calorimeter composed of about 7500 LYSO scintillating crystals assembled in a spherical shape. Two independent readout systems of the LYSO scintillation light will be installed on each crystal: the wavelength-shifting fibers system developed by IHEP and the double photodiode readout system developed by INFN and CIEMAT. In order to measure protons in the cosmic ray knee region, we must be able to measure energy release of about 250 TeV in a single crystal. In addition, in order to calibrate the system, we need to measure typical releases of minimum ionizing particles that are about 30 MeV. Thus, the readout systems should have a dynamic range of about 107. In this article, we analyze the development and the performance of the double photodiode readout system. In particular, we show the performance of a prototype readout by the double photodiode system for electromagnetic showers as measured during a beam test carried out at the CERN SPS in October 2021 with high-energy electron beams. Full article
Show Figures

Figure 1

16 pages, 8207 KiB  
Article
From SuperTIGER to TIGERISS
by B. F. Rauch, W. V. Zober, Q. Abarr, Y. Akaike, W. R. Binns, R. F. Borda, R. G. Bose, T. J. Brandt, D. L. Braun, J. H. Buckley, N. W. Cannady, S. Coutu, R. M. Crabill, P. F. Dowkontt, M. H. Israel, M. Kandula, J. F. Krizmanic, A. W. Labrador, W. Labrador, L. Lisalda, J. V. Martins, M. P. McPherson, R. A. Mewaldt, J. G. Mitchell, J. W. Mitchell, S. A. I. Mognet, R. P. Murphy, G. A. de Nolfo, S. Nutter, M. A. Olevitch, N. E. Osborn, I. M. Pastrana, K. Sakai, M. Sasaki, S. Smith, H. A. Tolentino, N. E. Walsh, J. E. Ward, D. Washington, A. T. West and L. P. Williamsadd Show full author list remove Hide full author list
Instruments 2024, 8(1), 4; https://doi.org/10.3390/instruments8010004 - 11 Jan 2024
Cited by 1 | Viewed by 1968
Abstract
The Trans-Iron Galactic Element Recorder (TIGER) family of instruments is optimized to measure the relative abundances of the rare, ultra-heavy galactic cosmic rays (UHGCRs) with atomic number (Z) Z ≥ 30. Observing the UHGCRs places a premium on exposure that the balloon-borne SuperTIGER [...] Read more.
The Trans-Iron Galactic Element Recorder (TIGER) family of instruments is optimized to measure the relative abundances of the rare, ultra-heavy galactic cosmic rays (UHGCRs) with atomic number (Z) Z ≥ 30. Observing the UHGCRs places a premium on exposure that the balloon-borne SuperTIGER achieved with a large area detector (5.6 m2) and two Antarctic flights totaling 87 days, while the smaller (∼1 m2) TIGER for the International Space Station (TIGERISS) aims to achieve this with a longer observation time from one to several years. SuperTIGER uses a combination of scintillator and Cherenkov detectors to determine charge and energy. TIGERISS will use silicon strip detectors (SSDs) instead of scintillators, with improved charge resolution, signal linearity, and dynamic range. Extended single-element resolution UHGCR measurements through 82Pb will cover elements produced in s-process and r-process neutron capture nucleosynthesis, adding to the multi-messenger effort to determine the relative contributions of supernovae (SNe) and Neutron Star Merger (NSM) events to the r-process nucleosynthesis product content of the galaxy. Full article
Show Figures

Figure 1

13 pages, 5646 KiB  
Article
Antideuteron Identification in Space with Helium Calorimeter
by Francesco Nozzoli, Irina Rashevskaya, Leonardo Ricci, Francesco Rossi, Piero Spinnato, Enrico Verroi, Paolo Zuccon and Gregorio Giovanazzi
Instruments 2024, 8(1), 3; https://doi.org/10.3390/instruments8010003 - 6 Jan 2024
Viewed by 1685
Abstract
The search for low-energy antideuterons in cosmic rays allows the addressing of fundamental physics problems testing for the presence of primordial antimatter and the nature of Dark Matter. The PHeSCAMI (Pressurized Helium Scintillating Calorimeter for AntiMatter Identification) project aims to exploit the long-living [...] Read more.
The search for low-energy antideuterons in cosmic rays allows the addressing of fundamental physics problems testing for the presence of primordial antimatter and the nature of Dark Matter. The PHeSCAMI (Pressurized Helium Scintillating Calorimeter for AntiMatter Identification) project aims to exploit the long-living metastable states of the helium target for the identification of low-energy antideuterons in cosmic rays. A space-based pressurized helium calorimeter would provide a characteristic identification signature based on the coincident detection of a prompt scintillation signal emitted by the antideuteron energy loss during the slowing-down phase in the gas, and the (≈µs) delayed scintillation signal provided by the charged pions produced in the subsequent annihilation. The performance of a high-pressure (200-bar) helium scintillator prototype, tested in the INFN-TIFPA laboratory, will be summarized. Full article
Show Figures

Figure 1

10 pages, 3701 KiB  
Article
An Ultra-Compact X-ray Regenerative Amplifier Free-Electron Laser
by Madison Singleton, James Rosenzweig, Jingyi Tang and Zhirong Huang
Instruments 2024, 8(1), 2; https://doi.org/10.3390/instruments8010002 - 5 Jan 2024
Cited by 1 | Viewed by 2399
Abstract
There is a growing interest in designing and building compact X-ray Free Electron Lasers (FELs) for scientific and industry applications. In this paper, we report an X-ray Regenerative Amplifier FEL (XRAFEL) design based on a proposed Ultra Compact X-ray FEL configuration. Our results [...] Read more.
There is a growing interest in designing and building compact X-ray Free Electron Lasers (FELs) for scientific and industry applications. In this paper, we report an X-ray Regenerative Amplifier FEL (XRAFEL) design based on a proposed Ultra Compact X-ray FEL configuration. Our results show that an XRAFEL can dramatically enhance the temporal coherence and increase the spectral brightness of the radiation in the hard X-ray regime without increasing the footprint of the FEL configuration. The proposed compact, fully coherent, and high-flux hard X-ray source holds promise as a valuable candidate for a wide range of high-impact applications in both academia and industry. Full article
Show Figures

Figure 1

16 pages, 1013 KiB  
Article
Secondary Beams at High-Intensity Electron Accelerator Facilities
by Marco Battaglieri, Andrea Bianconi, Mariangela Bondí, Raffaella De Vita, Antonino Fulci, Giulia Gosta, Stefano Grazzi, Hyon-Suk Jo, Changhui Lee, Giuseppe Mandaglio, Valerio Mascagna, Tetiana Nagorna, Alessandro Pilloni, Marco Spreafico, Luca J. Tagliapietra, Luca Venturelli and Tommaso Vittorini
Instruments 2024, 8(1), 1; https://doi.org/10.3390/instruments8010001 - 4 Jan 2024
Cited by 1 | Viewed by 1859
Abstract
The interaction of a high-current O(100 µA), medium energy O(10 GeV) electron beam with a thick target O(1m) produces an overwhelming shower of standard model particles in addition to hypothetical light dark matter particles. While most of the radiation (gamma, [...] Read more.
The interaction of a high-current O(100 µA), medium energy O(10 GeV) electron beam with a thick target O(1m) produces an overwhelming shower of standard model particles in addition to hypothetical light dark matter particles. While most of the radiation (gamma, electron/positron) is contained in the thick target, deep penetrating particles (muons, neutrinos, and light dark matter particles) propagate over a long distance, producing high-intensity secondary beams. Using sophisticated Monte Carlo simulations based on FLUKA and GEANT4, we explored the characteristics of secondary muons and neutrinos and (hypothetical) dark scalar particles produced by the interaction of the Jefferson Lab 11 GeV intense electron beam with the experimental Hall-A beam dump. Considering the possible beam energy upgrade, this study was repeated for a 22 GeV CEBAF beam. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop